DESIGN, DEVELOPMENT, AND HUMAN ANALOGOUS CONTROL OF A CLIMBING ROBOT

A Thesis
Submitted to the Faculty of Graduate Studies and Research
In Partial Fulfillment of the Requirements
For the Degree of
Master of Applied Science
In
Industrial Systems Engineering
University of Regina

By
Amirhossein Bazargan
Regina, Saskatchewan
March 2012

©Copyright 2012: Amirhossein Bazargan
Amirhossein Bazargan, candidate for the degree of Master of Applied Science in Industrial Systems Engineering, has presented a thesis titled, *Design, Development, and Human Analogous Control of a Climbing Robot*, in an oral examination held on February 3, 2012. The following committee members have found the thesis acceptable in form and content, and that the candidate demonstrated satisfactory knowledge of the subject material.

External Examiner: Dr. Raman Paranjape, Electronic Systems Engineering
Co-Supervisor: Dr. Mehran Mehrandezh, Industrial Systems Engineering
Co-Supervisor: Dr. Liming Dai, Industrial Systems Engineering
Committee Member: Dr. Adisorn Aroonwilas, Industrial Systems Engineering
Committee Member: Dr. Rene Mayorga, Industrial Systems Engineering

Chair of Defense: Dr. Daryl Hepting, Department of Computer Science

Not present at defense
Abstract

In this thesis, a re-configurable wheeled climbing robot has been introduced. This robot is capable of doing a multitude of tasks that no other single robot could do in the past. It can climb staircases, move inside empty ducts and pipes, climb up ropes and poles of varying cross sections, and even jump over obstacles with proper motion coordination. It can also move inside narrow passageways by reconfiguring itself. The design of a re-configurable robot capable of traversing a wide range of unconventional terrains is the novelty in this invention.

A comprehensive dynamic model of the robot is derived for the first time. A real-time simulator to try different control strategies by a human operator using conventional human-machine interfaces has been developed. This simulator can be employed to size the electromechanical actuators and to synthesize different control strategies in a short time. The data obtained can be also used to design a human-analogous autonomous controller.
After outline of the theory, background and applications of soft computing techniques for system construction and control including Artificial Neural Networks (ANN), Fuzzy Logic Control (FLC), and the Adaptive Neuro-Fuzzy Inference Systems (ANFIS), a novel human-analogous control strategy based on ANFIS was implemented to control the position of the robot climbing a straight pole against gravity.

The design process of the ANFIS-based human-analogous control strategy includes the following steps: First, a human expert tries to control the real system in real time within a human-in-the-loop simulator via a Human-Machine Interface (HMI) using sensory information obtained from visual tracing in the HMI in real time from the real system. The control task is done by using a control interface (i.e., a joystick). Relevant input/output data is stored, filtered, and used offline to tune the parameters of an ANFIS-based controller. The ANFIS controller whose parameters have been optimized is then implemented on the real system autonomously. Based on the information obtained via the HITL simulator system, the controller can extrapolate needed data for untrained cases.
I would like to express my thanks and appreciation to my thesis supervisor Dr. Mehran Mehrandezh and co-supervisor Dr. Liming Dai for being so enthusiastic, cooperative and helpful and for financial supports during the development of this dissertation. I would also like to express my thanks and appreciation to the Faculty of Graduate Studies and Research (FGSR) and the Faculty of Engineering and Applied Science at University of Regina in form of teaching and research scholarships.
Dedication

I would like to dedicate this thesis to my parents, Ebranm and Soosan, and my wife, Delbar, for always supporting me in every situation and believing in me even when I was unsure of myself.
Contents

Abstract i
Acknowledgement iii
Dedication iv
Table of Contents v
List of Tables ix
List of Figures xi
List of Acronyms xv
Chapter 1 Introduction 1
 1.1 Problem Statement ... 1
 1.2 Thesis Organization ... 2
 1.3 Contribution .. 2
Chapter 2 Literature review 4
 2.1 Re-configurable and adaptable vehicles 4
 2.1.1 Obstacle/stair climber robots 5
B.1 Dynamic Equations ... 98
B.2 Conventional Controller ... 100
B.3 Unconventional Controller .. 102
B.4 Comparing Conventional and Unconventional Controllers 111

Appendix C Basic Definitions 112
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Comparison of design factors for some robots cited in the Literature</td>
<td>19</td>
</tr>
<tr>
<td>4.1</td>
<td>Definition of physical parameters used in equation 4.13</td>
<td>37</td>
</tr>
<tr>
<td>4.2</td>
<td>Constant values used in simulink model</td>
<td>38</td>
</tr>
<tr>
<td>5.1</td>
<td>Correlation coefficient of five different results</td>
<td>65</td>
</tr>
<tr>
<td>5.2</td>
<td>Average T_p, average T_s, and percentage of overshoot for each result</td>
<td>66</td>
</tr>
<tr>
<td>5.3</td>
<td>An example of improving some pair data</td>
<td>68</td>
</tr>
<tr>
<td>5.4</td>
<td>Antecedent parameters before tuning</td>
<td>73</td>
</tr>
<tr>
<td>5.5</td>
<td>Antecedent parameters after tuning</td>
<td>74</td>
</tr>
<tr>
<td>5.6</td>
<td>Consequent parameters after tuning</td>
<td>75</td>
</tr>
<tr>
<td>5.7</td>
<td>Effect of independent P and D tuning [48]</td>
<td>81</td>
</tr>
<tr>
<td>B.1</td>
<td>Parameters of the DC motor used in the case study presented in appendix E</td>
<td>100</td>
</tr>
<tr>
<td>B.2</td>
<td>Antecedent parameters before tuning for case study of controlling the rotation angle of a DC motor</td>
<td>107</td>
</tr>
</tbody>
</table>
B.3 Antecedent parameters after tuning for case study of controlling the rotation angle of a DC motor 108

B.4 Consequent parameters after tuning for case study of controlling the rotation angle of a DC motor 109
List of Figures

3.1 Curved pole climbing application domain 14
3.2 Rope climbing application domain ... 14
3.3 Stair climbing application domain ... 15
3.4 Duct climbing application domain ... 15
3.5 Duct climbing application domain with varying ross section 16
3.6 Rough-terrain rover application domain 16
3.7 Pipe-crawling application domain .. 17
3.8 Moving through difficult passageways 17
3.9 Payload application domain .. 18
3.10 Flowchart of the design process ... 20
4.1 (a) Main parts of the robot (b) General view 23
4.2 Technical drawing of the robot ... 25
4.3 Generalized coordinates of the system 28
4.4 Applied forces on the robot ... 32
4.5 Modeling the pole as a spring damper ... 34
5.1 A snapshot of the HMI ... 51
5.2 Reference trajectory ... 52
5.3 Result No.1 including desired and real value of vertical movement, input voltage, and error ... 53
5.4 Result No.2 including desired and real value of vertical movement, input voltage, and error ... 54
5.5 Result No.3 including desired and real value of vertical movement, input voltage, and error ... 55
5.6 Result No.4 including desired and real value of vertical movement, input voltage, and error ... 56
5.7 Result No.5 including desired and real value of vertical movement, input voltage, and error ... 57
5.8 Change of voltage in terms of error for four steps of result No.1 60
5.9 Change of voltage in terms of error for four steps of result No.2 61
5.10 Change of voltage in terms of error for four steps of result No.3 62
5.11 Change of voltage in terms of error for four steps of result No.4 63
5.12 Change of voltage in terms of error for four steps of result No.5 64
5.13 Filtered voltage used to tune the ANFIS .. 69
5.14 Filtered error used to tune the ANFIS ... 69
5.15 The Gaussian MF’s of e(k) before tuning 71
5.16 The Gaussian MF’s of e(k) after tuning ... 71
5.17 The Gaussian MF’s of e(k-1) before tuning 72
5.18 The Gaussian MF’s of e(k-1) after tuning .. 72
5.19 The control surface ... 72
5.20 Implementation of an ANFIS controller in the closed-loop 76
5.21 Tracing the reference trajectory using ANFIS 76
5.22 Response of the ANFIS controller .. 77
5.23 A snapshot of the physical apparatus .. 78
5.24 Tracing the reference trajectory using an ANFIS controller in an experimental test ... 79
5.25 Response of an ANFIS controller in an experimental test 79
5.26 Tracing a reference trajectory using a PID controller 82
5.27 Response of the PID controller .. 83
5.28 Tracing the reference trajectory using the ANFIS controller which is tuned by all pair data ... 85
A.1 Simulink model of the system ... 97
B.1 Simulink model of a DC motor ... 99
B.2 Implementation of a PID controller in the closed-loop for controlling the rotation angle of a DC motor .. 100
B.3 Output of the PID controller to control the rotating angle of a DC motor 101
B.4 Rotation angle of a DC motor using a PID controller 102
B.5 Membership function of input1 before tuning for the case study of controlling the rotation angle of a DC motor 104
B.6 Membership function of input1 after tuning for the case study of controlling the rotation angle of a DC motor 104
B.7 Membership function of input2 before tuning for the case study of controlling the rotation angle of a DC motor 105

B.8 Membership function of input2 after tuning for the case study of controlling the rotation angle of a DC motor 105

B.9 Control surface of the FLC for the case study of controlling the rotation angle of a DC motor ... 106

B.10 Response of the fuzzy logic controller for the case study of controlling the rotation angle of a DC motor 110

B.11 Rotation angle of a DC motor using a fuzzy logic controller for the case study of controlling the rotation angle of a DC motor 110

C.1 A Feedforward Adaptive Network ... 114

C.2 A Recurrent Network ... 115

C.3 Topological Ordering Representation ... 116

C.4 Triangle \((x;20,50,80)\) membership function .. 117

C.5 Trapezoid \((x;10,20,50,80)\) membership function 118

C.6 Gaussian \((x;50,15)\) membership function .. 119

C.7 Bell \((x;25,3,50)\) membership function ... 119

C.8 Sig \((x;0.2,50)\) membership function ... 120

C.9 (a) A two-input first-order Sugeno fuzzy model with two rules, (b)

Equivalent ANFIS Architecture .. 124

C.10 ANFIS structure with two inputs .. 126
List of Acronyms

The following acronyms are used frequently in this report with these meanings:

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOF</td>
<td>Degrees Of Freedom</td>
</tr>
<tr>
<td>FLC</td>
<td>Fuzzy logic Controller</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional Integral Derivative</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>FIS</td>
<td>Fuzzy Inference System</td>
</tr>
<tr>
<td>TSK</td>
<td>Takagi-Sugeno-Kang</td>
</tr>
<tr>
<td>HITL</td>
<td>Human In The Loop</td>
</tr>
<tr>
<td>SHFC</td>
<td>Supervisory Hierarchical Fuzzy Controller</td>
</tr>
<tr>
<td>ANFIS</td>
<td>Adaptive Neuro-Fuzzy Inference System</td>
</tr>
</tbody>
</table>
IEEE : Institute of Electrical and Electronics Engineers

ODE : Ordinary Differential Equation
Chapter 1

Introduction

1.1 Problem Statement

The problems investigated in this thesis are firstly, the design and dynamic analysis of a climbing robot and secondly, the design and implementation of an optimal stand-alone fuzzy logic controller (FLC) to control the movement of the robot. Using an Adaptive Neuro-Fuzzy Inference System (ANFIS), the controller parameters (antecedents and the consequents of the rules) can be tuned offline based on information obtained through a Human-in-the-Loop (HITL) simulator. An operator tries to do the control task via this simulator using the visual feedback sensory information provided to him/her via a Human Machine Interface (HMI). In order to tune the ANFIS parameters, the numerical input/output information taken from the HITL simulator has been used.
Using ANFIS we can find out the optimal values for the mentioned parameters so that the system produces the best match between the input/output of the system and those obtained from HITL. This unconventional controller is a human-analogous controller and has less complexity rather than a conventional model-based controller.

1.2 Thesis Organization

This thesis is organized as follows: Chapter 2 provides a literature review of different kind of robots specifically climbing robots and a short review about controllers. Chapter 3 deals with problem definition. Chapter 4 presents the design and dynamic analysis of the climbing robot. Chapters 5 presents the simulation and experimental results for the control of vertical position of the climbing robot. Concluding statements and different possibilities to extend this work are presented in chapter 6.

1.3 Contribution

This thesis introduces a novel design of a climbing robot. The design of a robot capable of traversing a wide range of unconventional terrains is the novelty of this invention. A comprehensive dynamic model of the robot is derived for the first time. To control the robot an Adaptive Neuro-Fuzzy Inference System (ANFIS) based controller is used. To tune the parameters of this ANFIS a novel approach using input/output data captured from a human-in-the-loop simulator was used. In this method a human controls the system using a joystick based on visually-provided sensory feedback through an HMI unit. In previous research the parameters of ANFIS or Fuzzy Logic Controller FLC were tuned using linguistic information feedback from the human operators. The shortcoming
of this method is the inherent limitation of detail in verbal and written communication. In
other words, the description of a person’s insight about the controls can differ from
person to person. This can cause some confusion in tuning and effect the performance of
the controller.
For this thesis, the numerical input/output data captured directly from the manual control
by an operator with a human-in-the-loop simulator is fed directly into the ANFIS to tune
its parameters. Through simulation and experimentation the results of control using the
ANFIS are shown in this thesis.
Chapter 2

Literature Review

2.1 Re-configurable and Adaptable Vehicles

Automation benefits society in several ways. For example, automating tasks by using a machine instead of a person to perform dangerous tasks can reduce the likelihood that a person will be injured while performing the tasks. It can also increase productivity by performing the tasks faster than a human could. Design and development of re-configurable and adaptable vehicles that can travel over unconventional terrain has been carried out for the past three decades. Generally, these robotic systems can be categorized as wheeled robots [e.g. 1-3], crawlers [e.g. 2], and hopping machines [e.g. 3]. While one single machine may be able to traverse a number of difficult terrains, there is no single machine that can handle them all. For instance, the Starcly robot developed by Le et al. can climb staircases and obstacles, but it cannot climb up poles/ropes [4]. As
an another example, the robot developed by Xu et al. can climb up poles within a narrow range of size and unchanging cross section shape [1]. Further modifications would be required to make it move over curved poles.

Climber robots can be categorized as (1) wheeled, and (2) legged robots. In wheeled robots the wheels maintain their contacts with the surface they are climbing on all the time [e.g. 1]. However, in legged robots, only a subset of legs will be touching the surface [5]. Most of the legged robots also need to re-configure themselves to match the task. Normally, the climber robots use adhesion. This adhesive force could be electromagnetic or vacuum suction, [e.g. 6-8]. The electromagnetic ones can traverse only ferrous material while pneumatic ones can only climb smooth surfaces. Our robot can be categorized as a re-configurable wheeled machine that maintains its contact with the surface it is climbing on at all times.

The proposed robotic system was targeted for use on a large variety of terrains without compromising its agility or unnecessarily increasing the complexity of its design.

A brief literature survey on the state-of-the-art of low-degree-of-freedom (low-dof) climber robots moving on different terrains is given below. These robots are classified by the terrains they move on as: (1) obstacle climbing robots, (2) rope/pole/wall climbing robots, and (3) pipe/duct rovers.

2.1.1 Obstacle/stair Climber Robots:

These robots are designed to climb over obstacles found in rough terrains. One of the most difficult cases would be to climb up a staircase. There are some lab-scale and commercial robots available that can do this task repeatedly with a high success rate.
However, these robots can climb neither confined spaces such as ducts or pipes, nor can they climb ropes/poles. Some systems cited in literature are addressed below in more detail.

- **Starcly Robot**: Starcly robot has been designed for both climbing and descending stairs. This robot benefits from the advantage of using treads and robotic arm linkages simultaneously. Starcly has two arms and two treads on each side. The treads provide the motive power for the vehicle when it is not climbing stairs and/or obstacles while the arms move the robot up and down on stairs. Each arm consists of five links which lift the robot up and down stairs. The arms can also be used as grippers to clear or remove unwanted obstacles encountered by the robot. There are three idle wheels attached to each arm to reduce friction when the arm touches the ground during operation [4]. Although the Starcly robot can navigate obstacles and stairs, it is not able to navigate in ducts, pipes or up and down poles/ropes.

- **Stair climbing robot**: This robot consists of a main body with a roller chain for movement on flat surfaces and a front and back arm for climbing and descending stairs. This robot is equipped with two brushless dc motors, worm gears, two dc motors to control the two arms and a DSP-based board as the controller. Rubber blocks are attached to increase friction with the ground and stairs. The direction of the robot is controlled by varying the speed of the two brushless dc motors [9]. This robot, like the previous one, cannot climb ropes and poles and cannot navigate pipes and ducts. On the other hand, this robot is very fast.
2.1.2 Rope/pole/wall Climbing Robots:

These robots can be categorized as (1) human-like, and (2) wheeled climbers. The human-like climbers have many degrees of freedom, therefore the motion coordination for a smooth climb is a challenging task. Some systems cited in the literature can be found in [10,11]. The wheeled machines are much simpler in design with fewer degrees of freedom, and are therefore easier to control. However, they are less versatile compared to the re-configurable human-like climbers. The robot developed by Nili et al. can, for instance, climb up straight poles with round cross sections [12]. Some relevant systems cited in literature are addressed below in more detail.

- **Sloth Robot**: Sloth robot is considered a rope climbing robot. To design this robot, the anatomy and movement of a real sloth was studied. SLOTH robot consists of three small servos and is controlled through a SSC II serial servo controller. The weight of this robot is 250g and its length is 0.2m. The maximum climbing speed of this robot is 60 meters per hour. Sloth robot can carry a small video camera to offer "visual access" in places where access by human presence is difficult or dangerous such as buildings affected by an earthquake or poisonous or toxic environments [13]. The advantages of this robot are its simplicity and cost, but it cannot move over flat surfaces or in ducts and pipes.

- **Stickybot**: Stickybot is a climbing robot that can climb smooth vertical surfaces such as glass, plastic, and ceramic tiles. It can reach a maximum speed of 4cm/s. Studying the anatomy and movement of a gecko inspired Stickybot's mechanical design and its
climbing gaits. In the design of this robot, a hierarchy of compliant structures, directional adhesion, and control of tangential contact forces to achieve control of adhesion were considered. The undersides of Stickybot's toes are covered with small stalks which adhere when pulled tangentially from the tips of the toes toward the ankles. When these stalks are pulled in the opposite direction, they release. A force control strategy is made by working in combination with the compliant structures and directional adhesion. This strategy balances forces among the feet and promotes smooth attachment and detachment of the toes, [10]. Stickybot is fast but it cannot climb stairs, ropes, ducts or pipes.

- **Dante II**: Is a mobile robot with a tether which has been designed for volcano exploration and inspection. It has six legs, and uses a tether to support itself on steep terrain like mountaineers using a climbing rope. The tether is connected to a generator and a satellite communication station which is located at the volcano's rim [11]. Dante II has the ability to climb obstacles and move on steep surfaces but it cannot climb ropes and poles.

- **Wheel-based Cable Climbing**: This robot is a wheeled cable climbing robot which is able to climb up and down vertical cables specifically used on cable-stayed bridges for inspection. This robot has a hexagonal body composed of two equally spaced modules which are joined by connecting bars. This robot can climb up a cable with diameters varying from 65 mm to 205 mm with payloads of up to 3.5 kg. In case of electric break-down a gas damper with a slider-crank mechanism is used to exhaust
the energy generated by gravity as the robot slides down along the cable, resulting in a safe landing [1]. This robot can climb poles easily but it cannot climb over/inside pipes and ducts. It also cannot move over surfaces.

2.1.3 Pipe/duct Rovers:

Robots moving against gravity in the confined spaces found in pipes/air ducts fall under this category. These days, different kinds of remote controlled robots are used for inspection and servicing pipes in plants and drain pipes. Most of these robots benefit from drive wheels which are pressed against the wall of the pipe by a spring to generate the necessary normal force to support the weight of the robot. Some examples of this type of robot are:

- A three-wheeled robot which is able to move along the inside of pipes and ducts with a wide range of diameters. This robot benefits from a scissor-like set-up with three wheels, one at the joint and one at the end of the two limbs [14]. This robot is not able to move over the pipes and ducts. It also cannot climb stairs and obstacles.

- Another example has a stepping mechanism in which one segment of the body is stuck in the pipe by hydraulic cylinders, while the other is pulled or pushed forward, [15]. This robot like the previous one cannot climb stairs and obstacles. It also cannot move over surfaces.

- Another approach by A. Madhani and S. Dubowsky [16] uses three legs for climbing between two ladders which support the weight of robot. The robot’s control system pre-plans the movements of the robot through the known
environment. This robot cannot climb over poles and surfaces.

- In another approach by W. Neubauer [17] eight legs were used which are pushed against the pipe walls to generate the necessary normal force to support the weight of body. The legs have the ability to step over almost all surface shapes and enable the robot to move inside considerably complex-shaped hollows. On the other hand, this robot takes a great deal of energy to move, has a very complex control system and is not able to climb over poles.

- The pipe crawling robot developed by M. Mehrandezh et al. [18] can move inside pipes of 6 to 8 inch of diameter. Their robot is wheeled. It can negotiate curved sections of a pipe thanks to it flexible joints. But this robot cannot climb over ducts, pipes and poles. It also is not able to climb stairs and obstacles.

Research and development continues concerning vehicles that are robust and adaptable to a task with the ability to respond to changes in their surroundings. The vehicle presented in this paper can do most of the tasks the aforementioned robots can do. Specifically it can climb over obstacles, climb up ropes/poles and inside pipes/ducts by re-configuring itself as necessary. To the best of our knowledge, no single robot exists that can traverse such a vast range of unconventional terrains. Our robot is also simple in design, easy to control, easy to setup with minimum manpower needed and very agile. This robot provides a simple, lightweight, modular and re-configurable platform that can travel over a large variety of terrain. The number of actuators and/or propulsion units required to move the robot is less than that of its counterparts.
2.2 Control of Vehicles

All controllers can be divided to two main groups: conventional (i.e. mechanistic) and unconventional (i.e. intelligent) controllers. In order to design a mechanistic controller, a mathematical model of the system is needed. This mathematical model presents the dynamic of the system. Therefore, for complicated systems which have multiple inputs and multiple outputs, design of conventional controllers is a difficult and time consuming process. Today, this task has been made easier using computer aided design. Because low-order linearized models are used in industry, conventional controllers are common. Proportional-Integral-Derivative (PID) controllers are an example of conventional controllers which are popular in industry. A disadvantage of conventional controllers is that their performance is degraded when the operating point is far from the nominal point. In other words, the best performance of conventional controllers occurs around the nominal points. Alternatively, when designing unconventional controllers there is no need for a mathematical model of the system. Consequently, unconventional controllers are used in a condition of complicity with the dynamics of the system. Furthermore, unconventional controllers are used in many situations in which a greater degree of autonomy is required. In other words, unconventional controllers are more flexible because they incorporate logic, reasoning and heuristics into conventional control theory [19]. Some essential factors for intelligent control are [20]:

- learning capability
- autonomous behaviour
- adaptive characteristics
Chapter 3

Problem Definition

The problem investigated in this thesis is the design, development, and human analogous control of a new re-configurable vehicle. This vehicle is capable of climbing staircases, moving inside empty ducts and pipes, climbing up ropes and poles with varying cross sections, shapes, and sizes and even jumping over obstacles with proper motion coordination. It can also pass through difficult passageways by reconfiguring itself. All these abilities make this robot a novel and versatile robot able to perform a wide range of tasks that no other robot could do in the past. The following paragraphs deal with some considerations in design, development and control of this robot.
3.1 Design and Development of the Climbing Robot

The design of this re-configurable robot which is capable of traversing a wide range of unconventional terrains is the novelty in this invention. Some of the most important factors which have been considered in the design of this robot are as follows:

3.1.1 Simplicity

Considering today’s competitive market, it seems imperative to build as simple a robot as possible with maximum effectiveness. This robot is mechanically very simple and very cheap since it uses only 6 simple geared DC motors. It is even possible to use 3 geared DC motors instead of 6 geared DC motors. The following items are some considerations in the number of geared DC motors to use:

- Power/mass ratio: increasing the number of geared DC motors increases the weight of the robot as well as the power. The plot of power/mass for DC motors is an exponential curve. In other words, adding a DC motor increases the percentage of power more than the percentage of mass. In case of using battery to prepare needed power the weight of each battery should be considered as well.
- Symmetry: using 6 geared DC motor instead of 3 helps the robot be more symmetric. This allows the robot to not need to turn during climbing.

3.1.2 Versatility

Versatility is another design factor of this robot. This robot is one of the most versatile robots that has been built since it can work with poles and ropes of different sizes,
different materials and different stiffness. This robot can also go on curved poles, move inside ducts and pipes of varying cross-section and pass through difficult passageways. Furthermore, this robot can be used as a platform for small payloads. Some application domains of this robot are shown in following schematic figures:

- Curved pole climbing

 This robot is able to climb over curved poles.

 Figure 3.1: Curved pole climbing application domain

- Rope climbing

 This robot can climb over ropes which are not rigid as shown in Figure 3.2.

 Figure 3.2: Rope climbing application domain
- Stair climbing

This robot can climb up and down stairs.

![Figure 3.3: Stair climbing application domain](image)

- Duct climbing

Duct climbing is another application domain of this robot.

![Figure 3.4: Duct climbing application domain](image)
• Duct climbing with varying cross section

This robot can climb duct with varying cross section.

![Duct Climbing](image)

Figure 3.5: Duct Climbing application domain with varying cross section

• Rough-terrain rover

This robot can move over rough paths.

![Rough-terrain Rover](image)

Figure 3.6: Rough-terrain rover application domain
• Pipe-crawling robot

As shown in the below figure, this robot can crawl in straight and curved pipes

![Pipe-crawling application domain](image1)

Figure 3.7: Pipe-crawling application domain

• Moving through difficult passageways

Changing its height, this robot can move though difficult passageways as shown in Figure 3.8.

![Moving through difficult passageways](image2)

Figure 3.8: Moving through difficult passageways
• Payloads

Payload cargo is another application domain of this robot. Figure 3.9 deals with this application domain.

![Figure 3.9: Payload application domain](image)

3.1.3 Speed

High speed is another advantage of this robot. Usually in climber robots the act of catching or holding the rope or pole and moving cannot happen simultaneously, while in this robot these two acts can happen simultaneously. This fact allows the robot to benefit from high speed.

3.1.4 Easy Control

All the motions of this robot are based on 3 pair geared DC motors. Low number of actuators causes this robot to be easily controlled. Most of the robots cited in the literature benefit more actuators which make their dynamic analysis and control more
complicated. In most of the cases, an easier control not only causes a motion more similar to desired motion but also can decrease the cost of control.

Table 3.1 compares the design factors in some robots cited in the literature. In this table, the solid circles indicate possession of that design factor.

To dynamically analyze the robot, Lagrangian equations have been used. In chapter 4, a comprehensive dynamic model of the robot is derived for the first time. The steps of the design are shown in Figure 3.10.

Table 3.1 Comparison of the design factors in some robots cited in the literature

<table>
<thead>
<tr>
<th>Robot</th>
<th>Simplicity</th>
<th>Versatility</th>
<th>Speed</th>
<th>Easy control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stracly robot</td>
<td>X</td>
<td>√</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Stair climbing robot</td>
<td>X</td>
<td>X</td>
<td>√</td>
<td>X</td>
</tr>
<tr>
<td>Sloth robot</td>
<td>√</td>
<td>X</td>
<td>X</td>
<td>√</td>
</tr>
<tr>
<td>Stickybot</td>
<td>√</td>
<td>X</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Dante II</td>
<td>X</td>
<td>√</td>
<td>√</td>
<td>X</td>
</tr>
<tr>
<td>Wheel-based climbing robot</td>
<td>√</td>
<td>X</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Three-wheeled robot</td>
<td>√</td>
<td>X</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Three-leg robot</td>
<td>√</td>
<td>X</td>
<td>X</td>
<td>√</td>
</tr>
<tr>
<td>Pipe crawling robot</td>
<td>√</td>
<td>X</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Our proposed robot</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>
Figure 3.10: Flowchart of the design process
3.2 Control

The design process of the ANFIS-based human-analogous control strategy includes the following steps:

1) Using a control interface (i.e., a joystick), a human operator attempts to control the real system in real time via a Human-Machine Interface (HMI). This process is based on sensory information obtained from visual tracing in the HMI in real time.

2) The input/output data obtained from step 1 is stored, filtered, and used offline to tune the parameters of an ANFIS-based controller.

3) The ANFIS controller whose parameters have been optimized in the previous step is used in a closed-loop on the real system.
Chapter 4

The Electro-Mechanical Design and the Mechanistic Model of the Proposed Robot

In this chapter the design of the climbing robot is introduced and its dynamics are analyzed. The dynamic equation of the robot is derived from the pole climbing action and then a Simulink model of the dynamic of the system is presented.

4.1 Robot Design

The robot, in its simplest form, has two extending arms, two sets of active (or powered) wheels, one set of passive (or idle) wheels, three sets of actuators (i.e., brush-type DC motors), and a host of onboard sensors (see Figure 4.1a). Two sets of paired motors are connected to the powered wheels. They are denoted as upper and lower driving motors. A set of paired motors in the middle, noted as arm-extending motors, is used to extend and
retract the arms. The onboard sensors used in the prototype are categorized as interoceptive. This means that they are used to measure the relative movement between different parts of the robot. The interoceptive sensors currently used in the prototype include optical wheel encoders. They provide angular measurements on all the rotary axes of the robot. Exteroceptive sensors such as cameras and Inertial Measurement Units (IMUs) can be added to the system for external measurements.

Figure 4.1: (a) Main parts of the robot (b) General view

Figure 4.1b represents the schematic of the robot climbing a pole showing all major components. The way the robot can be operated is briefly explained here. By extending the arms using the arm-extending motors one can push against the pole until the friction force is large enough to support robot’s weight. The upper and lower driving motors can then be activated to run the robot up and down the pole. One can actively control the arm
extension to negotiate curved sections and poles with varying cross-sections. Closing the arms beyond a certain threshold will cause a free fall. Exteroceptive sensors, such as IMUs, can be used to detect the free fall. The robot should be able to re-grasp the pole it is climbing very quickly by extending its arms when a free fall is detected.

Figure 4.2 represents the technical drawing of the robot showing all components. The structure of the robot is briefly explained here. Driving motors (items 1) turn powered wheels (items 3a) which are connected to them via hubs (items 6a). They make the robot move up and down along the rope. The bodies of middle motors (items 2) are fixed to the lower arms (items 5b) via two Motor mounts (Items 10) and two hubs (items 7c), while their shafts have been fixed to the upper arms (items 5a) via four hubs (2 of item 6b and 2 of item 7b) and two “L” connectors (items 9). When the middle motors turn, the angle between upper and lower arms changes. The middle motors can open and close the arms, allowing the robot to grasp a pole tightly when climbing against gravity.
Figure 4.2: Technical drawing of the robot
4.2 Mechanistic Model

In this section, the mechanistic model of the robot moving against gravity on a vertical and straight pole is derived in detail. We start with defining the degrees of freedom in motion and the generalized coordinates. Generalized forces used in the Lagrangian mechanics are then addressed along with simplifying the assumptions made (e.g., pure rolling of wheels with no slippage).

The following assumptions were made to derive the dynamic equations: (1) pure rolling in wheels’ motion, (2) the pole the robot is climbing on is modelled as a spring-damper, (3) the pole is not bendable and its center of gravity does not move horizontally, (4) the weight of the arms is negligible in comparison with the motors and wheels. The assumption (3) is valid only if the robot is climbing a straight pipe. Extension of this model to non-vertical and non-straight poles follows immediately.

With assumptions (1), (2), and (3) one can conclude that the system has only two degrees of freedom, namely (1) the rotation angle of powered wheels (denoted by θ as in Figure 4.3) and (2) the angle between the upper or lower arm and the horizontal axis (denoted by φ as in Figure 4.3).

Horizontal and vertical movements of all components, namely there wheels and their attached motors, can be related to the generalized coordinates, θ and φ, using assumption (3) and (4), as follows:

\[
\begin{align*}
\frac{d(x_1, y_1)}{dt} &= \left(\frac{1}{3} (\cos \varphi_0 - \cos(\varphi_0 + d\varphi)), r \, d\theta + l(\sin(\varphi_0 + d\varphi) - \sin \varphi_0)\right) \\
\frac{d(x_2, y_2)}{dt} &= \left(\frac{1}{3} (\cos \varphi_0 - \cos(\varphi_0 + d\varphi)), r \, d\theta - l(\sin(\varphi_0 + d\varphi) - \sin \varphi_0)\right) \\
\frac{d(x_3, y_3)}{dt} &= \left(\frac{21}{3} (\cos \varphi_0 - \cos(\varphi_0 + d\varphi)), r \, d\theta\right)
\end{align*}
\]
Where, in \(d(x_i, y_i) \), \(i = 1, 2, 3 \) denoting the incremental and infinitesimal \(x \)-\(y \) movements for all point masses seen in Figure 4.3. Also \(\varphi_0 \) denotes the initial angle between upper/lower arms and the horizontal axis when the wheels are just touching the pole’s surface without exerting any force. The “\(r \)” and “\(l \)” in Eqn. 4.1 denote the wheels’ radii and the arms’ length, respectively.
Figure 4.3: Generalized Coordinates of the System
With the assumption that \(\cos(d\varphi) = 1 \) and \(\sin(d\varphi) = d\varphi \), one can write equations 4.1 as follow:

\[
\begin{align*}
\text{d}(x_1, y_1) &= \left(\frac{1}{3} d\varphi \sin \varphi_0, \ r \ d\theta + l d\varphi \cos \varphi_0 \right) \\
\text{d}(x_2, y_2) &= \left(\frac{1}{3} d\varphi \sin \varphi_0, \ r \ d\theta - l d\varphi \cos \varphi_0 \right) \\
\text{d}(x_3, y_3) &= \left(\frac{2l}{3} d\varphi \sin \varphi_0, \ r \ d\theta \right)
\end{align*}
\]

Correspondingly, the velocities can be calculated as follows:

\[
\begin{align*}
v_1 &= \frac{d(x_1, y_1)}{dt} = \left(\frac{1}{3} \dot{\varphi} \sin \varphi_0, \ r \dot{\theta} + l \dot{\varphi} \cos \varphi_0 \right) \\
v_2 &= \frac{d(x_2, y_2)}{dt} = \left(\frac{1}{3} \dot{\varphi} \sin \varphi_0, \ r \dot{\theta} - l \dot{\varphi} \cos \varphi_0 \right) \\
v_3 &= \frac{d(x_3, y_3)}{dt} = \left(\frac{2l}{3} \dot{\varphi} \sin \varphi_0, \ r \dot{\theta} \right)
\end{align*}
\]

4.3 Dynamic Equations

Lagrangian mechanics was used to derive the dynamics equations. The Lagrangian equations based on the two generalized coordinates, \(\theta \) and \(\varphi \) can be written as:

\[
\begin{align*}
\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\theta}} - \frac{\partial V}{\partial \theta} \right) - \left(\frac{\partial T}{\partial \theta} - \frac{\partial V}{\partial \dot{\theta}} \right) &= \dot{Q}_\theta \\
\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\varphi}} - \frac{\partial V}{\partial \varphi} \right) - \left(\frac{\partial T}{\partial \varphi} - \frac{\partial V}{\partial \dot{\varphi}} \right) &= \dot{Q}_\varphi
\end{align*}
\]

Where, \(T \) and \(V \) are Kinetic and Potential energies, respectively and

\(\dot{Q}_\theta \) and \(\dot{Q}_\varphi \) are non potential parts of the generalized forces in directions \(\theta \) and \(\varphi \) respectively.
One can therefore write:

\[
T = \frac{l_1}{2}(\dot{\theta} + \dot{\phi})^2 + \frac{l_2}{2}(\dot{\theta} - \dot{\phi})^2 + \frac{l_1}{2}\dot{\theta}^2 + \frac{m_1}{2}v_1^2 + \frac{m_2}{2}v_2^2 + \frac{m_3}{2}v_3^2
\]

\[
V = m_1\dot{y}_1 + m_2\dot{y}_2 + m_3\dot{y}_3
\]

Where, \(m_i \) denotes the mass of the \(i^{th} \) part, for \(i = 1, 2, 3 \) (see Figure 4.3). Also the moments of inertia for the rotary parts and arms can be calculated as:

\[
I_i = \frac{1}{2}m_ir_i^2, i = 1, 2, 3
\]

Given that \(m1 = m2 = m3 \) and that \(r1 = r2 = r3 \), one can simplify equations by using the notation:

\[
\begin{aligned}
\{ m &= m_1 = m_2 = m_3 \\
r &= r_1 = r_2 = r_3 \\
l &= I_1 = I_2 = I_3
\end{aligned}
\]

Therefore, Eqn. 4.5 can be simplified to:

\[
\begin{aligned}
\{ T &= \frac{9}{4}m r^2 \dot{\theta}^2 + \left(\frac{mr^2}{2} + \frac{ml^2}{3} \left(\frac{\pi}{180}\right)^2 (\sin \varphi_0)^2 + ml^2 \left(\frac{\pi}{180}\right)^2 (\cos \varphi_0)^2\right) \dot{\phi}^2 \\
V &= 3mgr\dot{\theta}
\}
\]

Using Eqn. 4.4, the dynamics equations of the system will be:

\[
\begin{aligned}
\frac{9}{2}mr^2\ddot{\theta} + 3mgr &= \dot{Q}_\theta \\
\dot{\phi} \left(mr^2 + \frac{2ml^2}{3} (\sin \varphi_0)^2 + 2ml^2 (\cos \varphi_0)^2 \right) &= \dot{Q}_\phi
\end{aligned}
\]
4.4 Applied Forces

As shown in figure 4.4, the applied non potential forces (the right side of equations 4.7) are:

\[
\begin{align*}
\dot{Q}_\theta &= T_{m_1} + T_{m_2} - T_{f_1} - T_{f_2} \\
\dot{Q}_\phi &= T_{m_3} - T_{f_3}
\end{align*}
\]

Where, \(T_{m_i}\) denotes the torque applied by the \(i^{th}\) pair of the geared DC motors for \(i = 1, 2, 3\). \(T_{f_i}\) denotes the resisting torque due to friction between the \(i^{th}\) wheel and the pole (dry friction), and friction between the shafts of the \(i^{th}\) pair of DC motors and their bearings (viscous friction) for \(i = 1, 2\). \(T_{f_3}\) denotes the resistant torque due to the friction between the inside plane of the idle wheel and outside plane of the joints of the middle motors (dry friction) and friction between the shafts of the pair of DC motors and their bearings (viscous friction). \(N_i\) denotes the normal force applied on wheel \(i^{th}\).

4.4.1 Friction Forces

According to a simple but common model of the friction, the resisting torques due to dry/viscous frictions can be written as:

\[
\begin{align*}
T_{f_1} &= 2f_{v_1}(\dot{\theta} + \dot{\phi}) + \mu_r N_1 r \text{ sign}(\dot{\theta} + \dot{\phi}) \\
T_{f_2} &= 2f_{v_2}(\dot{\theta} + \dot{\phi}) + \mu_r N_2 r \text{ sign}(\dot{\theta} + \dot{\phi}) \\
T_{f_3} &= 2f_{v_3}\dot{\phi} + \mu_{ra} N_3 r_a \text{ sign}(\phi)
\end{align*}
\]

Where, \(f_{v_i}\) is viscous friction coefficient of the \(i^{th}\) geared motor, \(\mu_r\) is rolling friction coefficient between wheels and pole, \(\mu_{ra}\) is rolling friction coefficient between inside area of wheel 3 and its axle, and \(r_a\) is the radius of the axle of wheel 3.
4.4.2 Normal Forces

According to assumption (3), can conclude that (see Figure 4.4):

\[N_1 + N_2 = N_3 \]
Moreover, due to the symmetric shape of the robot one can safely assume \(N_1 = N_2 \). The following name convention is used from this point on: \(N = N_1 = N_2 \).

By assuming a spring/damper model for the pole (see Figure 4.5), we have:

\[
N_3 = 2N = k \frac{d}{3} + b v_3 = k \left(\frac{2l}{3} \left(\cos \varphi_0 - \cos \varphi \right) \right) + b \left(\frac{2l}{3} \varphi \sin \varphi \right)
\] \hspace{1cm} 4.11

Where \(k \) and \(b \) denote the stiffness and damping ratios of the pole’s model, respectively.
Figure 4.5: Modeling the Pole as a Spring Damper
4.4.3 Applied Torque of Geared DC Motors

Considering the dynamics of the DC motors one can relate the input voltage provided to the motor to its electromechanical torque as follows [21]:

\[
\begin{align*}
T_{m_1} &= 2\eta_1 k_{t_1} \left(\frac{u_1 - \eta_1 k_{b_1} \dot{\theta}}{R_1} \right) \\
T_{m_2} &= 2\eta_2 k_{t_2} \left(\frac{u_2 - \eta_2 k_{b_2} \dot{\theta}}{R_2} \right) \\
T_{m_3} &= 2\eta_3 k_{t_3} \left(\frac{u_3 - \eta_3 k_{b_3} \dot{\phi}}{R_3} \right)
\end{align*}
\]

Where \(\eta_i\) is gear ratio of the \(i^{th}\) geared DC motor, \(k_{t_i}\) is the torque constant of the \(i^{th}\) DC motor, \(u_i\) is the voltage of the \(i^{th}\) DC motor, \(k_{b_i}\) is the back EMF constant of the \(i^{th}\) DC motor and \(R_i\) is the resistance of the \(i^{th}\) geared DC motor.

4.5 Summary

Referring to equations 4.9 and 4.12, one can rewrite equations 4.8 as:

\[
\begin{align*}
\dot{Q}_\theta &= 4\eta_{1,2} k_{t_{1,2}} \left(\frac{u_{1,2} - \eta_{1,2} k_{b_{1,2}} \dot{\theta}}{R_{1,2}} \right) - 2\mu_r N r \text{ sign}(\dot{\theta} + \dot{\phi}) - 4f_{v_{1,2}} (\dot{\theta} + \dot{\phi}) \\
\dot{Q}_\phi &= 2\eta_3 k_{t_3} \left(\frac{u_3 - \eta_3 k_{b_3} \dot{\phi}}{R_3} \right) - 2\mu_{ra} N r_a \text{ sign}(\dot{\phi}) - 2f_{v_3} \dot{\phi}
\end{align*}
\]
Where,

\[
\begin{align*}
\nu_{1,2} &= \nu_1 = \nu_2 \\
\eta_{1,2} &= \eta_1 = \eta_2 \\
u_{1,2} &= \nu_1 = \nu_2 \\
k_{1,2} &= k_{t_1} = k_{t_2} \\
k_{b_{1,2}} &= k_{b_1} = k_{b_2}
\end{align*}
\]

Equations 4.7, 4.11 and 4.13 are used to analyze the dynamics of the robot. These equations also can be used to create a Simulink model of the dynamics of the robot. A schematic view of this Simulink model is available in Appendix A.

Table 4.1 lists the definitions of physical parameters used in equation 4.13. Table 4.2 deals with the constant values that are used in the Simulink model. Definition of these constants is in Table 4.1
Table 4.1: Definition of physical parameters used in equation 4.13

<table>
<thead>
<tr>
<th>Physical Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Normal force from the cable acting on the wheel 1 and 2</td>
</tr>
<tr>
<td>k_{ti}</td>
<td>Torque constant of the i^{th} geared motor</td>
</tr>
<tr>
<td>k_{bi}</td>
<td>Back EMF constant of the i^{th} geared motor</td>
</tr>
<tr>
<td>R_{i}</td>
<td>Resistance of the i^{th} geared motor’s armature</td>
</tr>
<tr>
<td>η_{li}</td>
<td>Ratio of the i^{th} motor’s gear box</td>
</tr>
<tr>
<td>μ_{ra}</td>
<td>Rolling friction coefficient between the inside area of wheel 3 and its axle</td>
</tr>
<tr>
<td>μ_{r}</td>
<td>Rolling friction coefficient between the wheels and the pole</td>
</tr>
<tr>
<td>r_{a}</td>
<td>The axle radius for wheel 3</td>
</tr>
<tr>
<td>f_{vi}</td>
<td>Viscous friction coefficient of the i^{th} geared motor</td>
</tr>
<tr>
<td>u_{i}</td>
<td>Voltage of the i^{th} geared motor</td>
</tr>
<tr>
<td>r</td>
<td>Radius of the wheels</td>
</tr>
<tr>
<td>l</td>
<td>Length of arms</td>
</tr>
</tbody>
</table>
Table 4.2: Constant values used in simulink model

<table>
<thead>
<tr>
<th>Constant</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R12</td>
<td>2.4</td>
<td>Ohm</td>
</tr>
<tr>
<td>R3</td>
<td>2.4</td>
<td>Ohm</td>
</tr>
<tr>
<td>b</td>
<td>100</td>
<td>N.s/m</td>
</tr>
<tr>
<td>fv12</td>
<td>2e-04</td>
<td>N.m.s</td>
</tr>
<tr>
<td>fv3</td>
<td>4e-04</td>
<td>N.m.s</td>
</tr>
<tr>
<td>g</td>
<td>9.8</td>
<td>m/s²</td>
</tr>
<tr>
<td>K</td>
<td>1500</td>
<td>N/m</td>
</tr>
<tr>
<td>Kb12</td>
<td>0.0075</td>
<td>V/rad/s</td>
</tr>
<tr>
<td>Kb3</td>
<td>0.0077</td>
<td>V/rad/s</td>
</tr>
<tr>
<td>Kt12</td>
<td>0.0075</td>
<td>N.m/A</td>
</tr>
<tr>
<td>Kt3</td>
<td>0.0077</td>
<td>N.m/A</td>
</tr>
<tr>
<td>L</td>
<td>0.16</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>0.325</td>
<td>Kg</td>
</tr>
<tr>
<td>Mu</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>Mur</td>
<td>0.05</td>
<td>-</td>
</tr>
<tr>
<td>n12</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>n3</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>Phi0</td>
<td>44.56</td>
<td>Degree</td>
</tr>
<tr>
<td>r</td>
<td>0.027</td>
<td>M</td>
</tr>
<tr>
<td>ra</td>
<td>0.006</td>
<td>M</td>
</tr>
</tbody>
</table>
Chapter 5

Human Analogous Control

The main objective of this chapter is to design a controller to provide appropriate input voltages to the climbing robot presented in this thesis to obtain a desired vertical position of the robot as the output. A desired amount of vertical position change in the form of step changes was generated in a simulated environment. In general, the robot’s motion can be regulated by either changing the normal force N exerted on the pole via the robot’s wheels, changing the angle between the arms, or by changing the input voltage provided to the driving DC motors. In this thesis, the latter method was adopted as the control variable while the arm-extension motors provide the needed normal force to support the weight of the robot. Furthermore, the input voltage of four driving DC motors (upper and lower DC motors) are equal and therefore their motions are the same.
In this chapter, the behaviour of a fuzzy logic controller, trained using an Adaptive Network-based Fuzzy Inference System (ANFIS) algorithm, is compared with a Proportional Integral Derivative (PID) controller.

Furthermore, a method to evaluate the human-generated data and a method to increase the consistency of this data is presented.

All mentioned steps have been applied to control the rotation angle of a simple DC motor as a case study. The details of this case study are available in Appendix B. Appendix C deals with some basic definitions which are related to this chapter.

5.1 Background

As the first step, a literature review of the previous works in the area of Fuzzy Logic Controller, Artificial Neural Network, and Adaptive Neuro-Fuzzy Interface System (ANFIS) follows:

5.1.1 Fuzzy Controllers

Zadeh [22] introduced and formalized Fuzzy set theory in 1956 and applied it to control systems in 1973 [23]. Later on, Fuzzy Logic theory was applied to control an ill-modeled system by Mamdani in 1974 [24]. After that, Fuzzy set theory was employed to solve different kinds of control problems. As some examples of this, we present the following items:

- A design of a fuzzy logic controller module for a loop controller was proposed by Ahn, Kim, and Kwon. The speed of a fuzzy logic controller and the number of parameters to define a fuzzy logic controller were mentioned as the main limitations in
implementing the fuzzy logic controller in a loop controller. They used a fixed control table to increase the inference speed and reduce the number of defining parameters [25].

- Bhende, Mishra, and Jain compared the application of a Takagi-Sugeno (TS)-type fuzzy logic controller, a Mamdani-type fuzzy logic controller and a conventional Proportional Integral (PI) controller to a three-phase shunt active power filter for the power-quality improvement and reactive power compensation required by a nonlinear load. As the first advantage of using fuzzy logic control, they mentioned that this method did not require a mathematical model of the system. The application of the Mamdani-type fuzzy logic controller to a three-phase shunt active power filter had the limitation of a larger number of fuzzy sets and rules. Therefore, it needed to optimize a large number of coefficients, which increased the complexity of the controller in Mamdani type versus TS type. On the other hand, they mentioned that “TS fuzzy controllers are quite general in that they use arbitrary input fuzzy sets, any type of fuzzy logic, and the general defuzzifier.” Moreover, to implement a TS fuzzy controller a lower number of rules and classes must be used [26].

- Amer, Sallam, and Elawady improved PID-type fuzzy controller performance for the control of a three DOF rigid planar robot manipulator by implementation of a fuzzy logic-based pre-compensator followed by a fuzzy self-tuning PID controller. Proportional-Integral-Derivative (PID)-type fuzzy controllers are the most popular conventional motion control strategy in industrial use. In the fuzzy self-tuning PID controller, a Supervisory Hierarchical Fuzzy Controller (SHFC) was used to tune the inputs of the fuzzy PID controller according to the actual tracking of position error and velocity error [27].
Li and Shen compared the illustration of the fuzzy PD and fuzzy ID and concluded that the two corresponding fuzzy control rules are similar. Using theoretical analysis, they showed that the PID fuzzy controller had the feature of non-linearity besides that of the traditional PID controller. Furthermore, according to simulation results, they showed that PID fuzzy controller performance was better than that of the fuzzy PI and the conventional PID controller. [28]

A novel fuzzy logic secondary voltage controller based on a polar fuzzy logic rule was presented by Lingzhi, Shuangxi, and Qi. The purpose of the presented controller was adjusting the voltage level of the pilot node by using the voltage of the pilot node as a feedback signal through an excitation control following the rules of fuzzy logic. The inputs of the fuzzy controller were the voltage error of pilot nodes and the voltage differential. The output of the fuzzy controller was the voltage control signal which was the input of a PI block. The regional voltage control signal was the output of this PI block. For the New England 39 node system, simulation of a small disturbance on load shows that the fuzzy logic controller can restore the voltage level faster than conventional controllers with a larger steady voltage stability margin than conventional secondary voltage controllers [29].

5.1.2 Artificial Neural Network

Sometimes it is difficult to transcribe human knowledge to fuzzy control rules or define the parameters of the fuzzy system. In these cases, if sufficient process data is available, it is possible to benefit from neural networks. Despite the difference between the
application requirement of a fuzzy control system and neural networks, they can be used together. For instance,

- Pedrycz and Sosnowski tried to genetically optimize fuzzy decision trees (G-DTs). “Decision trees are fundamental architectures of machine learning, pattern recognition, and system modeling”. They developed the fuzzy set-based generalization of the generic decision tree with discrete or interval-valued attributes by using individual nodes. These nodes played the role of fuzzy "switches" by distributing the flow of processing completed within the tree [30].

- Keller, Hayashi, and Chen introduce a method to analyze the operation of individual nodes in a neural network where the nodes implement weighted Yager additive hybrid operators. “This is because, after training, the neurons can be viewed as mini-rules which are (primarily) conjunctions, disjunctions, or compensators”. They showed that using these nodes, satisfying results could be obtained compared to simple cases of fuzzy logic inference [31].

- A study of the synthesis of neural network and fuzzy logic based controllers for optimally controlling nonlinear applications was presented by Chen, Yang, and Xu. They presented three different kinds of hierarchical controller architectures which included a hierarchical neuro-fuzzy controller architecture, a hierarchical fuzzy-neuro controller architecture and a hierarchical fuzzy logic controller architecture. They showed that the proposed neural-network and fuzzy logic based control schemes are useful for nonlinear system applications [32].

In conventional control methods such as Proportional Integral Derivative (PID) controllers, a mathematical model of the dynamics of the system is required, while in
many actual applications, we don’t have an accurate model of the system. In these conditions, an Artificial Neural Network (ANN) can be useful. Some examples of such ANN-based controllers are as follows:

- Sharof and Lie presented a coordinated excitation/governor ANN-based controller for AC synchronous generators. The full global action of the voltage regulator, power system stabilizer, and speed governor controls were modeled by the proposed ANN based controller [33].

- Yao, Wang, and Zhang developed a control scheme of an ANN-based PID controller to produce high-precision tracking control for an electro-hydraulic servo system. They used a PID controller to support the stability of the system. They also used a Cerebellar Model Articulation Controller (CMAC) neural network as a feed-forward compensator to identify the inverse system dynamics model. The CMAC and the PID controller were connected and acted in parallel so that the outputs of these paralleled controllers were summed as the total control action. They also used a Nonlinear Tracking Differentiator (NTD) to yield high quality differential signals for the PID controller. The main task of this control algorithm was to minimize the error between the total control action and the output of the CMAC [34].

- An ANN based digital controller for a three phase active power filter was presented by Sindhu, Nair, and Nambar. “Three-phase shunt active power filters are designed to effectively compensate for the current harmonics and reactive power requirements in a three-phase system with harmonic loads”. The task of the presented artificial neural network based controller was selecting the amount of harmonic current
injection needed based on the percentage of harmonic distortion present in the source current and also on the reactive power requirement of the load [35].

- Singh and Rai used an artificial neural net (ANN) based controller to control the speed of a permanent magnet brushless DC motor in an X-PC target. The ANN acted as a reference commutation signal generator for speed control when the output was in the overloaded condition. They trained the ANN in a continuous time test and then transformed it to discrete time on account of the fact that the X-PC target accepts only discrete models. The presented ANN was initially optimised by using experimental data obtained in the continuous time domain. Then based on the performance of the interface card, using a specified sampling rate, the model was made discrete [36].

5.1.3 Adaptive Networks

Adaptive networks, as the name implies, are networks whose function can be adapted in order to achieve the best fit with the input/output data. More specifically, in an adaptive network each node has modifiable parameters which determine the function of that node. Therefore changing these parameters changes the function of the node as well as the network. In other words, adaptive networks benefit from a learning capability. Recently, adaptive networks have been used to model and control complex system. Some examples are as follows:

- Chandrase and Liu presented an adaptive neural network scheme for precipitation estimation from radar observation. They developed a dynamic neural network which could be changed adaptively with every rainfall data input. The network was trained based on past/present data. Updating the structure and parameters of the
neural network enabled it to handle the non-stationary relationship between radar measurements and precipitation estimation with change of season, location and other environment conditions [37].

- Xu and Zhang used an adaptive neural network model for financial analysis. The method they used was called data mining. Data mining is extraction of hidden predictive information from large databases. This method is a powerful new technology with great potential to help companies focus on the most important information in their data warehouses. The presented network was a feed-forward neural network with a new activation function called neuron-adaptive activation. Based on experimental results, they showed that the new adaptive neural network model had several advantages over traditional neuron-fixed feed-forward networks such as a much reduced network size, faster learning and more promising financial analysis [38].

- Ismail and Ibrahim presented an adaptive neural network model for predicting the energy consumption at a metering station. The task of the metering system is the calculation of the energy consumption of gas. They tried to achieve a dynamic prediction model that could adapt itself to changes in the energy consumption pattern especially for short-term energy prediction. To ensure the robustness and reliability of the developed model, the weights were periodically updated [39].

- Guo and Chen presented a controller based on an adaptive neural network to control the coordinated motion of a dual-arm space robot system with uncertain parameters. To develop such a controller it needed to neither linearly parameterize the dynamic equations of system, nor to know any actual inertial parameters. It also did not need the evaluation of the inverse dynamic model or the time-consuming training
process. Simulation results based on a planar free-floating dual-arm space robot system showed that the proposed adaptive neural network control scheme could be successfully used [40].

5.1.4 Adaptive Neuro-Fuzzy Inference System

Adaptive Neuro-Fuzzy Inference System (ANFIS) is an integration of neural networks and fuzzy logic. By using ANFIS we can capture the benefits of both these models in a single framework. This advantage has caused an exponential increase in usage of ANFIS for modeling and control of non-linear systems. For examples we present the following:

- Cai, Du, and Liu developed an adaptive neuro-fuzzy inference system (ANFIS) to describe how much energy a battery has. They selected nonconventional input variables for the ANFIS with three different correlation analysis techniques and presented an ANFIS model with five inputs and one output using Takagi and Sugeno's fuzzy if-then rules. A hybrid learning algorithm combining the gradient method and the least squares estimate (LSE) was used to train the ANFIS [41].

- Venugopal presented a novel Adaptive Neural Fuzzy Inference System (ANFIS) based Matrix Converter for speed control of an Induction Motor. The proposed fuzzy based controller consisted of a five layer Artificial Neural Network. The hybrid learning algorithm was used in this ANFIS system for tuning [42].

- The size of the input-output data set can be very critical when the data set is small and the generation of data costly. In this condition, optimization of the available data is very important. Buragohain and Mahanta proposed an ANFIS based system where the
number of data pairs employed for training was minimized by application of a technique called the V-Fold technique [43].

- Liu, Dong, and Wu proposed a new Adaptive-Network-based Fuzzy Inference System (ANFIS)-based parameter prediction method that can tackle numeric as well as categorical inputs. First, they introduced a Firing-strength Transform Matrix (FTM) into the generation mechanism of firing strengths of fuzzy rules in a standard ANFIS in order to handle the categorical inputs. Next, they proposed a new training algorithm for the structural parameters in the premise/consequent parts of the fuzzy rules using the FTM in the new ANFIS [44].

- Ambrosio, Liu, Lieven, and Cortes proposed a structural damage identification approach combining adaptive network-based fuzzy inference system (ANFIS) and 2D wavelet transform (2D WT) technologies. The approach is referred to as ANFIS-2D-WT. First, they arranged measured structure vibration response signals from multiple sensors as a 2D image signal. Then, they applied 2D WT with a twofold objective; perform sensor data fusion and work as a feature extractor. After 2D WT is applied, they calculated the energy distribution in different frequency bands of the resultant sub-2D signals. Based on the energy percentage contribution, they selected elements of the obtained feature vector as inputs for the ANFIS. The output of the ANFIS was then a condition index, which could be a Boolean value (0 or 1) for level 1 damage assessment use (damage detection), or a number of values for level 2 damage assessment use (damage localisation). The provided ANFIS model could be used for health monitoring and damage localisation [45].
Chen and Zhang presented random and bootstrap sampling methods in an ANFIS integrated into an En-ANFIS (an ensemble ANFIS) to predict chaotic and traffic flow time series. They compared the prediction results of the En-ANFIS with an ANFIS using all training data and each ANFIS unit within En-ANFIS. Referring to experimental results they showed that the prediction accuracy of the En-ANFIS was higher than that of single ANFIS unit, while the number of training samples and the training time of the En-ANFIS was less than that of an ANFIS using all of the training data. They concluded that an En-ANFIS is an effective method to achieve both high accuracy and less computational complexity for a time series prediction [46].

5.2 Fuzzy Logic Controller

ANFIS generates a Fuzzy Inference System (FIS) based on data obtained from an operator through a real-time HITL virtual reality simulator to tune the parameters of the FLC which include antecedent parameters of the membership functions on the inputs to the system with the consequent parameters defining the output of the system.

5.2.1 Structure of Fuzzy Logic Controller

In this research, ANFIS is used as a controller. The training data of the ANFIS was captured while the system was being controlled by an operator attempting to trace a reference trajectory based on visually-provided sensory feedback through a Human Machine Interface (HMI) unit. Using this training data, the membership functions and rule parameters of the ANFIS were tuned. The ANFIS presented in this chapter has two
inputs of error, the difference between the actual and desired value of the vertical position of the robot at time step “k” and error at time step “k-1” as follows:

\[
\begin{align*}
 e(k) &= r(k) - x(k) \\
 e(k-1) &= r(k-1) - x(k-1)
\end{align*}
\]

Where “r” denotes the reference trajectory. The number of Membership Functions (MF) is three for each input. The MFs are Gaussian type in the form

\[f(x; c, \sigma) = e^{-\frac{(x-c)^2}{2\sigma^2}} \]

There are 9 rules in the general form of:

\[u_i(k) = A_{i1} e_i(k) + A_{i2} e_i(k-1) + A_{i3} \]

Where, “i” denotes the number of the rule.

The weight of each rule is the average of all the rules. The response of the FLC is determined by the antecedent parameters \([c_i^{e(k)}, \sigma_i^{e(k)}, c_i^{e(k-1)}, \sigma_i^{e(k-1)}] \) and consequent parameters \([A_{i1}, A_{i2}, A_{i3}] \) of each rule “i”. Based on training data, these parameters are tuned to provide results similar to that gained by the human operators.

5.2.2 Real-time Human-in-the-loop Simulator

For real-time operation a 3rd-party software from Quanser Inc. called WinCon was used [47]. A simple human-machine interface (HMI) in the form of visual feedback was provided to the user in real-time via standard scopes in simulink through which the user can trace the behaviour of the system via visual cues. The operator interfaces to the simulator via a joystick. The voltage provided to electromechanical motors can be regulated in real time via the joystick. A snapshot of this HMI is depicted in Figure 5.1. This way the user can constantly observe the current position of the robot and its desired
value. Corresponding action can be taken by the user based on the difference between the two. The required action is implemented via the joystick. This real-time human-in-the-loop simulator is used as a training tool to control the robot. Figure 5.2 shows a sample reference trajectory of the vertical movement of the robot. To follow this trajectory a user should regulate voltages provided to the motors via the joystick. This represents a human in the loop vertical motion control. Figures 5.3-5.7 show five representative simulation results using the proposed human-in-the-loop control strategy. These results are sorted in an ascending order based on the user’s performance. The learning curve associated with these tests is captured in these results. A statistical measure based on signal correlation was used to rank user’s performance.

Figure 5.1: A snapshot of the HMI
Figure 5.2: Reference trajectory
Figure 5.3: Result No.1 including desired and real value of vertical movement, input voltage, and error.
Figure 5.4: Result No.2 including desired and real value of vertical movement, input voltage, and error
Figure 5.5: Result No.3 including desired and real value of vertical movement, input voltage, and error.
Figure 5.6: Result No.4 including desired and real value of vertical movement, input voltage, and error.
5.2.3 Selection of Training Data

The simulation results shown in the previous section were sorted based on user’s expertise gained over numerous practices. These results were evaluated based on consistency and how well the reference trajectory was traced.
5.2.3.1 Consistency

In this section, the results obtained in section 5.2.2 are evaluated based on consistency. In this evaluation, calculated correlation coefficient (a statistical measure based on signal correlation) was used. Each result consists of two increasing steps (named step1 and step2) and two decreasing steps (named step3 and step4). Consistency between step1 and 2 and between step 3 and 4 was measured. The average of these two values can display the consistency of the result.

The following sections explain how to calculate the correlation coefficient for the obtained results:

The correlation coefficient is a concept from statistics to measure how well the trend of a collection of data fits with another collection. For instance, it can be used to measure how well a collection of predicted values fits with the real data.

The correlation coefficient is a number between 0 and 1. If there is no similarity between the collections of data, the value of the correlation coefficient is 0. On the other hand, if two collections of data have the same trend, the value of the correlation coefficient is equal to 1.

To define the correlation coefficient, first consider the sum of squared values SSxx, SSxy, and SSy as below where (xi, yi) is a pair of data, “n” is the number of pair data, and \(\bar{x}, \bar{y}, \) and \(\bar{xy} \) are the average amounts of x, y, and xy respectively.
\[
\begin{align*}
SS_{xx} &= \sum x^2 - nx^2 \\
SS_{yy} &= \sum y^2 - ny^2 \\
SS_{xy} &= \sum xy - n\bar{x}\bar{y}
\end{align*}
\]

The correlation coefficient, corr, is then defined by:

\[
corr^2 = \frac{SS_{xy}^2}{SS_{yy} SS_{xx}}
\]

Output voltages versus input errors for five results are shown in Figures 5.8 to 5.12. The correlation coefficient for increasing steps and decreasing steps is calculated using the “corrcoef” command in Matlab. The correlation coefficient of the steps is shown in table 5.1.
Figure 5.8: Change of voltage in terms of error for four steps of result No.1
Figure 5.9: Change of voltage in terms of error for four steps of result No.2
Figure 5.10: Change of voltage in terms of error for four steps of result No.3
Figure 5.11: Change of voltage in terms of error for four steps of result No.4
Figure 5.12: Change of voltage in terms of error for four steps of result No.5
Table 5.1: Correlation coefficient of five different results

<table>
<thead>
<tr>
<th>Result No.</th>
<th>Correlation coefficient for upward steps</th>
<th>Correlation coefficient for downward steps</th>
<th>Average correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9544</td>
<td>0.6362</td>
<td>0.7953</td>
</tr>
<tr>
<td>2</td>
<td>0.9330</td>
<td>0.5688</td>
<td>0.7509</td>
</tr>
<tr>
<td>3</td>
<td>0.9547</td>
<td>0.7688</td>
<td>0.86175</td>
</tr>
<tr>
<td>4</td>
<td>0.9544</td>
<td>0.7935</td>
<td>0.87395</td>
</tr>
<tr>
<td>5</td>
<td>0.9701</td>
<td>0.8848</td>
<td>0.92745</td>
</tr>
</tbody>
</table>

As can be derived from table 5.1, result No.5 has the best consistency.

5.2.3.2 Tracing Reference Trajectory

To evaluate the results in terms of tracing the reference trajectory, the factors of settling time, rise time and percentage of overshoot are used. Table 5.2 shows the average settling time with a 3% criterion (T_s), average rise time (T_p) and average percentage of overshoot for the results shown in section 5.2.2.
Table 5.2: Average T_p, average T_s, and percentage of overshoot for each result

<table>
<thead>
<tr>
<th>Result</th>
<th>T_p (sec)</th>
<th>T_s (sec) (3% criterion)</th>
<th>Percentage of overshoot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result 1</td>
<td>2.71</td>
<td>3.29</td>
<td>8.95</td>
</tr>
<tr>
<td>Result 2</td>
<td>2.38</td>
<td>2.83</td>
<td>3.39</td>
</tr>
<tr>
<td>Result 3</td>
<td>2.21</td>
<td>2.60</td>
<td>4.17</td>
</tr>
<tr>
<td>Result 4</td>
<td>2.11</td>
<td>2.72</td>
<td>4.05</td>
</tr>
<tr>
<td>Result 5</td>
<td>2.09</td>
<td>2.10</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Result No. 5 shows the best result based on tracing the reference trajectory. This result has the minimum average rise time, average settling time, and percentage of overshoot.

Referring to table 5.1 and table 5.2, result No.5 is selected from among the five results discussed in section 5.2.2.

5.2.4 Training Data Preparation

Three following steps were performed to prepare the training data:

Step 1, data smoothing: Data received from the Human in the Loop Control Process is in meters with multiple decimal digits. The precision of the presented robot is defined in centimetres, therefore inputting numbers with two decimal digits is sufficient. Reducing the number of decimal digits results in decreased noise in the system. Therefore, input numbers in ANFIS were rounded to two decimal digits.

Step 2, calculating the output data related to equal pair inputs: In the training data obtained from step 1, there are some equal input pairs which have different outputs. When
the numbers were rounded in step1 some of the input values became similar while their related outputs remained different. The data in this form cannot be used to train the ANFIS. In order to resolve the issue for the sets with similar inputs and different output the average of the outputs was calculated and used in training the ANFIS. The number of equal input pairs which have different outputs can be used as a factor to evaluate the consistency of the data. To count the number of these data pairs, the command of COUNTIFS can be used in Microsoft Excel. To calculate the average outputs of the repeated pair inputs, the command of SUMIFS in Microsoft Excel can be used.

Step3, removing repeated data: Step2 causes some repeated pair data with equal inputs and output. To remove this repeated pair data the command REMOVE DUPLICATE is used. After removal of the duplicate pairs whose inputs are repeated, the remaining pairs are fed into the ANFIS for tuning.

Table 5.3 gives an example of the above steps. This table consists of 4 columns. In first column, there are 7 pairs of data before improvement. In the next column the amounts in the first column are rounded. In the next column the average of the outputs whose related inputs are equal is calculated and the repeated pair data is removed.
Table 5.3: An example of improving pair data

<table>
<thead>
<tr>
<th>Before preparation</th>
<th>After step1 (round)</th>
<th>After step2 (average)</th>
<th>After step3 (remove)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input1</td>
<td>Input2</td>
<td>Output</td>
<td>Input1</td>
</tr>
<tr>
<td>0.3146</td>
<td>0.3146</td>
<td>3.2012</td>
<td>0.31</td>
</tr>
<tr>
<td>0.3123</td>
<td>0.3146</td>
<td>3.4232</td>
<td>0.31</td>
</tr>
<tr>
<td>0.4683</td>
<td>0.3123</td>
<td>3.6446</td>
<td>0.47</td>
</tr>
<tr>
<td>0.4665</td>
<td>0.4683</td>
<td>4.2014</td>
<td>0.47</td>
</tr>
<tr>
<td>0.4712</td>
<td>0.4665</td>
<td>4.4364</td>
<td>0.47</td>
</tr>
<tr>
<td>0.5214</td>
<td>0.4712</td>
<td>4.6181</td>
<td>0.52</td>
</tr>
<tr>
<td>0.5334</td>
<td>0.5214</td>
<td>4.8398</td>
<td>0.53</td>
</tr>
</tbody>
</table>

From 2000 pair data points obtained from the best human-in-the-loop control process from section 5.2.3, 200 pairs remained after improvement. Figure 5.13 and figure 5.14 deal with the final voltage and error amounts which are used to train the ANFIS respectively.
Figure 5.13: Filtered voltage used to tune the ANFIS

Figure 5.14: Filtered error amount used to tune the ANFIS
5.2.5 Tuning the FLC

To modify the presented FLC parameters, ANFIS uses the gradient descent and least squares estimate learning algorithms. For tuning the antecedent parameters $[c_{i e}^{e(k)}, \sigma_{i e}^{e(k)}, c_{i e}^{e(k-1)}, \sigma_{i e}^{e(k-1)}]$ and the consequent parameters $[A_{i 1}^1, A_{i 2}^2, A_{i 3}^3]$, ANFIS uses error propagation in the backward path and least-squared error in the forward path respectively.

A simple human-machine interface (HMI) in the form of visual feedback is provided to the operator in real-time. The operator learned to control the position of the robot. The consistency of data of the final trial (explained in section 5.2.2) is increased by using the method explained in part 5.2.4 and then is fed into ANFIS to tune the FLC. These data are in the input-output data set as [error at time step k $e(k)$, error at time step k-1 $e(k-1)$, applied voltage at time step k $v(k)$]. It is noteworthy that two parameters needed to be set for the optimization of ANFIS. They are:

i. Threshold: Indicates the maximum Mean-Squared Error (MSE) in the training cycles. After each training cycle (i.e. a forward path followed by a backward path), the MSE was calculated in ANFIS and compared with the threshold. If the calculated MSE was below the threshold the training was stopped, otherwise it continued.

ii. Number of epochs: the maximum number of training cycles to meet the threshold amount.

In the following simulation, the number of epochs was set at 60 and the threshold was set at 0.18. Figures 5.15 and 5.16 show the Gaussian membership functions of $e(k)$ before and after the tuning respectively. Figures 5.17 and 5.18 show the Gaussian membership functions of $e(k-1)$ before and after the tuning respectively. Figure 5.19 shows the
control surface of the FLC. Table 5.4 and table 5.5 deal with antecedent parameters before and after tuning respectively. Table 5.6 shows the amounts of consequent parameters after tuning.

Figure 5.15: The Gaussian MFs of $e(k)$ before tuning.

Figure 5.16: The Gaussian MFs of $e(k)$ after tuning.
Figure 5.17: The Gaussian MFs of \(e(k - 1) \) before tuning.

Figure 5.18: The Gaussian MFs of \(e(k - 1) \) after tuning.

Figure 5.19: The control surface.
Table 5.4: Antecedent parameters before tuning

<table>
<thead>
<tr>
<th>Rule No.</th>
<th>$c_i^{e(k)}$</th>
<th>$\sigma_i^{e(k)}$</th>
<th>$c_i^{e(k-1)}$</th>
<th>$\sigma_i^{e(k-1)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0637</td>
<td>-0.15</td>
<td>0.2017</td>
<td>-0.52</td>
</tr>
<tr>
<td>2</td>
<td>0.0637</td>
<td>-0.15</td>
<td>0.2017</td>
<td>-0.045</td>
</tr>
<tr>
<td>3</td>
<td>0.0637</td>
<td>-0.15</td>
<td>0.2017</td>
<td>0.43</td>
</tr>
<tr>
<td>4</td>
<td>0.0637</td>
<td>0</td>
<td>0.2017</td>
<td>-0.52</td>
</tr>
<tr>
<td>5</td>
<td>0.0637</td>
<td>0</td>
<td>0.2017</td>
<td>-0.045</td>
</tr>
<tr>
<td>6</td>
<td>0.0637</td>
<td>0</td>
<td>0.2017</td>
<td>0.43</td>
</tr>
<tr>
<td>7</td>
<td>0.0637</td>
<td>0.15</td>
<td>0.2017</td>
<td>-0.52</td>
</tr>
<tr>
<td>8</td>
<td>0.0637</td>
<td>0.15</td>
<td>0.2017</td>
<td>-0.045</td>
</tr>
<tr>
<td>9</td>
<td>0.0637</td>
<td>0.15</td>
<td>0.2017</td>
<td>0.43</td>
</tr>
</tbody>
</table>
Table 5.5: Antecedent parameters after tuning

<table>
<thead>
<tr>
<th>Rule No.</th>
<th>c_i^e</th>
<th>σ_i^e</th>
<th>c_i^ℓ</th>
<th>σ_i^ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2141</td>
<td>-0.4393</td>
<td>0.1596</td>
<td>-0.354</td>
</tr>
<tr>
<td>2</td>
<td>0.2141</td>
<td>-0.4393</td>
<td>0.3415</td>
<td>-0.089</td>
</tr>
<tr>
<td>3</td>
<td>0.2141</td>
<td>-0.4393</td>
<td>0.0549</td>
<td>0.1342</td>
</tr>
<tr>
<td>4</td>
<td>0.2565</td>
<td>-0.0672</td>
<td>0.1596</td>
<td>-0.354</td>
</tr>
<tr>
<td>5</td>
<td>0.2565</td>
<td>-0.0672</td>
<td>0.3415</td>
<td>-0.089</td>
</tr>
<tr>
<td>6</td>
<td>0.2565</td>
<td>-0.0672</td>
<td>0.0549</td>
<td>0.1342</td>
</tr>
<tr>
<td>7</td>
<td>0.1822</td>
<td>0.3519</td>
<td>0.1596</td>
<td>-0.354</td>
</tr>
<tr>
<td>8</td>
<td>0.1822</td>
<td>0.3519</td>
<td>0.3415</td>
<td>-0.089</td>
</tr>
<tr>
<td>9</td>
<td>0.1822</td>
<td>0.3519</td>
<td>0.0549</td>
<td>0.1342</td>
</tr>
</tbody>
</table>
Table 5.6: Consequent parameters after tuning

<table>
<thead>
<tr>
<th>Rule No.</th>
<th>A_i^1</th>
<th>A_i^2</th>
<th>A_i^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-5.799</td>
<td>10.22</td>
<td>-15.01</td>
</tr>
<tr>
<td>2</td>
<td>9.979</td>
<td>38.24</td>
<td>30.66</td>
</tr>
<tr>
<td>3</td>
<td>-83.77</td>
<td>-122.4</td>
<td>420.5</td>
</tr>
<tr>
<td>4</td>
<td>-20.47</td>
<td>-21.68</td>
<td>-12.95</td>
</tr>
<tr>
<td>5</td>
<td>103.6</td>
<td>-49.15</td>
<td>-0.828</td>
</tr>
<tr>
<td>6</td>
<td>-38.51</td>
<td>-23.73</td>
<td>-45.77</td>
</tr>
<tr>
<td>7</td>
<td>-10.22</td>
<td>-4.734</td>
<td>-75.83</td>
</tr>
<tr>
<td>8</td>
<td>5.944</td>
<td>16.28</td>
<td>-4.831</td>
</tr>
<tr>
<td>9</td>
<td>-365.8</td>
<td>44.08</td>
<td>115.7</td>
</tr>
</tbody>
</table>
5.2.6 Simulation Result

The ANFIS, tuned as explained in previous sections, is used as a controller in a closed-loop as shown in Figure 5.20.

Figure 5.20: Implementation of an ANFIS controller in the closed-loop

Figure 5.21 deals with tracing a reference trajectory which is different from the trajectory used for collecting training data. Figure 5.22 shows the response of the ANFIS controller.

Figure 5.21: Tracing the reference trajectory using ANFIS

Figure 5.22: Response of the ANFIS controller
5.2.7 Real-time Experiments

The robot was tested on a pole. The pole was a 2.5-meter long 2-inch PVC pipe mounted on a stable platform. A Logitech Attack 3 Joystick was used for controlling the robot’s motion in a human-in-the-loop control process. Lynxmotion quadrature incremental optical encoders were also used as interoceptive sensors to measure the vertical position of the robot. Optical encoders were calibrated offline. The operator interfaces to the robot via a computer using Simulink, real-time workshop toolbox, and Wincon [47]. Figure 5.23 shows a snapshot of the physical apparatus. The hardware used in the experiments include: Two Advanced voltage-controlled linear servo amplifiers along
with their 25-A power supply to drive the motors, a Q4 controller card from Quanser along with a terminal board, and six geared PMDC motors with optical encoders. A sampling time of 0.01 seconds was used in all experiments.

The data obtained from the human-in-the-loop control process - including the error (difference between desired and real value of vertical position) at the time sample of K and K-1 and also the input voltage - was used to train the ANFIS.

Figure 5.24 shows the tracing of a reference trajectory different than the one used in tuning. Figure 5.25 deals with the response of the ANFIS controller.

Figure 5.23: A snapshot of the physical apparatus
Figure 5.24: Tracing the reference trajectory using an ANFIS controller in an experimental test

Figure 5.25: Response of an ANFIS controller in an experimental test
5.3 PID Controller

In this section a Proportional Integral Derivative (PID) controller is used to control the vertical position of the robot. A classical PID controller is in the form of:

\[u(t) = k_p e(t) + k_d \frac{de}{dt} + k_i \int_0^t e(\tau)d\tau \] \hspace{1cm} 5.5

Where u is output of the controller, e is error (difference between actual and desired values of the controlled variable), \(k_p \) is proportional gain, \(k_d \) is derivative gain, and \(k_i \) is integral gain.

In designing a PID controller the following specifications should be considered [48]:

- Stability robustness;
- Set-point following and tracking performance at transient, including rise-time, overshoot and settling time;
- Regulation performance at steady-state, including load disturbance rejection;
- Robustness against system modeling uncertainty;
- Noise attenuation and robustness against environmental uncertainty.

The presented PID controller is tuned with the Ziegler-Nichols method [49] and the best values for proportional, derivative and integral gains are \(k_p=500 \), \(k_d=150 \), and \(k_i=10 \) respectively.

The functionalities of each term in equation 5.25 are as follows [48]:

1) The proportional term provides an overall control action proportional to the error signal through the all-pass gain factor.

2) The derivative term improves transient response through high-frequency compensation by a differentiator.
3) The integral term reduces steady-state errors

The individual effects of the above terms on the control performance are summarized in Table 5.7

<table>
<thead>
<tr>
<th>Closed-Loop Response</th>
<th>Rise time</th>
<th>Overshoot</th>
<th>Settling time</th>
<th>Steady-State Error</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing k_p</td>
<td>Decrease</td>
<td>Increase</td>
<td>Small increase</td>
<td>Decrease</td>
<td>Degrade</td>
</tr>
<tr>
<td>Increasing k_d</td>
<td>Small decrease</td>
<td>Decrease</td>
<td>Decrease</td>
<td>Minor change</td>
<td>Improve</td>
</tr>
<tr>
<td>Increasing k_i</td>
<td>Small decrease</td>
<td>Increase</td>
<td>Increase</td>
<td>Large Decrease</td>
<td>Degrade</td>
</tr>
</tbody>
</table>

Figure 5.26 shows the tracing of a reference trajectory using a PID controller. Figure 5.27 deals with response of the PID controller.
Figure 5.26: Tracing a reference trajectory using a PID controller
5.4 Discussion

5.4.1 FLC vs. PID Controller

As can be seen in the previous sections, the ANFIS controller tuned by data captured from the human-in-the-loop control process is not only able to control the vertical movement of the robot, but also possess the following advantages in comparison to the PID controller.

1. Response time: the average settling time for the system controlled by the ANFIS controller is 2.13 while this time for the PID controller is 2.35. This shows that by using
an ANFIS controller instead of a PID controller, we can decrease the settling time by as much as 9.36%.

2. Actuator Saturation: The maximum control signal while using the ANFIS controller is 4.82 volts, while the PID controller reached a maximum of 7.2 volts. This shows that the ANFIS requires 33% less voltage.

3. Energy expenditure: Since the average voltage provided to the motors reflects the total energy expenditure of the system, one can observe that when using a PID controller the average voltage expenditure of the system is 4.81 volt while this amount in case of using a FLC is 3.92 volt which demonstrates an 18.52% reduction.

5.4.2 Effects of Improving Training Data

As mentioned in section 5.2.4, to improve the training data three steps have been done: data smoothing, calculating the output data related to equal pair inputs, and removing duplicated data. Figure 5.28 shows the tracing reference trajectory in condition of using an ANFIS controller which is tuned with pair data before removing repeated data. As can be derived from figures 5.28 and 5.21, removing repeated pair data produces a lower error in tracing results.
Figure 5.28: Tracing the reference trajectory using the ANFIS controller which is tuned with all pair data
6.1 Conclusion

The work presented in this thesis includes two main areas as follows:

1) Design and development of a new re-configurable wheeled climbing robot. This robot benefits from a novel design with high simplicity and versatility simultaneously. This robot is capable of doing a multitude of tasks that no other single robot could do in the past. Some of these tasks are climbing staircases, moving inside empty ducts and/or pipes, climbing over ropes/poles with varying cross sections, shapes, and sizes, jumping over obstacles with proper motion coordination and moving inside narrow passageways. The design of this robot allows it to traverse a wide range of unconventional terrains and makes it a novel concept.
2) Design and implementation of a stand-alone fuzzy logic controller (FLC) for control of vertical movement of the mentioned robot. For tuning the parameters of the fuzzy logic controller a new method is used to reach the best results approximating the human operator actions. In this method (unlike previous research in the area of fuzzy logic control) the numerical information gained from the optical encoders in the human-in-the-loop control process is directly utilized to tune the controller parameters in an adaptive neuro-fuzzy inference system (ANFIS). In this regard, Major contributions can be categorized as follows:

- Avoiding the tedious task of mathematical modeling of the system.
- Avoiding the tedious task of deriving linguistic rules.
- Achieving superior performance in terms of rise/settling time, overall energy expenditure and actuator saturation than a mechanistic controller (PID controllers).

6.2 Future Work

The future work is threefold:

1) In this thesis, a new re-configurable wheeled climbing robot was introduced. Although this robot can be categorized as a novel and versatile climbing robot, we focused on straight pole climbing among all application domains. The dynamics of the robot can be analyzed in other application domains as outlined below:

- Curved pole climbing:
- Rope climbing
- Stair climbing
• Duct climbing
• Duct climbing with varying cross section
• Rough-terrain rover
• Pipe-crawling robot
• Moving through difficult passageways
• Carrying a payload

2) Using an external sensor to measure the vertical movement. This amount can be compared with what is measured with the encoders. If the vertical movement measured from the external sensor is greater than the vertical movement measured from encoders, one can conclude that slippage happens. In this condition the angle between arms should be increase to create more normal force and thus friction force.
Bibliography

Appendix A:

Simulink Model of the Climbing Robot

The dynamic of the robot can be modeled by using Simulink as shown schematically in figure A.1. In the Simulink model shown in this figure, the embedded functions 1 and 2 were based on equations 4.12 and the embedded functions 2 and 4 were created based on a combination of equations 4.7 and 4.8. Embedded function 5 was created based on equation 4.12. Table 4.2 deals with the constant values are used to the Simulink model. Definition of these constants are cited in table 4.1
Figure A.1: Simulink model of the system
Appendix B:

Case study: Controlling the Rotation Angle of a DC motor

In this chapter the angular rotation of a DC motor was controlled in two ways: by using a PD controller and by using an Adaptive Neural Fuzzy Inference System (ANFIS) which was trained with the dataset obtained from a human-in-the-loop control system. In this method, an operator tries to track a reference trajectory based on visually-provided sensory feedback through a Human Machine Interface (HMI) unit. The ANFIS acts as a controller in a closed loop and its task is to provide proper inputs to the system (in this case study a geared DC motor) to obtain the desired output which is a specified rotation angle. In this case study the desired rotation angle is 500 Radians.

B.1 Dynamic Equations

The dynamic of a DC motor can be explained by the formula:
\[
\dot{\theta} = \frac{k_t \cdot (V - k_{bh} \cdot \dot{\theta})}{R \cdot J}
\]

Where \(\theta \) is the rotating angle, \(V \) is voltage, \(R \) is resistance, \(J \) is the rotor inertia, \(k_t \) is the torque constant, \(k_{bh} \) is the Back-EMF constant.

Based on equation B.1, the dynamics of the DC motor can be modeled using Simulink as shown in figure B.1.

Figure B.1: Simulink model of a DC motor

The value of parameters used in this case study are listed in Table B.1.
Table B.1: Parameters of the DC motor used in the case study presented in appendix B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque constant</td>
<td>0.0232</td>
<td>N.m/A</td>
</tr>
<tr>
<td>Back-EMF constant</td>
<td>0.0232</td>
<td>V/rad/s</td>
</tr>
<tr>
<td>Resistance</td>
<td>1.26</td>
<td>Ohm</td>
</tr>
<tr>
<td>Rotor inertia</td>
<td>4.2E-06</td>
<td>Kg.m2</td>
</tr>
</tbody>
</table>

B.2 Conventional Controller

Figure B.2 shows the implementation of the PID controller in a Closed-Loop.

![PID Controller Diagram](image-url)

Figure B.2: Implementation of a PID controller in the closed-loop for controlling the rotation angle of a DC motor

The PID controller was designed in accordance with the Ziegler-Nichols tuning criteria. The best gain values were found to be $K_p = 0.012$, $K_d = 0.01$ and $K_i = 0.0001$ for the proportional, derivative, and integral gains respectively.

Figure B.3 and B.4 show the response of the PID controller (output voltage) and the tracing of the reference trajectory respectively.
Figure B.3: Output of the PID controller to control the rotation angle of a DC motor
B.3 Unconventional Controller

In this part, an ANFIS controller is used as an unconventional controller. ANFIS is a fuzzy logic system whose membership functions and rules parameters can be tuned to benefit from learning. To tune these parameters, ANFIS uses a multilayer neural network. Each layer consists of some nodes and each node performs a function so that the entire network is equivalent to a fuzzy system. An operator tries to track a reference trajectory based on visually-provided sensory feedback through a Human Machine Interface (HMI) unit and the data gained in this process is used to train the ANFIS. The trained ANFIS was used as a controller to trace a reference trajectory different than that used for training.

Figure B.4: Rotation angle of a DC motor using a PID controller
Structure of the FLC

The fuzzy system used in the presented ANFIS is a first-order TSK type. The inputs of the ANFIS are error in the rotation angle of the DC motor and the rate of change in the error as follows:

\[
\begin{align*}
 e(t) &= r - \theta(t) \\
 \dot{e}(t) &= -\dot{\theta}(t)
\end{align*}
\]

B.3

Where ”r” is the reference trajectory.

Three membership functions (MF) are chosen for each input. The MFs are Gaussian type in the form of:

\[
f(x; c, \sigma) = e^{-\frac{(x-c)^2}{2\sigma^2}}
\]

B.4

The FLC consists of 9 rules in the general form of:

\[
u_i = A^1_i e_i + A^2_i \dot{e}_i + A^3_i
\]

B.5

Where, “i” denotes the number of the rule.

The control signal (output of the FLC) was the weighted average of the nine rule-outputs.

The response of the FLC is affected by the value of the antecedent parameters \([c^e_i, \sigma^e_i, c^\dot{e}_i, \sigma^\dot{e}_i]\) and consequent parameters \([A^1_i, A^2_i, A^3_i]\) of each rule “i”. To gain the best results, similar to those obtained by a human operator, the above parameters are tuned using the ANFIS. Figures B.5 and 5.6 show the membership functions of input 1 (error) before and after the tuning respectively. Figure B.7 and figure B.8 show the membership
functions of input 2 (change of error) before and after the tuning respectively. Table B.2 and table B.3 deal with antecedent parameters before and after the tuning respectively. Table B.4 shows the amounts of consequent parameters after tuning. Figure B.9 shows the control surface of the FLC.

Figure B.5: Membership function of input1 before tuning for the case study of controlling the rotation angle of a DC motor

Figure B.6: Membership function of input1 after tuning for the case study of controlling the rotation angle of a DC motor
Figure B.7: Membership function of input2 before tuning for the case study of controlling the rotation angle of a DC motor

Figure B.8: Membership function of input2 after tuning for the case study of controlling the rotation angle of a DC motor
Figure B.9: Control surface of the FLC for the case study of controlling the rotation angle of a DC motor
Table B.2: Antecedent parameters before tuning for the case study of controlling the rotation angle of a DC motor

<table>
<thead>
<tr>
<th>Rule No.</th>
<th>c_i^e</th>
<th>σ_i^e</th>
<th>c_i^e</th>
<th>σ_i^e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>109.7</td>
<td>-16.42</td>
<td>25.21</td>
<td>-111.3</td>
</tr>
<tr>
<td>2</td>
<td>109.7</td>
<td>-16.42</td>
<td>25.21</td>
<td>-51.92</td>
</tr>
<tr>
<td>3</td>
<td>109.7</td>
<td>-16.42</td>
<td>25.21</td>
<td>7.441</td>
</tr>
<tr>
<td>4</td>
<td>109.7</td>
<td>241.8</td>
<td>25.21</td>
<td>-111.3</td>
</tr>
<tr>
<td>5</td>
<td>109.7</td>
<td>241.8</td>
<td>25.21</td>
<td>-51.92</td>
</tr>
<tr>
<td>6</td>
<td>109.7</td>
<td>241.8</td>
<td>25.21</td>
<td>7.441</td>
</tr>
<tr>
<td>7</td>
<td>109.7</td>
<td>500</td>
<td>25.21</td>
<td>-111.3</td>
</tr>
<tr>
<td>8</td>
<td>109.7</td>
<td>500</td>
<td>25.21</td>
<td>-51.92</td>
</tr>
<tr>
<td>9</td>
<td>109.7</td>
<td>500</td>
<td>25.21</td>
<td>7.441</td>
</tr>
</tbody>
</table>
Table B.3: Antecedent parameters after tuning for the case study of controlling the rotation angle of a DC motor

<table>
<thead>
<tr>
<th>Rule No.</th>
<th>c_i^e</th>
<th>σ_i^e</th>
<th>c_i^e</th>
<th>σ_i^e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>109.6</td>
<td>-16.5</td>
<td>25.3</td>
<td>-111.2</td>
</tr>
<tr>
<td>2</td>
<td>109.6</td>
<td>-16.5</td>
<td>25.98</td>
<td>-51.64</td>
</tr>
<tr>
<td>3</td>
<td>109.6</td>
<td>-16.5</td>
<td>25</td>
<td>7.726</td>
</tr>
<tr>
<td>4</td>
<td>110.1</td>
<td>241.8</td>
<td>25.3</td>
<td>-111.2</td>
</tr>
<tr>
<td>5</td>
<td>110.1</td>
<td>241.8</td>
<td>25.98</td>
<td>-51.64</td>
</tr>
<tr>
<td>6</td>
<td>110.1</td>
<td>241.8</td>
<td>25</td>
<td>7.726</td>
</tr>
<tr>
<td>7</td>
<td>109.7</td>
<td>500</td>
<td>25.3</td>
<td>-111.2</td>
</tr>
<tr>
<td>8</td>
<td>109.7</td>
<td>500</td>
<td>25.98</td>
<td>-51.64</td>
</tr>
<tr>
<td>9</td>
<td>109.7</td>
<td>500</td>
<td>25</td>
<td>7.726</td>
</tr>
</tbody>
</table>
Table B.4: Consequent parameters after tuning for the case study of controlling the rotation angle of a DC motor

<table>
<thead>
<tr>
<th>Rule No.</th>
<th>A_1^1</th>
<th>A_1^2</th>
<th>A_1^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.096</td>
<td>0.1214</td>
<td>21.32</td>
</tr>
<tr>
<td>2</td>
<td>1.278</td>
<td>1.821</td>
<td>47.71</td>
</tr>
<tr>
<td>3</td>
<td>-2.659</td>
<td>-2.408</td>
<td>-202.1</td>
</tr>
<tr>
<td>4</td>
<td>-0.088</td>
<td>-0.1186</td>
<td>17.26</td>
</tr>
<tr>
<td>5</td>
<td>1.279</td>
<td>9.387</td>
<td>748.6</td>
</tr>
<tr>
<td>6</td>
<td>-14.62</td>
<td>48.59</td>
<td>2038</td>
</tr>
<tr>
<td>7</td>
<td>0.0393</td>
<td>0.7827</td>
<td>-42.08</td>
</tr>
<tr>
<td>8</td>
<td>0.8471</td>
<td>1.145</td>
<td>-405.5</td>
</tr>
<tr>
<td>9</td>
<td>2.275</td>
<td>-3.294</td>
<td>-816.1</td>
</tr>
</tbody>
</table>

Figure B.10 and B.11 show the response of the fuzzy logic controller (output voltage) and the tracing of the reference trajectory respectively.
Figure B.10: Response of the fuzzy logic controller for the case study of controlling the rotation angle of a DC motor

Figure B.11: Rotation angle of a DC motor using a fuzzy logic controller for the case study of controlling the rotation angle of a DC motor
B.4 Comparing Conventional and Unconventional Controllers

As can be seen in figure B.11, the FLC tuned by human data can trace the reference trajectory of $r=500$ radian. Based on the result shown in figures B.5, B.6, B.10, and B.11, one can conclude that the FLC has three advantages over the PID controller:

1. Faster response: the settling time for the system controlled by the FLC is 10.43 while this time for the PID controller is 12.28.

2. Less overshoot: The amount of overshoot for the system controlled by the PID controller was 508 radians, which is a 1.6% overshoot. Using the FLC reduced this amount to near zero.

3. Actuator Saturation: The maximum control signal using the FLC is 4.75 volts while that of the PID controller is 6 volts. This shows that the FLC demonstrates a 26.3% reduction in max voltage used.
Appendix C

Basic Definitions Used in This Thesis

This section contains some definitions used in control, fuzzy logic controllers and ANFIS.

- **System:**
 A system is a combination of components that act together to perform a function which cannot be achieved by any of those components individually [50].

- **Servomechanism:**
 Servomechanism is a mechanism to control the mechanical position or velocity of a system by using error feedback. For example the cruise control of a car is a servomechanism.

- **Human Analogous Control:**
Human analogous control is a control process in which human behaviour is emulated. Neural networks and fuzzy logic systems are the most well-known areas for developing human analogous controls.

- **Neural networks:**

 A neural network is a network structure which is composed of a number of nodes connected by some links [51]. Each node is a process unit and each link represents the relationship between nodes. In an adaptive neural network, the nodes are adaptive. This means that the output of all or part of the nodes depends on some modifiable parameters of the node. These parameters are tuned in such a way that the difference between the output of the network and the expected output is minimal.

 In the most cases, each node of the adaptive network has its own function and each link is used to specify the propagation direction of node outputs while no weights or parameters are associated with links. Figure 5.1 shows a typical adaptive network with two outputs and two inputs.
Each node possesses local parameters which are a part of the network parameters. In other words, the union of all node parameters is the network’s overall parameter set. One can divide the nodes of a network into two main parts: adaptive nodes and fixed nodes. If a node’s parameter set is not empty, that node is adaptive. The function of an adaptive node depends on the parameter values. On the contrary, if a fixed node has an empty parameter set, then its function does not depend on parameter values and is fixed. Usually adaptive and fixed nodes are represented by squares and circles respectively (see figure C.1).

Based on the kind of connections, one can classify adaptive networks into two main types: Feedforward and recurrent. In feedforward adaptive networks, the output of each node propagates from the input side to the output side. The network shown in figure C.1
is a feedforward network. In a recurrent network, there is a feedback link that forms a circular path in the network. Figure C.2 shows a recurrent network.

The feedforward network shown in figure C.1 has a layered representation. In this representation, there are no links between nodes in the same layer and outputs of the nodes in each layer are inputs of the nodes in next layer. Figure C.3 [51] deals with another representation called topological ordering representation.

Figure C.2: A Recurrent Network
Figure C.3: Topological Ordering Representation [51]

- Neural network based control

The most common neural network architectures used in control are [52]:

- Model predictive control: this kind of neural network base controller predicts future system response to potential control signals. The neural network system modeled in this kind of controller is trained in batch form offline.

- Feedback Linearization Control: this kind of neural network base controller is a re-arrangement of the neural network system model which is trained offline in batch form. These need less computation than the other kinds.

- Model reference control: The online computation of this controller is minimal. However, this kind of neural network base controller needs a separate trained neural network in addition to the neural network system model.

- Fuzzy set and membership functions

If X is a collection of objects and x is a generic element of X, then a fuzzy set A in X is defined as a set of ordered pairs:

\[A = \{(x, \mu_A(x)) | x \in A\} \]

\[\text{C.1} \]
Where $\mu_A(x)$ is a membership function for (or MF for short) fuzzy set A. $\mu_A(x)$ is a number between 0 and 1. The membership function maps each x to a number between 0 and 1.

There are several types of membership functions. The following are among the most well-known membership functions:

- Triangular:

This MF is specified by three parameters (a,b,c) as follows:

$$
\text{triangle}(x; a, b, c) = \begin{cases}
0 & x \ll a \\
\frac{x-a}{b-a} & a \ll x \ll b \\
\frac{c-x}{c-b} & b \ll x \ll c \\
0 & c \ll x
\end{cases}
$$

Figure C.4 shows a triangular MF defined by $\text{triangle}(x; 20, 50, 80)$.

Figure C.4: Triangle(x;20,50,80) membership function
• Trapezoidal:

This MF is specified by four parameters \((a,b,c,d)\) as follows:

\[
\text{trapezoid}(x; a, b, c, d) = \begin{cases}
0 & x \ll a \\
\frac{x-a}{b-a} & a \ll x \ll b \\
1 & b \ll x \ll c \\
\frac{d-x}{d-c} & c \ll x \ll d \\
0 & d \ll x
\end{cases}
\]

An alternative representation of equation C.3 using min and max is

\[
\text{trapezoid}(x; a, b, c, d) = \max\left(\min\left(\frac{x-a}{b-a}, 1, \frac{d-x}{d-c}\right), 0\right)
\]

Figure C.5 shows a trapezoidal MF defined by \(\text{trapezoid}(x; 10, 20, 50, 80)\).

• Gaussian:

This MF is specified by two parameters \((a, b)\) as follows

\[
\text{gaussian}(x; a, b) = e^{-\frac{(x-a)^2}{2b^2}}
\]
In the above equation, “a” defines the MF’s center and “b” defines the MF’s width.

Figure C.6 shows a Gaussian MF defined by Gaussian(x; 50,15).

\[bell(x; c, d) = \frac{1}{1 + \left| \frac{x - c}{a} \right|^{2b}} \] \hspace{1cm} C.6

Where parameter “b” is usually positive. If “b” is negative, the shape of the MF becomes upside-down. Figure C.7 shows a bell MF defined by bell(x;25,3,50).

Figure C.6: Gaussian (x; 50, 15) membership function

Figure C.7: Bell (x; 25, 3, 50) membership function
• **Sigmoidal**

This MF is specified by two parameters \((a, b)\) as follows:

\[
s_{i}g(x; a, b) = \frac{1}{1 + \exp[-a(x - c)]}
\]

C.8

Figure C.8 shows a sigmoidal MF defined by \(\text{sig}(x; 0.2, 50)\).

![Sigmoidal MF](image)

Figure C.8: Sig(x; 0.2, 50) membership function

• **Fuzzy operators**

There are several operators that act on fuzzy sets. Some of the more well-known operators are as follows:

- **Complement**: \(\complement_{A}(u) = 1 - \mu_{A}(u)\) for all \(u \in U\)
- **Union**: \(\bigcup_{A \cup B}(u) = \max\{\mu_{A}(u), \mu_{B}(u)\}\) for all \(u \in U\)
- **Intersection**: \(\bigcap_{A \cap B}(u) = \min\{\mu_{A}(u), \mu_{B}(u)\}\) for all \(u \in U\)
- **T-norm**: in a T-norm operator \((T(,.))\) the following terms are satisfied:
\[T(0,0) = 0, T(a, 1) = T(1, a) = a \quad \text{(boundary)} \]

\[T(a, b) \leq T(c, d) \text{if } a \leq c \& b \leq d \quad \text{(monotonicity)} \]

\[T(a, b) = T(b, a) \quad \text{(commutativity)} \]

\[T(a, T(b, c)) = T(T(a, b), c) \quad \text{(associativity)} \]

Four often used T-norm operators are as follows:

- **Minimum** \(T_{\min}(a, b) = \min(a, b) = a \land b \)

- **Algebraic product** \(T_{ap}(a, b) = ab \)

- **Bounded product** \(T_{bp}(a, b) = 0 \lor (a + b - 1) \)

- **Drastic product** \(T_{dp}(a, b) = \begin{cases} a, & \text{if } b = 1 \\ b, & \text{if } a = 1 \\ 0, & \text{if } a, b < 1 \end{cases} \)

- **Takagi-Sugeno-Kang (TSK) Model**

Among the three well known fuzzy models (Mamadani, TSK, and Tsukamoto), we focus on the TSK model in this thesis.

The typical fuzzy rule in a TSK model is in the form of,

If \(x \) is \(A \) and \(y \) is \(B \) then \(z = f(x, y) \),

Where \(A \) and \(B \) are fuzzy sets and \(z = f(x, y) \) is a crisp function. If \(f(x, y) \) is a first-order polynomial, the resulting fuzzy inference system is called a first-order Sugeno fuzzy model. If \(f \) is a constant, we have a zero-order Sugeno fuzzy model. A zero-order Sugeno fuzzy model can be considered a special case of the Mamadani fuzzy inference system in which each rule’s consequent is specified by a fuzzy singleton. On the other hand, a zero-order Sugeno fuzzy model can be viewed as a special case of the Tsukamoto fuzzy model.
in which each rule’s consequent is specified by a membership function of a step function centered at the constant.

- **Fuzzy logic control (FLC)**

In a fuzzy logic system the problem is modeled by using linguistic control rules derived from the operator’s knowledge. These rules are in the form of IF-THEN statements:

IF (process state) THEN (control action)

In conventional control, the decisions made by the controller are a rigid “true” or “false” while in a fuzzy logic controller decisions are fuzzy and therefore more similar to human logic.

Fuzzy logic controllers have been classified in four main groups as follows [52]:

- Controllers designed on the basis of operator experience and control engineering knowledge. Many of these kinds of fuzzy controllers are open loop, state feedback controllers or set point controllers with additional inputs. Insufficient operator-provided knowledge due to lack of sufficient operators or the knowledge of individual operators is a disadvantage of this kind of fuzzy controller.

- **FL-based** controllers modeled on existing mechanistic controllers: this type of fuzzy controller imitates another mechanistic controller. These fuzzy controllers are tuned by the inputs and outputs of the working conventional controller and then replace it. These fuzzy controllers are used when the original conventional controller is too expensive to implement.
- Model based fuzzy control: This type of fuzzy controller uses a given fuzzy open loop model of a controlled system to derive the set of fuzzy rules. This method, in contrast to previous types, requires a model of the system.

- Self-learning fuzzy controls: This kind of fuzzy controller is called an adaptive fuzzy controller. The parameters of adaptive fuzzy controllers are tuned online to provide the best performance even if the system parameters change over time. For this tuning, the system data can be used directly or an identifier mechanism can produce a model of the system.

- ANFIS [51]

ANFIS stands for adaptive network-based fuzzy inference system or, semantically equivalent, adaptive neuro fuzzy inference system. Figure C.9 (a) and (b) show the reasoning mechanism and architecture of an ANFIS with two inputs and one output. For a first-order Sugeno fuzzy model, a common rule set with two fuzzy if-then rules is following:

Rule1: If x is A\textsubscript{1} and y is B\textsubscript{1}, then \(f_{1} = p_{1}x + q_{1}y + r_{1} \),

Rule2: If x is A\textsubscript{2} and y is B\textsubscript{2}, then \(f_{2} = p_{2}x + q_{2}y + r_{2} \),

The reasoning mechanism shown in figure C.9 (a) is a Sugeno model. The nodes of the same layer have similar functions as described next where \(O_{1,i} \) is the output of the \(i \)th node in layer 1.

- Layer 1:

\[
\begin{align*}
O_{1,i} &= \mu_{A_{i}}(x) & \text{for } i = 1,2 \\
O_{1,i} &= \mu_{B_{i-2}}(y) & \text{for } i = 3,4
\end{align*}
\]
Where \(x \) (or \(y \)) is the input to node \(i \) and \(A_i \) (or \(B_{i-2} \)) is a linguistic label associated with this node. The \(O_{1,i} \) is the membership grade of fuzzy set A and B. The parameters of this layer are called premise parameters.

- Layer 2: the nodes of this layer are fixed nodes labeled \(\Pi \). The output of these nodes is a product of their inputs.

\[
O_{2,i} = \omega_i = \mu_{A_i}(x) \mu_{B_i}(y) \quad \text{for} \ i = 1, 2 \quad \text{C.12}
\]

![Diagram A](image1.png)

\(f = \frac{w_1 f_1 + w_2 f_2}{w_1 + w_2} = w_1 f_1 + w_2 f_2 \)

![Diagram B](image2.png)

Figure C.9 (a): A two-input first-order Sugeno fuzzy model with two rules, (b): Equivalent ANFIS Architecture
Any other T-norm operators that perform a fuzzy “AND” can be used instead of “product” in this layer.

- Layer 3: the nodes of this layer are fixed nodes labelled N. The output of these nodes is the ratio of the i^{th} rule’s firing strength to the sum of all rules’ firing strength.

$$O_{3,i} = \frac{\omega_i}{\omega_1 + \omega_2} \text{ for } i = 1, 2$$ \hspace{1cm} (C.13)

The output of this layer is called normalized firing strengths.

- Layer 4: the function of the nodes in this layer is as follow:

$$O_{4,i} = \bar{\omega}_i f_i = \bar{\omega}_i (p_i x + q_i y + r_i)$$ \hspace{1cm} (C.14)

Where $\bar{\omega}_i$ is a normalized firing strength from layer 3 and p_i, q_i, r_i are parameters of the nodes.

- Layer 5: the node of this layer is a fixed node labeled Σ. The output of this node is the overall output calculated as follow:

$$\text{overall output} = O_{5,1} = \sum_i \bar{\omega}_i f_i = \frac{\sum_i \omega_i f_i}{\sum_i \omega_i}$$ \hspace{1cm} (C.15)

The nodes of layer 1 and layer 5 are not fixed and can be tuned during the learning process.

Throughout this thesis, we use the ANFIS architecture for the first-order Sugeno fuzzy model with two inputs, one output, and 9 rules. Figure C.10 deals with such an ANFIS architecture.
The hybrid learning method is used to identify the parameters of adaptive networks. This method is a combination of a forward pass and a backward pass in which least-squares estimator (LSE) and steepest decent (SD) are applied respectively. In other words, the hybrid learning method consists of LSE and SD. The most important advantage of the hybrid method, in comparison to back propagation and SD, is that this method is faster. One can divide this method into two main parts: off-line learning (batch learning) and on-line learning (pattern-by-pattern learning). In this thesis we focus on off-line learning. The next paragraphs deal with the forward pass and backward pass of the off-line learning method:
- Forward pass:

The output of a one-output adaptive network can be represented by

\[O = F(i, S) \] \hspace{1cm} C.16

Where “i” is the vector of input variables, F is the overall function of the network, and S is the set of network parameters. We assume that: S consists of two sets of S\(_1\) (Set of premise parameters) and S\(_2\) (set of consequent parameters, and also there is a function \(H\) such that the composite function \(H \circ F\) is linear in the elements of S\(_2\).

Therefore we have,

\[H(O) = H \circ F(i, S) \] \hspace{1cm} C.17

Which is linear in elements of S\(_2\). Given the values of the elements of S\(_1\) and plugging \(p\) training data into equation 3.15 one can obtain a matrix equation in the form of

\[AX = B \] \hspace{1cm} C.18

Where \(x\) is a vector of parameters S\(_2\) and A and B are inputs and outputs respectively. According to linear least-square problems, the best solution for \(x\) which minimizes \(\|AX - B\|^2\), is the least-square estimator (LSE) \(X^*\):

\[X^* = (A^T A)^{-1} A^T B \] \hspace{1cm} C.19

Where \(A^T\) is the transpose of A.

- Backward pass

After the consequent parameters are identified in a forward pass, the error measure can be obtained for each training data pair. In backward pass the derivative of the error measure with respect to each node output propagates from the output end toward the input end. In backward pass the premise parameters (S\(_1\)) are updated by steepest descent method.
The overall output of the ANFIS structure shown in figure C.9(b) can be represented as a linear combination of the consequent parameters as follow:

\[
f = \frac{\omega_1}{\omega_1 + \omega_2} f_1 + \frac{\omega_2}{\omega_1 + \omega_2} f_2
\]

\[
= \bar{\omega}_1 (p_1 x + q_1 y + r_1) + \bar{\omega}_2 (p_2 x + q_2 y + r_2)
\]

\[
= (\bar{\omega}_1 x) p_1 + (\bar{\omega}_1 y) q_1 + (\bar{\omega}_1) r_1 + (\bar{\omega}_2 x) p_2 + (\bar{\omega}_2 y) q_2 + (\bar{\omega}_2) r_2
\]

As can be derived from equation C.20, the overall output of the ANFIS can be expressed linearly in the consequent parameters. If we define S, S₁, and S₂ as the set of total parameters, set of premise parameters and set of consequent parameters respectively, the hybrid rule explained above can be applied.