NOTICE

AVIS

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments.

La qualité de cette microforme dépend grandement de la qualité de la thèse soum:" au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.

ATTRIBC'TE-()RIEXTED R()CGH SET APPR()AC'H

A Tinesis

I. Pabtial Fidflabent of the Requtrenmexts
FOR TIIE DEGREE OF
Doctor or Philosopis
IN
Conipeter Science:
Facidiv of Graduate Stidiss
U'Niversity of Regina

By
Niaohua Ilu
Regina. Saskatchewan
Junc. 1995

(c) (oppright 1995: Xaohua Hu

National Library of Canada

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa. Ontario KIAON4

Bibliotheque nationale du Canada

Direction des acquisitions el des services bibliographiques

395, rue Wellington Ottawa (Ontario) KIAONA

The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-612-08457-4

Canadä'

PERMISSION TO USE POSTGRADUATE THESES

TITLE OF THESIS: Knowledge Discovery in Databases:An Attribute-Oriented Rough Set Approach

NAME OF AUTHOR: Xiaohua Mu

EACULTY: Faculty of Graduate Studies and Research

DEGREE: Doctor of Philosophy

In presenting this thesis in partial fulfillment of the requirements for a postgraduate degree from the University of Regina, I agree that the Libraries of this University shall make it freely available for inspection. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the professor or professors who supervised my thesis work, $7 r$ in their absence, by the Head of the Department or the Dean of the faculty in which my thesis work was done. It is understood that any copying, publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Regina in any scholarly use which may be made of my material in my thesis.

SIGNATURE:

UNIVERSITY OF REGINA

FACULTY OE GRADUATE STUDIES AND RESEARCH

CERTIFICATION OR TMESIS WORK

We, the undersigned, certify that Xiaohua flu, candidate for the Degree of Doctor of Philosophy has presented a thesis on Knowledge Discovery in Databases:An Attribute-Oriented Rough Set Approach, that the thesis is acceptable in form and content, and that the student demonstrated a satisfactory knowledge of the field covered by the thesis in an oral examination held on June $28,1995$.

External Examiner:

Internal Examiners:

Dr. N. Cercone, Supervisor

Abstract

Kinowterge Discovery in Databases (KDD) is an active research area with the pomise for a high payoff in man lusiness and scientific applications. The corporate. pencmumenal. and seicutific communities are becing owerwhelmed with an infinx of data that in romtinely sored in on-line databases. Analyezing this data and extracting mentingful patterms in a timelt fashion is difficult winhout computer assistance and powerful analatical toods. The grand challenge of kinewtedge diseovery in database is
 meding fin patterns. and present this kinwledge in an appropiate form for achion ing Hia nerers goal. Kinowledge discovery systems face challenging problems from the real worth datalases which tend to be sery large. redundant. noiss and dymamic. Fant of them prodelems has been addressed to some extent within machine leaming.
 produr ing usefin knowledge eflicionty and effectivels is the main focus of the thesis. In this thenis. we develop an attribute-oriented rough set approach for knowledge discoures in databases. The method adopts the artificial intelligent "leaning from "amplen" paradigm combined with rengh set theory and database operations. The loarnimg procedun consists of two phases: data generalization and data reduction. In data gencralization. sur mee hoel generaliess the data by performing at tribute-oriented comerpt tree ascemion. thus, some undesirable at tributes are removed and a set of tuples may be gemeralized to the same generalized tuple. The generalized relation counains unly a suall number of tuples. which sulsiantially reduces the computational complesity of the learning process and. furthermore. it is feasible to apply the rough sel terthiques to eliminate the irrelevant or mimportant attributes and choose the
"best" mimimal atribute set. The goal of data reduction is lo limd a minimad of interesting attributes that have all the cosential information of the exemedied

 method makes some contribution to the Kid). I gemeralizel romgh wed medre is formalle defined with the abilit! to handle statistion information and also comsiden the importance of attributes and ohjects in the databses. ()we mether is dille to identify the essential subset of nonredundant atributo (factom) that deleminine the
 databases with noisy data and in a dymamic emiromment and deal with databasen
 a 「'nis/K/Sybase environment. Our system implements a mumber oned iders. In

 task are considered. In our system. the combination of transition memen and whent hierarchy provides a nice mechanism to handle dymamic datacherintic of data in the

 oriented rough set learning for knowledge discorery for dalabises.

Acknowledgements

This thesis has been rescarched and written under the supportive and helpful di-

 ing these several seats as his student enjesable and challenging. and for his excellent guidance and fimancial support. and for the man! comensations which brongint the
 in datalases to my chosen research area.

I wond like to thand all the members of my committere for their forellack and arefne wenlinge of the thesis. which lad to mans improsements in the presentation: Thanks ('lnistiur ('han. Paitoon 'Tontiwachwuthikul. Lam: Saxton and Wojciech Kianks. I really appreciate your academic help and friondship. Thanks also to Dr. Randy (iowhel as my extornal examiner.
! wond like to thank. Mr. . Ning Shan for his friendship. valuable and fruitful discussions and very good corporation in our joint research work.

It shembl be memioned that mes study at the ['niversity of Regina was not only hemelicial. but also very enjopable. Sperial thanks go to Ms. . Dijun An who took care of m! mails while I was working in Ottawa. A sincere thanks to the many friendly and helpfulprople including Dr. Brien Maguire. Dr. S.K..M. Wong. Dr. Xiang Jang. Margared ('ooper, Z'iawei Wang. Lida Yang.

I aIn grateful to min wife. Micholle Shuet-gue Tang who during the writing of this work helped. eocouraged and supported me when times were tough. Without her loncand anpent. I wonld not have had the ability to continue when things appeared (os stop).

I wish to thank desus ('ordoba for hedpful comments in proofreding the work.
Financial support for the researeh in this thesis was gatrinlly mocided from the

 has always been dedicated: to my parents. Ns. ('hambini Ning. Mr. Zhihum Hn. this work is for you.

Contents

Abstract i
Acknowledgements iii
'lable of Contents v
List of Figures ix
Chapter 1 INTRODUCTION 1
Chapter 2 Overview: Knowledge Discovery in Databases 6
2.1 (omerpts of Learuing from Fixamples: An A Approach (;
2.I.I Basic ('omponens in Laming from lixamples (
2.I.: (inmoralized Rules. 7
2.1.3 lipes of linowlodge Rules 10
2.I. 1 (ontrol Stratcgios in Learning from Fxamples 10
2.2 Some learning From lixamples Models 11
2.2. 1 The ('andidate Plimination Ngorithm 11
$2.2 .2 \quad A(Q 11$ and $A Q 15$ S'stoms 14
2.2 .3 (I):3. (I).।. II): (i)
2.3 ('oncopts of learning litom Databases 17
2.i.I Data Relovant to the Discovery Process 17
2.3:2 Backgromal Knowledge 18
2.3.3 Represemation of Laming Results 19
2.3.1 'lypes of' Rules 19
2.1 K Kowledge Diseovery in Large Databanco ：II
2．1．1 1．1．1\％Systm $\because 1$
2．4．2 にかい Sisum $\because ;$
 \because
Chapter 3 Extending DBLEARN 26
 \because
3.2 An l：xample ． 16
3.3 Knowledge Discover be（oncepmal（＇lustrone 111
3．3．1 Review of the Relater Miork 1：
3．3．2 An Approach to（omerpt（＇lintring $1:$
Chapter 4 Rough Sets and A Generalized Rough Sol Model 18
－1． 1 Principal（＇oncepls of Rongh Sol 1
A．l．1 Information System I！
f．l．2 Approximation Space il
 ：i：
4．2 A（iencralizod Rough Sids Model iii
 in
 87
A．2．3 Sol Approximation in the（ilst Alondel ：1）
 （i）
 （ii）
Chapter 5 Rough Set Based Data Reduction （is）
\％． 1 Reduction of the（ideralized Relation 13
5．1．1 Significant Vahne of Antributes 1,7
5．！．2（＇ritmia for the Best Roduct lii
5．1．：（ Gore and Discomilility Warrix （i．）
 7
5．3（＇omputing Maximal（ienoralizer Rulen 76
3．3．1 Rules in Information Systom 76
i.3.2 Maximal (iomoratized Rulor 76
 is
-.:. 1 (omplexiny of Maximal (iomoalizol Rules $8: 3$
Chapter 6 Multiple Sets of Knowledge Rules and Rough Sets 85
(i.1 Multiple Sids ol limownder Rula. Si
 redge Rulen sis
(i.3) ('ombination of Maltiple Sets of Kinowlolge Rules (9) 1
Chapter 7 Implementation and Experiments 96
T. 1 Arehiarerme !)
7.2 Fixperimental Results of Some Agorithms !99
7.2.1 NSiRR((imats Informanion System 1010
7.8.2 Sumu l'esu Results 102
Chapter 8 Discussion 110
s. 1 A ('mmparison with ()her I.carning Morhods 110
S. 2 Scardi Spare 111
s.3 I'ilizing Database Farilities 112
S. 4 Draling will Dillorem Kinds of ('oncept Mieratchies 112
 11.1
s.o Reduction of loatabases 11i
S. \bar{i} Data livolution Regnarity $11(i$
Chapter $9 \quad$ Conclusion and Future Directions 120
! 1 (1 (omblusion $1:()$
$9 . \therefore$ linture Diredion 121
! I. 1 Applications of Rinowledge Rales Discovered from Refational Databases $12: 2$
!.2.2 (onstrmetion of An laterative Laming System $12: 3$
!.2.3 Intrgration of Multiple Typers of Discovery Strategy 123

List of Figures

2.1 The version spaces for the positive cxample "red \wedge circle" 14
2.2 Thre arditecture of INLE.S 22
3.1 The architecture of DBIEARA 26
3.2 ('merphat hierarchy of the animal world 30
3.3 Comerpthal hicrarrly 4
3.1 Comeph hierarchy: 46
3.5 \# of common autribute value 16
3., ('oucept ual hierarchy after 3rd iteration 46
I.I The diagram of rough set model 52
B. 1 ('onerept hierarchy tree for make_morlel 73
6.1 St ruet ure of multiple sets of knowledge rules 87
(i.2 Decision matrices for Table (i.) 91
7.1 The architecture of DBROLCBII 97
s.I An mbalaneed concept tree 113
s.2. . 1 concept tree with latlices 114

List of Tables

3.1 An animal world. $2!$
3.2 The prime relation table 30
3.3 A generalized relation. $3:$
3.4 The feature table for the athibute animal. $3: 3$
3.5 A temporary relation after the substitution :
3.6 A temporaty relation for mammal 3
3.7 A temporary relation for bird 3!)
3.8 A tomporary reation for carmivorous mammal $3!!$
3.9 A temporary relation for ungulate II)
3.10 A temporary relation for non-llying bird II)
3.11 A temporary relation for flying bird. II
3.12 The animal world (i)
3.1:3 Ximber of common atribute values after lst itcration 15
3.14 (a)llierarchical knowledge rules; (b)liquivalenee pulen 17
3.15 Inheritance knowledge rules 17
3.16 Names list 17
3.17 A set of meaningful rules after substitution 17
4.1 A generalized car relation 53
4.2 An meertain information system 7
5. 1 Discomibility matrix for the generalized car relation. (9)
5. 2 Car relation 72
5.3 Reduced table with best reduct 71

- 1.1 Reduced table with user minimal attributes subset 7
-..) Reduced table after rombination 7.
-. 0 A simple gemeralizer car relation 79

2. 7 Ximmeral represemation of Table : 2.5 79
 S0
(i.) A knowledge represemation system 91
3. 1 The linal gemeralized retation 10\%
7.2 The limal gencralized relation 106
7.3 Derision matrix for the class mileage $=$ III(ill 105
s.l Adult relation 117
s. 2 (a) Child relation: (b) Senior citizen rolation 118
s. 3 Instance of senior citizen 119

Chapter 1

INTRODUCTION

Knowledge discovery is the process of mining a data somme for inlomation that one is unaware of prion to the discovery. This spas the emire apertrom from dis
 confirms a well known fact.
 for high payoffs in many business and sciontilic applicalions. 'I la componter, gen
 that is routimely stored in on-line databases. Thatyang this datan and extruthes
 and powerful analytical toots. Standated computer based statistical duld dirlytion

 follows:
" (Given a set of facts (data) $l=$ a langhage l. and some measher of rotainy C^{\prime}. a pellerm is defined as a statement in 1 , that describen matiombiph amone, a

is called timombledye."
This definition about the language. the certainty, and the simplicity and interest-
 tively. Ihese temmenc apsulate our vien of the fundamental chatacteristics of discovery in latal bases.

Wan! mathinc-laming algorithms are radily applicable for KD]). In important mathine ladruing paradigm. Io arning from eramples. that is. leaming by gemeralizing pectitic facts or obsertations [Col's3. DiM18:3]. has been adophed in many existing indme lion leaning algonithms. Real-norld databases present additional considerations duc to the nature of their contents which tend to be large. incomplete. dymamic. noiss and redmendat. Bad of these considerations have been addressed. to some extem. within machine learning. but fow. if any, systems address all of them. ('ollectisely hatding these problems while producing useful knowledge is the challenge of KDD.

One of the major reasoms that the machine laming systems do not integrate well will wational databane satems is because of the inefficiency of curent learning algorithms when applied to large databases. Moss existing algorithms for I curning from (ramples apply a tuple-oriented approach. an approach that examines one tuple at a time. In order to discover the most specific concept that is satisfied by all the training examples. the hple-oriemed appoach mast test the concept coverage after each gencralization on a single attribute value of a training examplo [Di.Me:3.Mices3]. Since Here are alarge mumber of possible combinations in such testing. the tuple-oniented apporlo is quite ineflicient when performing learning from large databases. Morewer. most existing algorithms do not make use of the features and implementation tedmicuen provided bitatabe sostems. To make learning algorithms applicable to databder spistems. highly efficient algorithms should be designed and explored in dept.

In mang pratical applications. during the data collection procedure. it is often dillicult to know exactly which foatures are relerant and/or important for the learning task, and how they should be represented. So all features believed to be useful are collected into the database. Hence databases usually contain some attributes that aro modesirable. itrolerant. or unimportant to a given discovery task. focussing on a
 common forussing technique.
 induction method has been dereloped for knowledge disconery in whationd dabdases.

 induction is performed attribute be athibute using attribute remond dul comerer ascension. As a result. undestrable attributes may be removed and dilleomen mone may be generalized to identical ones. and the limal gencralized welation mest whist of only a small mumber of distinct tuples. Then the medhod tramerons the limal genmalized relation into logical rules. In the linal generalized relatione all althithes

 given discovery task. lior example. to determine the milenge of a cald the weinht athe power of the car are much more important attributes while He mumber of deots of the car is not needed for consideration. So the important considetations are mexesans to detemine the most relevant attributes and eliminate the irteledat on mimpon tant atributes according to the loaming task withont losing concolial infondalion

 in this way are not particulariy concise and pertinent lou contain some melnulant information or munecssary constraints in them.
 of data and identify relevant attributes prior to the gemeration of allon. Romgh set
 set of attributes globally: It is not feasible to apply rongh set le haipure dine ils tw large database because of the computational complexity. Which is . . What [\%ins.

shows hat thene is a close comertion between atributeoriented indurtion and the rough set apposath. So a hatural apposoth would combine the adrantages of these two led laigus.s. Based on this consideration. we present an atribute-oriented rough sel based knowlerge discovery system for large databases.

In this thesis. a framework fo knowedge discovery in databases using rough sel theory and athibutroriented induction is proposed. Furthermore. the results From previons sturlies [(' ('H91. HC'('92] are developed in two aspects. First our work
 the "onergeneralization" problem of the previons studie . The previons method is furthe developed to limed knowledge rules asosiated with different levels of the concepts in the concep hierarchy [H('H9 I]. If the concept hierarchy is unavailable. our method can comstruct a concept hierarchy automatically from the data and infer some knowalge rules based simply on the contaiment relationship betweon different clusters in the constracted concept hiemarchy. This nethod combines our conceptual clustering technigur [Hux9.4] with machine leanning techniques.

The rough se technique is incorporated into the learning procedure. I'sing rough se theory. our mothod can analye the attributes globally and identify the most mevant attributes to the learning task. It ran handle databases with incomplete information.

The learning procedure consists of two phases: data generalization and data reduction. In data gencralization. our method generalizes the data by performing attributeorionted concept tree ascension to obtain a prime relation. The generaliad prime relation only contains a small number of tuples, and it is feasible to apply rongh set lechigigues to eliminate the irrelevant or unimportant attributes and choose the best minimal attribute set. In the data teduction phase. our method fiuds a minimal submet of interesting attributes that have all the essential information of the gemeralized melation. thus the minimal subset of the at tributes can be used instead of the whole attribute set of the generalized relation. Finally the tuples in the reduced relation are transformed into different knowledge rules based on different knowledge dincorery algorithms. Some new knowledge discovery algorithms such as learning decision rules, maximal generalized rules, multiple sets of knowledge rules ate designed
by integrating attributeoricnted induction and rough set theor! ! Paws. \mid.
We further propose a genemalized rough set model to expand the applicalion wope for rough set theory. The generalized rough set model ant be applied to datahase with noisy data. Moreover. the decision matrix me thod|KKR!日| in combined into our mothod. The decision matrix approach has an inc remeital leaning capability. Which is resential for a large demamic amiromment. ()at system implements a momber of novel ideas. It integates a variety of knowledge discosers algonithms sull ar

 relationships and regularities in the data. 'This integration allows it to cophoil the strengths of diverse discovery programs.

The thesis contains nime chapters organized as follows:
An overview of the current knowledge discovery systens ate diselused in ('haphere

 to handle uncertainty and vague information in databases. ('lapter is is denotrel to rough set based data reduction. along with some illust tative eamples. Mulliphestral

 mothods is given in C'hapter 8 . Some concluding remarks ar prosented in ('haplen ! with a summary of the major thesis findinges and will sugerestions abom the dite lions for future progress.

Chapter 2

Overview: Knowledge Discovery in Databases

We survey some theoretical issues related to learning from examples, and some re rent progress in knowledge diseonery in database sy stems and knunledge base sy stems whid adopt the lo arning from cramples paradigm.

2.1 Concepts of Learning From Examples: An AI Approach

As a basic method in empirical learning. learuing from examples las been studied extemively [('ol'sis. DiME;3. HaMzT. GeNisi]. We review the basic components and the gencralisation ruke of loarning from examples. the typer of knowledge rules which can be learomed, and the control strategies of the learning process.

2.1.1 Basic Components in Learning from Examples

l. emming from cramples can be characterised by a tuple 〈P.N.C'. I〉, where P is a sot of positive example of a concept. \mathcal{N} is a set of negative examples of a concept. (' is llac conceptual bias which consists of a set of conerpts to be used in defining loarning rulew and results. and .1 is the logical bias which captures particular logic forms [($\mathrm{ic} \mathrm{NS}_{\mathrm{S}}$].

In most loarning systems, the training examples are classified in advance by the tutor into two disjoint sets. the positive examples set and the negative examples set
 task is to generalise these low-level conepts to general rules.

There could be mumerons inductive condusions derived from ane of thaning

 as this kind of background knowledge. Theme Diases reatiat the candiddere to fion mulas with a particular vocabulary and legic forms. ()nlt thene comemphewhich can be written in terms of this fixed vocalulars and logic forms are considemed in the learning process.
['sually. the examples presented to the learming stasem comsist of acteral al tributes. Depending on the structure of the attribute demains. we and distingisish amoug three basic types of attributes [Mies:3]:
(1) nominal attributes: the value set of such attributes romsints of indrepentrout symbols or names.
(2) numerical attributes: the value set of such athributes is a twally ordered sel.

 a more general concept than the concepts representer ly its dilduen metcos. The

2.1.2 Generalized Rules

Lecarning from cramples can be viewed as a rasoming process fiom sure ilic ill
 in learning systems [Coress. Mics:3].
(1) Turning constants into variables

If the concept $F(x)$ holds for v when v is a comstant a. and a comstanl l, and w

$$
\begin{equation*}
F(a) \wedge F^{\prime}(b) \wedge \ldots \mid<\cdot(a) \tag{2.1}
\end{equation*}
$$

(2) Dropping conditions

Ans ronjum lion can be gencralized bey dropping one of its conjuncts. A conjunclice condition ran be siowed as a constraint on the set of possible instances that comblatisfis the concept. By dropping a condition. one condition is removed and the comept is generatized. For example. the class of "red apple" can be gencralized to the dass of all "apples" of any colour by dropping the "red" condition. This can be wrillon an:

$$
\begin{equation*}
r d(r) \wedge a p p / r(a) \mid<a p p / c(r) \tag{2.2}
\end{equation*}
$$

(3) Adeling options

By atding monesonditions, the concent can be generalized becanse more instances mas satisf this concept. . In ebpecially useful form of this rule is when the alternative is added bex extacting the seope of permissible values of one specific concept. For example. suppose that a concept is gencralized by allowing objects to be not only red but also blut. This can be cexpressed as follows:

$$
\begin{equation*}
\operatorname{rd}(c) \mid<\operatorname{rcd}(\cdot) \vee M d(c) \tag{2.3}
\end{equation*}
$$

(-1) Turning conjuncion into disjanction

I comerpt an be generalized by replacing the conjunction by the disjunction oprator. 'This process in amalogons to the adding-option generalization ruke. This rule
can be wrilten as follows:

$$
\begin{equation*}
\text { red } \wedge \text { circh } \mid<\operatorname{red} \vee \text { cirrle } \tag{ㄹ.1}
\end{equation*}
$$

(5) ('limbing a goncralization treo

 Formally this rule can be expressed as:

$$
\left.\begin{array}{l}
l(u) \in a \tag{2.5}\\
l .(u) \in b \\
. . \in . . \\
. . \in . . \\
l .(z) \in i
\end{array}\right\} \mid<\forall(\cdot r) I(\cdot r) \in
$$

where L is a structure attribute: a. b..... and i are the valur of wa.... and / in lor
 include norles a. b.... and \mathbf{i}.
(6) closing intorval

 single deseription in which the reference of the dencriphon is lhe inlan bal linhing, Ihere two values.

2.1.3 Types of Knowledge Rules

 il it in andianelly all of the positive examples. The loaned concept is a diseriminanl tult if and only if it is mot satisfied bey any of the negative examples. The learned woment is an admissible rule if and only if it is both chatacteristia and discriminant

 kumwledge riter.

2.1.4 Control Strategies in Learning from Examples

 redine theres $/ 1$ so that it aventhally indudes the desired eonerpts.

In the data driven methods. the presentation of the training examples drives the

In the model driven methods. an a priori model is used to constrain the search.
 "hout" hypothoses that satisly cotain requirements. TYpical examples of systems
 and the approath used in the $1.2 \mid$ I'('F system [1)i.M81].

Data-driven herlmigues gemerally have the adsamber of supporting ineremental

 never reover (Di.Ms:3].

2.2 Some Learning From Examples Morlels

2.2.1 The Candidate Elimination Algorithm

 defined on the instance space. We are given a bergurnor of penitive and meative
"xamplen whirlo are allerl samples of the tanget concept. The task is to produce a comerpt that in comsistent with the samples. The set of all hypothesis. II. that are comsistent with the sample is called the version space of the samples. The version pace is (emp)! in the case that no hepothesis is consistent with the samples.

Mithell peoposed an algorithm. called the candidate-climination algorithm. to solve this learning task. The algorithm maintains two subsets of the version space: Hue sel is of the most sperific hyponhesis in the version space and the set (io of the most general hepotheses. These sets are updated with each new example. The positive
 He program to specialize the (i set. The learning process terminates when $C i=S$

I good feature of this method is that the incremental learning can be performed D, the learning program. The sets stand Ci can casily be modified to account for new training examples without any re-computation.

Howerer. as with all data-driven algorithms. the candidate elimination algorithm has dillicult! with noist training examples. Since this algorithm seeks to find a con"pht that is consistent with all of the training examples. any single load example (that is. a false positive or false negative example) can have a profound effict. When the loathing shstemingiven a false pesitive example. for instance. the concept set becomes onerls generalined. Similats. a false negative example causer the concept set to become orerly nexialisel. Fonthally. boisy traning examples can lead to a situation in which there ate no concepts that are consistent with all of the training examples. The second and most important weakness of this algorithm is its inability to discover disjutuctive concepts. Many concepts have a disjunctive form. but if disjunctions of mbiltars length are permitted in the represemtation langage. the datadriven algorithon desaibed abose nexer generalises. V'ulimited disjunction allows the partially ordered rule space to become infinitely "branchy".

There are lwo computational problems associated with this method. The first one is that in order to update the sets st and (i we must have an efficient procedure for testing whelfer or not one hypothesis is more general than another. Vinfortunately, this testing problem is . Cl -complete if we allow arbitrarily many examples and arbitratil! many attributes in the hapothesis [llaus6]. The second computational problem
is that the size of the sets s and (i can become umme ageably large. It has hero shown that. if the number of attributes is large. the sifen of sel S and sed (itan grow exponentially in the number of examples [Hansti].
 contrast to the two-sided approach of the candidate climination algonilhen. The one sided algorithm computes ouly the set S insing the pesitivereamples and then der hes to see if any negative examples are contained in the sed t. If the mate in the ser in not satisfied by any negative examples. the mote is talid. (Otherwise. there is mo rule which can be discovered [Haus(i.llansi].

In some learning situations. it is pessible for the use to seled training cadmples and to acquire information about their classification. In this cate. a commmonstalent to maximise the learning performance is to select an example lhal halues the inmine of candidate formulas. that is. one that satisfies one-half of the camdidaten add dow not satisfy the other hatf. The adrantage of this strategy is that. ley getting the clats sification of such an example. we can eliminate onc-lalf of the remaining a dmdidates. However. the main problem with the halving stategs is computalional expelise. In the worst case. we need to compare each example with each romept to detemintur whether or not the example satisfies the concept. If there are il" examples and " candidates. then in the worst case we need m when ston sedert the hert example. This is time consuming when either of n is very large.

 sub-instances and to factor the entire version space inter multiple sepatate bllallen
 performed in each factored version space. and then the eresulting "sul, instance" ran be combined into a single instanee to be tested. The compmational advanderes of factoring are striking. Suppose that a version space call be factored intel. factons.
 must be p^{k}. If we can factor the version space. Hern we call "factor" cach instance into k parts. one for each factor of the version space. If there are a pemibilitian fon each part. then there must be q^{k} instances. The total rost for selecting a traning

a) The entire version space

b) The sactored vers:on spaces

Figure 2. J: The version spaces for the positive example "red \wedge circle"
instance without factoring is $p^{k} q^{k}$. Whereas the total cost with factoring is just kpq. a substantial saving when p or q is large. Figure 2.1 shows the entire version space and the factored rersion spaces in which the training example "red \wedge circle" is the sold positive example. While the entire version space contains 9 nodes. the factored version spaces ronsists of only 6 nodes.

2.2.2 AQ11 and AQ15 Systems

Michalaki and his colloggues have developed a series of AQ learning systems. The AQ11 systom [.Mic'so] is designed to find the most general rule in the rule space that discriminates training examples in a class from all training examples in all other classes. . Dichalski ot al. call these types of rules discriminate descriptions or discriminant rultosince their purpose is to discriminate one class from a predetermined sel of other classes.

The languge used by . Michalski to represent discriminant rules is V'LI, an extemsion of the propositional calculus. V'LI is a fairly rich language that includes
conjunction. disjunction. and the set-membership operators. (omsergently. the alle space of all possible VLI discriminam mes is quite large. To seateh his rule space. AQ11 uses the AQ algorithm, which is nearly equivalent to the repraded application of the candidate-climination algorithm. AQ 11 converts the problem of learning discriminant rules into a series of single-concept learning problems. To find a rule for class 1. it considers all of the known examples in class . 1 as positise exampler, dund all other training examples in all of the remaining classes as megatise examples. The A (A algorithm is then applied to find a concept that covers all of the penitive examples without covering any of the negative examples. $A(Q 11$ sereks the most gemeral suth concept. which corresponds to a necessary condition for class mombership.

After developing the AQ II system. Michalski of al. propeserd another indmetive larning system AQ15 in 1986 [MMHLS6]. This system is an extended wersion of the
 overlapping examples. and can perform constructive inchetion in whid wen comepts. are introduced in the formation of the inductive conelusions.

2.2.3 ID3, ID4, ID5

ID3 was developed by Quinlan [Qui8:3]. II):3 can discorre clansification tule in the
 approach aimed at minimizing the experted mumber of tests to clansify the ohjerets. The attribute selection part of ID: 3 is based on the plansible assumption that the complexity of the decision tree is strongly related on the amomul of infimmation con veyed by this message. It build: a decision tree by choosing a good test attibute indat
 recursively. To detemine which atribute should be we test allribute for a merte, the algorithm applies an information-theoretic measare gain. . In allibnte with lla maximal gain is selected as the test attribute.

The ability of ID3 to construct decision treen hat are cificient classifier and that generalizes well is attractive. For learning problems in which lio collortion of in stances is available and is not likely to change, [1): is a good roore for buildine,
chasification rules. However for problems in which new instances are expected to berome a a ailable on a regular basis. it would be far more preferable to accept instances incromentally, without needing to built a new decision tree from scrat ch each time.

Schlimmer and Fisher constructed ID4 [ScF86]. which incrementally builds a de(ision tree similar to that which ID: 3 would build. Instead of building a decision tree from a batch of instances. ID 4 updates a decision tree based on each individual instance. This algorithm offers an approach to incremental learning of ID:3-type decision trees. A potential drawback of the algorithm is that all or part of a decision tree will be discarded whenever it is determined that the test at tribute should be replaced with a better attribute. To overcome this shortcoming, I'tgoff [4 "tg88] developed the IDI, algorithm. [D.5 builds on the idea of ID 1 that one can maintain positive and negalive imstance counts of every attribute that could be a test attribute for the decision tree or sulbtree. II): differs from ID4 in its method for replacing the test attribute. Instoal of discarding the subtree below the old test attribute. ID.5 reshapes the tree by pulling the fest attribute up from below. The advantage is that the positive and negative instance counts can be recalculated during the tree manipulations, without reprocessing the instances.

The algorithms II):3 and so on have been widely used for rule induction. Howcver, such decision trees are essentially sequential decision algorithms which are quite different in nature from the data driven nature of expert systems or knowledge base systems. Rule bases are data driven in the sense that any set of input data can polemially be used to begin the inference. Decision trees must always begin with the attribute associated with the root node. In addition, rule bases can accommodate missing attribute information, whereas decision trees are not designed to do so. Decision trees can also be difficult to understand for the user [ArM85], a problem which should not be underestimated in light of the overall advantages of explicit knowledge representation inherent to "If ... then" rule. This is not to say that decision trees are not useful in problems areas, such as classification where a predetermined "hardwired" solution is sufficient [GoS88]. However, by their very definition, knowledge
bases tend to be used for problems where variable inpuls can be handed (incom plete. uncertain. or dynamic data), variable outputs (diflerent goals) may be speci fied. and there is a need for an explicit representation of the sumenis humbedge for user interaction.

2.3 Concepts of Learning From Databases

 represents the set of data in the database relerant to a specilic learning task. ('repo resents a set of "concept biases" (generalization, hierarciics, etr.) miselul fion dedining particular concepts, and Λ is a language used to phrase definitions.

Three primitives should be provided for the specification of a learning task: Iask-
 sults. For illustrative purposes, we only examine relational databases, howewr, the results can be generalized to other kinds of databases.

2.3.1 Data Relevant to the Discovery Process

A database usually stores a large amount of data. of which only a portiom may be relevant to a specific leaming task. For example, to chatacterize the feature of mammal in animal. only the data rolesant to mammal in amimal are ippophiatr in the learning process. Relevant data may extend over several wations. I furey can be used to collect task-relevant data from the database. Thisk releballid dat all be viewed as examples for leaming processes. V'ndoubtedly. I mrminy-from-rormples should be an important strategy for knowledge diseovery in dalabases. Most larmin! from-cramples algorithms partition the set of examples inte positime and werntine sets and perform generalization using the positive data and sperializalion thing the negative ones [DiN83]. Unfortunately, a relational database does not explicity store negative data (even though the negative data can be deriverl based on the drowed world assumption [Rei8.1]), and thus no explicitly sperificel urgative examples (an be used for specialization. Therefore a database induction process telies mainly on generalization, which should be performed cantionsly wavod oner gemeralianisu.

The data relevant to the learning task can usually be classified into several classes based on the values of a specific attribute. For example. the data about animal may be classificel into mammal and bird based on the value of the attribute "type". We introduce new concepts taryet class and contrasting class

Definition 2.1 A target class is a class in uhich the data are tuples in the database ronsistrnt with the learning concepts.

Definition 2.2 a contrasting class is a class in which the data do not belony to the I Itry) I cluss.

For instance. to distinguish mammal from bird. the class of mammal is the target class, and the class of bird is the contrasting class.

2.3.2 Background Knowledge

The quality (or lack of) and vast ness of the data in real-world databases represent Her core problems for KDD. Overcoming the quality problem requires external domain kumbedge to clean-up, refine. or fill in the data. The vastness of the data forces the use of terhmigues for forussing on specific portions of the data, which requires additional domain knowledge if it is to be done intelligently. A KDD system. therefore. must be able to represent and appropriately use domain knowledge in conjunction with the application of empirical discovery algorithms.
('oncept hierarchies represent the necessary background knowledge which controls He semeralization process. Different levels of concepts are often organized into a taxumomy of concepts. The concept taxonomy can be partially ordered according to a gemeral to-specific ordering. The most general concept is the null description (deseribed by a reserved word "any"), and the most specific concepts correspond to the sperific values of the attributes in the database [C'CH91, Mit77]. Using a concept hicrarchs. the rules loarned can be represented in terms of gencralized roncepts and stated in a simple and explicit form. which is desirable to most users.
('oncept hieratchies can be provided by knowledge engineers or domain experts. This is reasonable for cene large databases since a concept tree registers only the
distinet discrete attribute values or ranges of numerical values for ath athibute which are, in general. not very large and can be input by a domain expert. But if the concept hierarchies are not available. in some case. it is possible io consturt hem based on the data in databases. This problem will be addressed in ('hapter 3.

2.3.3 Representation of Learning Results

From a logical point of view, cach tuple in a relation is a logic formula in conjum tive normal form. and a data rolation is characteriad bey a large sot of disjumbions of such conjunctive foms. Thus, both the data for laming dad the miks dinconemed can be represented in either relational form or first-order predicalle calculus.

The complexity of the rule can be controlled bey the generalization the shold. . I moderately large threshold may lead to a : batively complea mine with mane disjum is and the results may not be funy generalizorl. I small therehold valow hedels lo a simple rule with few disjuncts. Howerer. small threshold values may resull in at overly generalized rule and some valuabine information may get lest. I heltem hedhod is to adjust the thereshold values within a reasomable range int ractirel! and to sele the best generalized rules by domain cxperts and/or users.

2.3.4 Types of Rules

There are several types of rules. including chameteristic mes. dassificalion rulen and decision rules which can be casily leamed from : olational datalmases.
 satisfied by all of the data stored in the dalabusis.

For example. the symptoms of a specific disease can be summarined an a chatar faist io rule.
 of one class from othrer classes.

Fon example. Io distingnish one discase from others a classification tule should summarise the symptoms that discriminate this disease from others.

Definition 2.5 A decision rule is an asscrtion which delermincs the cause-coffect relationship breueren conditions and decision factors.
('hamacteristic rules, classification rules and decision rules are useful in many applicalions. I characteristic rule provides generalized concepts about a property which can help people recognise the common features of the data in a class. The classification rule gives a discrimination criterion which can be used to predict the class mombership of new data and the decision rules help people in decision making proredure.

In learning a characteristic rule relevant data are collected into one class. the targel class. for generalization. In learning a discrimination rule. it is necessary to collert data into two classes, the target class and the contrasting class(es). The data in the contrasting class(es) imply that such data cannot be used to distinguish the target class from the rontrasting one(s). that is. they are used to exclude the properties shared by both classes. In learning decision rules. we need to organise the data into different group based on the value of the decision factors.

2.4 Knowledge Discovery in Large Databases

('urronly: the steady growth in the number and size of large databases in many areas, including medicine. business and industry has created both a need and an oppertunit! for extracting knowledge from databases. Some recent results have been reported which extmat different kinds of knowledge from databases.
linowledge discovery in databases poses challenging problems. especially when databases ato large. Such databases are usually accompanied by substantial domain knowledge to facilitate discovery. Access to large databases is expensive. hence it is necessary to apply the techniques for sampling and other statistical methods. Furthermore knowledge discovery in databases can benefit from many a ailable tools and terhnigues in different fiolds, such as, xpert systems, machine learning, intelligent databases, knowlodge acquisition, and statistics [C'CIM91.HC' ${ }^{\prime} 92 \mathrm{a}$. IIC'C'92b].

2.4.1 INLEN System

 system combines some database, knowledge-base, and madhine learning ter hinigus to provile a user with an integrated system of tools for conceplually alloly aing dald and searching for interesting relationships and regularitics antong dala. It merges several existing learning systems and provides a condrol syeme lo facilitale acress. Figure 2.2 illust rates the general design of the systom.

The INIEN system consists of a relational databases for storing known lacts about a domain and a knowledge base for storing rules. constraints. hicrardios. de cision trees, equations accompanied with preconditions and rabling conditions lion performing various actions on the database or kowledge hater. The knomlerlge hase not only can contain knowledge about the contents of the datalame lint alse meta knowledge for the dynamic upkeep of the knowledge base it self.
 databases. expert systems and machine learning and infereme lo powide a the with a powerful tool for manipulating both data and knowledge and exaliacling men or better knowledge from these data and knowledge. It is esperially apmepniate for apply l.NLEX to data systems that are constantly danging or growing; amomg the
 pamifications of the changes.

NLEX employs three sets of operators: data managemont operators (I)N() M).

The DMOs are standard operators for acressing. redroving and mannally alter

 in a manner analogons to handling a database. 'The Ki(i) take infon form buth

 C'ILAR discovers characteristic mes, which is aloo implemented in an . IC pos, pan

Figure 2.2: The architecture of INLSN:

 ＂יוחין ！ ，

 ן

新！保和

 I！！

 N．

ноן, ון, .
 .

 рии 's.,
 In!od ת
 ין:
 но!uem!

 s!s,

criterion since it determines how much of the exponemtially hare hispothesis fare actually needs to be explored bey the algorithm.

The number of possible pales is exponential in the mmber of alribules and the
 in the data is R where

$$
k==n m\left((2 m+1)^{n-1}-1\right)
$$

since for cach of the mus possible right-hand sides. the other ${ }^{\prime \prime} 1$ athihute hase
 propositions and a "do not care" state for the atribute as a whole (for the a dar al binary attribute $m=1$ because the megation of a propesilion is also a lasi popmi
 manage them. Hence in order to define a tractable algurillin we will med to "pume"

 int ractable to solve optimally for ablitary

Chapter 3

Extending DBLEARN

 3.1.
 gemerate mans interesting patterns. howerer. it sometimes tomds to disconer "oter-
 male with mans disjuncts and the rennte mas not be full generalized. . A small thereswh talue lads to a simple male with fen disjuncts. Howevere small threblodel values ma! tenult in an overly generalized rule and some valuable information mat get lost.

Figure $3.1:$ The architecture of DBLAE:AR.S
 bodies.

To overcone the "overgeneralization" problem. we int roduced a mew methol. which first gemeralizes the primitise data into a prime relation. The perime oda

 hierarchics are not available.

3.1 Discovery of Knowledge Associated with Concept Hierarchies

In this section we propose a mew methorl to wercome the "owergenealization"

 tree ascension (replacing lower-lenel attribute values in a tolation wing the worn hierarchy) on cach gencmalizalle attribute matil the atribute leromes desitable (i.e..

 table. then analye the fat me table and infor diferent kinde of mine. I inall. we examine the prime relation once mome and infer the inlmitanmente arose ialed with the concept hierarchies.

A prime relation R_{r} for a set of data h stored in the relational table is an in

avalable for cath atribute. which could be set by default or specified be the user on an experit. based on the semantich of the attributes and/or the expected forms of gemenalized mas. A prime relation maintains the relationship among generalized data in diffincot attributes for a frequently inguired-of data set. It can be used for extaction of varions kinds of generalized vules. The following algorithm extracts the prime mation h_{p}, from a set of data R stored in relational table.

Algorithm 3.1 Iirlraclion of the prime erlation from a scl of data R

Input: (i) . A sef of task-relevant data R (obtained by a relation query and stored in a relation table). a relation of arity n with a set of attributes $A_{1}(1 \leq i \leq n)$: (ii) a set of comerpt hicrathies. I_{2}. where I_{2} is a hierarehy on the gemeralized attribute . 1 . if available: and (iii) a set of desirability thresholds T_{i} for cach attribute.$A_{\text {, }}$
Output. The prime relation R_{p}, Method

1. $R_{t}:=R_{:} / R_{t}$ is a tomporary relation. */
\because. for carl athibute $A_{2}(1 \leq i \leq n)$ of R_{t} do $\{$
if A, is noudesirable then remove A_{2} :
if .1 , is not desirable but generalizable then generalize i, to desiable lever:
/ (iencralization is implemented as follows. ('ollect the distinct values in the relation and compute the lowest desirable level I, on which the number of distinct values will be no more than T_{i} by synchronously ascending the concept hiemathy from these values. (ieneralize the attribute to this level l. by substituting for cach value A_{i} s with its corresponding concept H_{i} at level $/ . . \times /$ \}
/ Wentical tuples in the generalized relation R_{t} are merged with the mumber of identical tuples registered in vote */.
2. $R_{p}:=R_{t}$

Label	Animal	Hair	Teeth	Fiye	Pather	Fom	1:31	\Iilk	FH	Sivim
Tll	tiger	\bigcirc	pointed	forward	\cdots	claw	m"al	\bar{T}	1	\bigcirc
HAI	cheetah	${ }^{\circ}$	pointed	forwarel	\cdots	clan	meat	Y	1	1
FT3	giraffe	$\stackrel{\square}{ }$	blumed	side	\cdots	howl	gras	Y°	1	1
11.J8	zebra	$\stackrel{\square}{ }$	blunted	side	\cdots	hood	gras:	Y	1	1
O911	ostrich	\cdots	\cdots	side	Y	claw	graill	\cdots	1	1
に.J2	penguin	\cdots	\cdots	side	Y	wrob	lish	\cdots	1	\cdots
OL2	albatross	\cdots	\cdots	side	1	claw	¢ main	\cdots	1	\cdots
LP1	eagle	\cdots	\cdots	forwaral	1	claw	meal	\cdots	1	1
TT1	riper	\cdots	pointed	formard	\cdots	\cdots	meal	\cdots	\cdots	\cdots

Table 3.1: . In amimal word.

Observation 3.1: Agorithm 3.1 correctly extracts the prime relation $h_{\text {, }}$, from ، data relation R.

Rationale: An atmibute-value pair represents a conjumed in the loginal lion of a tuple. The removal of a conjunct climinates a constraint dind thes permedian the rule. Which corresponds to the gencralization rule dropping comditom: in limma!!
 lation. Moreover. if an attribute is not at the desiable lexel but gemembable. Her
 the original tuple and this generalizes the tuple. This poren correspomets to the

 prime relation.

For example. suppose we have an animal relation for some zow an depic ledin lable 3.1 and the concept hierarcher for the attribute "Animal" an depieter in lig.une 3.2:

In the initial relation, the first attribute "labele" is the key to lare relation. the key value is distinct for each mple in the relation. If there is wo highere lewal coment

Figure 3.2: Conceptual hierarchy of the animal world

Animal	Hair	Teeth	Eye	Feather	Feet	Eat	Nilk	Fly	Swim	Vote
çunamal	Y	pointed	forward	\cdots	claw	meat	Y	\cdots	Y	2
ungulate	Y	blunted	:ide	\cdots	hoof	grass	Y	.	Y	2
noully	\cdots	\cdots	side	Y	claw	grain	\cdots	\cdots	\cdots	1
nounty	\cdots	\cdots	side	Y	wel	fish	\cdots	\cdots	\cdots	1
flying	\cdots	\cdots	side	Y	claw	grain	\cdots	Y	\cdots	1
flying.	\cdots	\cdots	forward	Y	claw	meat	\cdots	Y	\cdots	1
riper	\cdots	pointed	forward	\cdots	\cdots	meat	\cdots	\cdots	\cdots	1

Table 3.2: The prime relation table.
gencralized and it should be removed in the generalization process. Other candidate key atributes or nonkey attributes can be eliminated under a similar condition. The next atribute "Amimal". has 9 distinct values. which is greater than the threshold value for our desirable level (assume the desirability threshold is 6). the concept-tree ancemsion terhnique is applied: the attribute i., generalized to the desirable level (level $\therefore)$ \{curnieorous_mammal.ungulate. flying_bird.nonflying_bird\} in the conceptual hierarchy. We examine then the other attributes and since all of them are already at the desirable level the prime relation is obtained as shown in Table 3.2.

The derivation and storage of prime relations for frequently inquired-of data sets may facilitate the extraction of different kinds of generalized rules from the prime
relation. Further gencralization can be perfomed on prime melations to derive den acteristic or inheritance rules if there are st ill man! luples in the pimenelation. Baned upon different interests. a genctalized rehation can be diecoll mapped intw ditionen feature tables. We have the following algorithon for the extration of a leat we table from a generalized relation.

Algorithm 3.2 Fiature table TA extraction for an allribate . from the armerah.ad rlation R :

Input: A generalized relation R° consists of (i) an altribute I wint: distime 1 duen

 have unicue distinct values). and (iii) a sperial allribute. rote.
Output. The feature table T_{A}
Method.

1. The feature table T_{t} consists of $m+1$ rows and $/+1$ יolumms. where $/$ is lhe
 initialized to 0 .
2. Each slot in T_{A} (exerpt the last row) is filled by the following procedure.
for cach row r in R^{\prime} do $\{$
for each attribute B, in R^{\prime} do
$T_{A}\left[r . A . r . B_{j}\right]:=T_{A}\left[r . A . r \cdot B_{j}\right]+r . r_{0}:$

3. The last row p in T_{A} is filled by the following procedure:
for each columns in T_{A} do
for each row / (except the last row p) in $\%$ do

$$
T_{A}[p, s]:=T_{A}[p, s]+T_{A}[1, s):
$$

Amimai	Mair	Terlh	Rye	Foather	Fect	lat	Milk	Fly	Swim	Vote
mammal	Y	pointed	forward	\cdots	claw	meat	Y	\cdots	Y	2
mammal	Y	blunted	sido.	\cdots	hoor	grass	${ }^{\circ}$	\cdots	\bigcirc	2
bird	\cdots	\cdots	side	Y	claw	grain	\cdots	\cdots	\cdots	1
bird	\cdots	\cdots	side	\bigcirc	web	fish	\cdots	\cdots	\cdots	1
bird	\cdots	\cdots	side	Y	slaw	grain	\cdots	Y	\cdots	1
birct	\cdots	\cdots	forward	\bigcirc	claw	meat	\cdots	Y	\cdots	1
other	\cdots	pointed	forward	\cdots	\cdots	meat	\therefore	\cdots	\cdots	1

Table 3.3: A generalized relation.

Observation 3.2: . Hgorithm 3.2 correctly registers the number of occurrences of each gereral fature in the gencralized relation R°.

Rationale: Following the algorithm. each luple in the generalized relation is examined ome with every feature registered in the corresponding slot in the feature table. Their columm-wise summation is registered in the last row.

In our example. in order to obtain the feature table. the prime relation is furt her generalizert by sumtuting the concept at level 3 by those at level 2 . resulting in the generalized relation as shown in Table 3.3 .
flae featme table is then extracted from the generalized relation by using algorithom 3.2 based on the attribute "Animal" and the result is shown in Table $3 .-1$ (since we are interested in learning for Animal). Differem feature tables can be extacted from the gemeralized relation based on the interest in differem atributes. The "xacteol feature table is usefulf for derivation of the relationships between the clas, ification attribute and other athibutes at a high level. For example. the generalized rule . Ill animal. with hair are mammals can be extracted from Table 3.1 based upon the lact the class mammal takes all the votes with I/air count.

We promem two algorithms for diseovering differont kinds of rules. characteristic and equality: and inheritanes rules from a database system.

Algorithm 3.3 in allributr-orionted induction for dinoteremg characterishic and cqualu!! rults ussocialed with the concept hirmarchy.

Anmal	Ilair		Trentin			..	Poather			\dot{A}		
	\because	11	pointed	blumed	11	..	1	\square	..			
mammal	4	0	2	\because	0	.	0	1	..	1	0	1
bird	0	4	0	0	1	.	1	$1)$..	1	3	1
others	0	1	1	0	0	..	10	-		0	1	1
total	1	5	3	2	1	..	1		..	;	1	$!$

Table 3.t: The feature table for the allribute animal.
 (iii) a threshold \mathcal{N} for the total number of tuples in the final generatiad adntion

Output: A set of characteristic mules and cquality rulen.

Method.

1. (ieneralize the prime relation finther beremming an altibnte wiontel an
 threshold value λ
 table 7,4 from the prime mation hased upon a certain aldibute 1.

 demoted by ar,, k.

$$
\begin{aligned}
& b_{t,, k, k}=a_{1, t, t} / \text { tolal. } \\
& r_{i, j, k}=a_{i, j, t} / \text { rolt. }
\end{aligned}
$$

 denotes the probability of $a_{1,1, k}$ in the $i-t h$ clas.

1. Fixtrat 1 chatanteristic rules and equality rules based on the probability for cach distinct value of cever attributo in cach class in the feature table Th. This is performord an follows.

for each class do \{

$$
\text { if } b_{r, \ldots, k}=c_{t, 1, k}=1
$$

then the following rule is inferred.
if $b_{a, k, k}=1$ and $c_{i, 1, k}<1$
then the following rule is inferred.

$$
A=T_{1}[i, j, h] \rightarrow \quad(\operatorname{la})=C^{\prime} .
$$

if $b_{2, j, k}<1$ and $c_{t,, k, k}=1$
then inchude $. ~=T_{i}[i . j . k]$ as a component for the corresponding characteristie ruld for the $i-1$ h class.

then ignore this value
else include the value as one of the characteristic values for the attribute.
(/* Since data in a database may be distributed along the full spectrum of the possible values. it is impossible to obtain a meaningful rule for such kinds of data withom using possible quantitative information. Various techaigues can be developed for rule extraction using quantitatio information. Our method treats data which ocour rately in the database as exeeptional or noise data and filters it using refermen,y, where a small frequeney indicates that the data occurs will a very low frequency ratio. */ \}.
i. Simplify the loarned mos.
 attribute remove this attribute and its asomiated values from the rule. ()htom wise. compare the momber of the values appeating de the dhataterintic whes for the attribute with the total momber of dintine values for the athibute. If the
 to the rules to simplify it.

 rote . infor the following rule.

$$
A_{1}=l_{1}\left[i, j_{1}, l_{1}\right] \leftrightarrow . I_{1}=T_{1}\left|1 . I_{2} \cdot l_{2}\right|
$$

*The next highest concept is the concept one level bedow the mont pernediver roncepl "an! ".

 comerpt hiorarchy of altribute $A N A . X I E$

Method.

1. Atach one class attribute to the prime relation (called fi, atributr. I: means (xtra).
 hicrarchy tables
2. (Iterative Step) descend one level stanting from the mext highent permatiarel
 hierarchy. At carh descent do the following:
(a) Fill the li: athribute with the higher concept value and the comesponding
 the li-all tibute value in the conerept hicrarelys 1 .
(b) lixtract the redated data. and store them in the temporary retation.
 the how level concepts within the same higher concept from the temporary rolation.
(d) Fand the inheritancer rols: for cach tomporaty relation. Whome remaining attributes which have different watue for diferent lower leve ronerests but within the same higher concept category will be chosen as the component to form the rorresponding inheritance ruke.

3.2 An Example

 and algorithm 3.1. (iven the animal word relation shown in Table :3. and the
 demonst materlas follows:

Finst step: . Ipplying algorithm 3.1 to Tabla 3.1 . results in the prime relation of
 lable:3.3.
 in lable: 3..

Third sep: Fixamine the salues in the feature table: there are livere classes for amimal catchory mammal, bird and other. For ('lass = mammal and $/ \mathrm{Lair}=\mathrm{y}=\mathrm{s}$. wo hare $a_{1,1,1}=1 . b_{1,1,1}=c_{1,1,1}=1$ because ('lass $=$ mammal appears four times. and the total tuple for ('las: = mammal is four. However $/ / a i r=?$ four times in the entire table. so a rule can be inferred as follows:
//air $=!/ \leftrightarrow \rightarrow$ ($/ / a s=$ mammal.
similarly wo obtain:
$(.1 / 1 /:=!/(s) \leftrightarrow($ ('lass $=m a m m m)$

for ('lass=hird:

 of the discovered miles.

Take the following male as an example.

 the rule is simplified as

similarly. hor rule:

(an be simplified as

 $($ //air $=y(s) \leftrightarrow($. Milk $=y / s)$
:
$\left(F\right.$ cather's $=\|(\mathrm{cs}) \leftrightarrow\left(. \mathrm{Milk}=. \mathrm{V}^{\prime}\right)$

Amimai	hiair	Terili	livo	Pather	Fioct	Eat	, \ilk	Fl	Swim	$1:$
cmammal	Y	printed	forward	\cdots	claw	minat	Y	\cdots	$\%$	mammal
"IMrulat"	r	bilunterd	sida	\cdots	howf	grass	Y	\cdots	Y	mammal
Inonlly ${ }^{\text {a }}$	\cdots	\cdots	side	$\stackrel{3}{ }$	claw	grain	\cdots	\cdots	\cdots	bird
nomily	\cdots	\cdots	sido	Y	wob	lish	\cdots	\cdots	\cdots	birl
! yinob	\cdots	\cdots	side	Y'	claw	grain	\cdots	1	\cdots	bird
\#yiug",	\cdots	\cdots	forward	${ }^{\circ}$	claw	meal	\cdots	Y	\cdots	bird
viper	\cdots	pointed	Corwawl	\cdots	\cdots	meat	\cdots	.	.	other

'Table 3.a): A temporary mation after the substitution

Animal	llair	Tremb	Bye	Peather	Pret	Eat	IIlik	Fly	Swim	E
comammal	Y	pointad	forward	\cdots	claw	meat	Y	\cdots	Y	mammal
ungulate	Y	blunted	side	\cdots	hoof	grass	$\stackrel{\square}{\circ}$	\cdots	${ }^{\circ}$	mammal

'lable 3.6: A trmporary relation for mammal

Aext we demonstate the nsefulness of Algorithm 3. 1. The prime relation table is illustrated in lable 3.2 and the concept hierarely for "Animal" is shown in l"igure 3.2.

Thach the limatribute to the lable 3.2 as shown as the right most rolum in lable 3.5. we do this by puting the valuen of the next higher-love concept (level
 example: if the $1:$ attibute value is mammal. then the corresponding animal value in the amimal atribute shonld be carnimorous mammal and ungulate. resulting in the

From 'lable 3.5 . the data related to mammal and bird are extracted. resulting in The tomporary Pables 3.6 and 3.7. Observe that Mair. Peathrr, Milk, Fily and Surim No not distinguish mammals but liecth. liye. liat and Ficel do distinguish mammals in Table 3.6. Thus the following mines are generated.

Animal	Ilair	Toreti	F\%	Foabler	Fim	1.in	Mioll	H	Swim	$1 \cdot$
notily	\cdots	\cdots	sido	${ }^{\prime}$	claw	Mrain	\%	1	\backslash	hird
nonily	\cdots	\cdots	side	\cdots	wob	linl	1	1	1	lind
flying	\cdots	\cdots	side	1	claw	graill	1	1	1	hind
flying	\cdots	\cdots	fomard	1	claw	meal	1	1	1	hiral

Table 3.i: A trmporary relation for bird

Animal	Hair	Tomil	Reyc	Forther	Fum	Fial	, \̇ilı	H	Suin	1 -
liger	Y	pointed	forward	\cdots	clan	meal	1	\cdots	1	
cheetah	Y	pointed	fonward	\cdots	claw	miral	Y	1	Y	

Table :3.s: A tomporary relabion for carnivorom mammal

Then cominue the process. descemding one level of the comeren hiopardos. lior the
 Table 3.8. 3.9. 3.10. 3.11 are obtained

 flying and non-flying birds are discovered Dased on 'Table ; 3.10 and :3.11.

A mimal	Hair	lermh	EM	Frather	\cdots	Fal	Milk	F19	Swim	$1:$
aivaifo	\bar{T}	bunuted	side	\cdots	hood	gras	Y	\cdots	\bigcirc	mugulato
zr\|na	γ	1)lunted	sido	\cdots	liouf	grass	\bigcirc	\cdots	5	ungulate

Table 3.9: A temporary relation for monatato

Alima]	Hair	Torem	Fio	Feather	Fer	Pat	. Dilk	$\mathrm{F}+\mathrm{l}$	Swim	F
omiticli	\cdots	\cdots	-irle	\bigcirc	claw	grain	\cdots	\cdots	\cdots	nonfly
penguin	\therefore	\cdots	side	1	wob	fish	\cdots	\cdots	\cdots	nonfly

Table 3.10: A temporary relation for non-flying bied

3.3 Knowledge Discovery by Conceptual Clustering

In last serion. we disenssed the menhod which can find kuowledge rules associated with conceps in differom levels it the concept hierachy. The method integrates a mathine keaning paradigm. enperially larming from example technigues. with

Animal	Hair	Teeth	Fie	Peather	Feet	Eat	. Tilk	Fly	Swim	E
allatros-	\cdots	\cdots	side	${ }^{\circ}$	claw	grain	\cdots	Y	\cdots	Alying
cagle	\cdots	\cdots	forward	${ }^{\circ}$	claw	meat	\cdots	Y	\cdots	flying

Table 3.11: A temporary relation for flying bird.
database operations and extracts generalized data frome athal dat, in the databsmes.
It is often necessary to incopporate higher level concept in the leathine power

 in a simple and explicit form. Different lencls of comephs ant be ongaiared intu a taxonom! of concepts. The conceptsinaldanom! an be patiall! ondend acodine
 and stored in a relational table. the concepthal hierareln table.

Athough data in a relational database are aswall! well fomathed amd modelled

 in a relational format. but knowledge and eflont are weredel to a lanily the data in order to determine the intrinsic regulants of the data. ('leats. a hemas dad dald formats are not equivalent to concepthal classes. Olmertation of the ognition porem

 For example. by clustering experimental data basel on the huenlodge of dimints. interesting relationships among data can be discovered.

 tion may not be always axailable in many appliations. It in impentan to dionern

3.3.1 Review of the Related Work

('ome coplial dustoring. originally developed by Michalski and Stepp [.MiS8:3] as an extemion to the pocess of numetial tatomome. groups objects with common propation inte chasters and extracts the characteristic of each chaster over a set of data ohjets. ('mucntl! there ate two siews regarding conceptual dustering: one represults an extension to ter hniques of numerical taxonoms. Whereas the other is a form of leaminty-ly-oben reationson coucepl formation as distinct from methods of learning-form-1.ramplso or concept idrenfifeation. The clustering algorithms which have been framed as extensions to the mumerical taxonome techniques include (IICSTER/2
 of learming-by-ober mations inclurle HI:ATAO [ChFs:3] and Thought/KDI [HoMS日].

3.3.2 An Approach to Concept Clustering

Our method is divided into three phases. Phase 1 uses a numerical taxonomy to classify the object set. Phase 2 assigns concept tual deseriptions to object classes. Plede 3 find the hierarehical. inheritance and domain knowledge based on different Nationships among clasos. For a mumerical taxonoms. various measures of similaril! have been proposed. Dose of them are based on a Euclidean measure of distance betweren mumerical attributes. ('onsequently. the algorithm works well only on mumeital data. Mans database applications use non-mmerical data. A new measure is propered insing the momber of common attribute values in two data sets. S_{1} and S_{2} in a smilarit! measurement. called sim_coluc $\left(\mathscr{S}_{1}, \mathscr{S}_{2}\right)$. Notice that for any data set S. Wr set stm ralue (s'..s) $=0$.

Algorithm 3.5 ('oncepturl Data ('lustrring [('D)(']

Input. A set of data stored in the mational table.
Output. A cluster hierarchy of the data set. Method.

1. Preliminary: (iomoralize atributes to a "desirable form" [Hux94]. For example. For the attribute "age" in an employer database. the substitution of
different age values into a small mumber of divinet higher level comepts. whit as "roung". "middle-aged". "okd". ette will make the derriptions comene and meaningful.

2. Concept clustering:

candidateset $:=$ the data set ohtained at Step 1 .
repeat

form clusters for the caudidate-sed based on a therohold for sim walle
(. Note: The therehold varies for dillerent candidate wed-and ran ber set by user/expert of detembined bey the athatys of im value disti bution).
remove redundant clusiers.
if there is a new cluster produced
then form the hierarchy based on the new and matomede chater

until candidate_set $=0$.
*Note: An untouched cluster is a cluster which is not a compenemt of any mowh formed cluster.

 set.

 inheritance knould dge rules.

Figure 3.3: ('onceptual hierarchy:

Kinowhdye Disoocry (IKD) [Hus91]. For HKD). new rules are discovered by finding all of the possible implications between the descriptions of clusters in a cluster and those in its father cluster, mamely $D_{2, j} \rightarrow D_{i}$. For : Wil). the algorithm just looks for the characteristic deseription for each cluster. based on the relationship on different athibute values. then gives the result in terms of a logically equivalent form. For IKD. Which is a modification of HK). labels are used. which are cither explicitly defined In unero/expents in terms of domain knowledge or labels are produced antomatically: by heresstem.
('lustor labeding plays an important role in knowledge discovery. The now rules diseovered can be formed as

$L .1 B E: L\left(I_{t, 1, \ldots k}\right)(\cdot)_{t, j, \ldots k, l} \rightarrow L . A B E L\left(I_{t, j \ldots k, l}\right)$
"here the comedition part of the rule consists of the conjunction of the description of the comenter cluster and the label of its fatheres cluster.

For example, given the animal world depicted in Table 3.12. which is viewed as the data set that was passed through the preliminary step.

The data in row 1 means that a tiger is a amimal with hair. pointed teeth. forward eves. claw fert. and no feather. it gives milk and cannot fly but can swim.

In Phase I. the clustering algorithm ('D(' is applied to classify the clata in Table 3.12. . Ifter the first iteration. the number of common attribute values between each pair of data is computed in Table 3.13. For example. the number " 9 " in row 1 . column In computed by counting the number of common attributes between the data set in row 1 and row 2 of Thble 3.12.

\＃	Animal	Hair	Teeth	F\％e	Feather	Fim	Bal	11	Pl	Snim
1	liger	$\stackrel{r}{ }$	pointed	forwatel	$\stackrel{\square}{ }$	rlan	meal	1	1	1
2	cheetah	Y	poimed	fonmard	\cdots	claw	mical	1	1	1
3	girafle	Y	blunt	side	\cdots	hoow ${ }^{\circ}$	20ヶas	\dagger	1	1
1	zelbra	1	blant	side	\cdots	hool ${ }^{\text {d }}$	¢10\％	1	1	\backslash
5	ostrich	\cdots	\cdots	side	1	claw	emain	1	1	1
6	penguin	\cdots	\cdots	side	Y	いい	lislı	1	1	1
$\overline{7}$	albatross	\cdots	\cdots	sida	1	clan	urain	1	1	1
$\stackrel{s}{ }$	cagle	\cdots	\cdots	forward	1	clan	meal	1	1	1

Table ：3．12：The animal world

\＃	I	$\underline{2}$	3	1	$\overline{7}$	19	7	－
1	0	9	1	1	$\underline{\square}$	$\underline{2}$	1	3
$\underline{2}$	9	0	1	1	\because	\because	1	3
3	1	1	0	9	： 3	1	2	1
1	1	1	9	0	3	1	2	1
．）	2	\cdots	3	3	0	7	\cdots	15
6	\because	2	1	1	7	0	i	i
7	1	1	2	2	\cdots	i	0	i
S	3	：3	1	1	（i）	－	7	0

Table 3．fis：Ximber of common attribute valuen after lat iteration

 A hierarehy is fomed as depieted in！Figure $3.1(a)$ ．

 results in the hierarchy shown in ligure 3 ．1（b）．

Figure 3.t: ('oncept hicrathy

(a) itcration \because

	$(1,2,3,4)(5,6,7,8)$	
$(1,2,3,4)$	0	0
$(5,6,7,8)$	0	0

(b) iteration:3

Figure 3.5: \# of common atribute value
the chatacterintic dereriptions of each cluster ate the common values for all the data int the chaster.

Figure 3.6: ('onceptual hierarchy after 3rd iteration

In phase 3 . the there Knowledge Discovery Algorithms HKI). AKD. and IKI) are applied to the hierarely depicted in Figure 3.6. respectively resulting in three sets of rules as depicted in Tables $3.1 .1(a)$. $3.11(\mathrm{~b})$ (5.3.15.

By substituting the labels be the names given by an expert as shown in Table 3.16, a sel of meaningful mies can be obtained as shown in Table 3.17.

\#	Knowledge Rules discovered by Mki)
1	
2	Teeth=pointed \vee blunt \rightarrow. Milk $=$ vor
3	liat $=$ gras \rightarrow. Milk $=$ yes
4	Feet $=$ hoof \rightarrow Hair $=$ yes
5)	Teeth=pointed \vee blunt \rightarrow Hair $=$ ye:
6	Pat=grass \rightarrow Hair $=$ yes

(a)

\#	
1	Tlair = ¢ - , Vilk , M
\because	Foather - im: Milk ino

(b)

\#	Knowledge Rules discovered be 1R1)
I	
2	
3	
1	

Table 3.15: Inheritance kinowleder mater

Labels given by system	Samme given by יxpert/um
Tabel(1.2.3.1.5.6.7.x)	Animals
label(1.2.3.1)	mammal
	bird
label(1:2)	carnivorons mammal
Labol(3.1)	ungulat:
	not-flying bird
Label(3.7. 8)	moaninglose clumber

Table 3.16: . Names lisu

\#	A her remaming the labels by experts on users
1	(Thing=animal) \wedge (hair $=$ yes \vee, lijk $=$ yos $)^{\prime} \rightarrow$, mammal
2	
3	(Animal=mammal) \wedge (Teoth=pointol \vee Vyr-forwarol \vee Feet=claw \vee Fats=meat) \rightarrow carnivoroms mammal
4	

Table 3.17: A set of monningfinl piles after sulatinuion

Chapter 4

Rough Sets and A Generalized Rough Set Model

Nuchattention has been paid recomly by the expert ststems reseatel and machine Femming commmity to the acquisition of kowledge and reanoming mader vagueness and incompleteness [Paw91. Slo92. H('II93b]. Vagueness may be caused by the amlignits of evact moaning of the terms used in the knowledge domain. bucertainty in data (e.g. due to noise), and uncertainty in knowledge itself (e.g. due to donbtful comertion between the antecedent and the consegnent in an inferred rule) [\%ia91]. lacompleteneso may be catued by the matailability of data or the incompleteness of the knowledge of human beings. To deal with vagueness. expert systems reguire terhicguen other than chassical logic. Statistics is the best tool for handling likelihood. Howerre. man! mothods noeded when using probability in an expert systeme reguire
 Pintimater are likely to be ver inacourate, lixpert systems based on statistical technigum have theoretical weaknesses cited by many authors [Zia933]. Another way to deal with uncertaimy is to use fuzzy logic based on Zadeh's theory of fuzzy sets [Yalfis]. The basic lools of the theory are possibility measures. There is extensive literature on fucse logic which also discusses some of the problems with this theory. Ihe basic problem of fuzey se theory is the determination of the grade of membership or the value of posibibility [(ir\%SS].

In the past decade. Z. Pawlak \{Pawi2\} int roduced a mew lool to doal with dente ness. called the "rongh se model". Finas se theory and rough sed theors are in
 The main adrantage of rongh set theory is that it does not merel an! melimitury on additional mfomation about data (like probabilit! in statistics. glate of membethip. or the value of possibility in fuzey sel theors). ()ther adrantage of the bomph wer approach include its case of hatolling and its simple algerilloms |Shovel.

Rough set theory has been successfulls implemonted in hambedge hased sastems in medicine and industry [Gr\%s)]. The rongh sed philomphen is baned on the iden of classification. The most important issme addressed in the tomph sel theos is the idea of imprecise knowledge. In this approach. knowledge is imprex ine if it comation imprecise concepts. It turns out that imprecise concepts cat be lamede delined dy
 louer and upper approrimation. The lower approximation of a comen whints of all objects which surely belong to the concopt whereas lan "per apposimation wh the concept consists of all objects which ponsilly belong to the comerpt in dintion.
 the concept and consists of all objects which camot be chasilied with colaind luthe

 model of rough set to handle numeraimy informatom.

4.1 Principal Concepts of Rough Set

4.1.1 Information System

 is further classified into two disjoint subsets. comdilion allributco (' and de womm attributes $D . A=(' \cup D)$

$$
I^{\prime}=\bigcup_{p \in A} I_{p}
$$

and V_{p} is a domain of attribute p.
$f: V, A \rightarrow V$ is a total function such that $f\left(x_{r}, q\right) \in V$; for every $q \in A . x_{i} \in I^{\prime}$.
 bilit! relation. as follow:

$$
I \bar{X} D=\left\{\left(x_{1}, x_{j}\right) \in I^{\cdot} \times I: \text { for }\left(\operatorname{cr}!\mathrm{l} p \in I X D p\left(x_{1}\right)=p\left(x_{j}\right)\right\}\right.
$$

 $\mu\left(r_{s}\right)$ for (very $p \in I . \forall D$. One can chock that $\bar{V} D$) is an equivalence relation on V for (Very $/ \mathbb{V} 1) \subset .1$. Fquiralence classes of relations are called IND-elementary sets

In information systemprovides infomation abont the real-world oljects. However. information about oljeects may not be sufficient to chatacterize objects without ambignits: Thus some objeets are characterized by the same condition values. Two whents are indiscernible whenever they have the same values for all conditions. Otjects can be chatacterized by some selected features represented by attributes. In gencral. information: about objects expressed in this way is not sufficiont to charac-
 Whenerer they assme the same values for all the aturbutes under consideration [$(\mathrm{ir} \% \mathrm{~S})$.

I relational datalase may be ronsidered as an information system in which cillums are labelle: by attributes. rows are labelled by the objects and the ontre in column p and row r has the value $p\left(x^{\prime}\right)$. Fach row in the relational table represents informalion aboul some object in l^{\prime}. The difference is that the entities of the information systens do not need to be distinguished by their attributes or by their relationship to entives of another type. In the relational databse one attribute is idemilied as a decision athobute (learning task), and the othe attributes are the comdition dtributes. We adopt the view that a relational database is a selective information system and will use the term relational databese at. information system
intorchangeably in this work.

4.1.2 Approximation Space

 relation (indiscernibilit! relation) on l^{\prime}. an ordered pair . I. $\quad\left(l^{\prime} . \mid . N^{\prime} /\right.$) is called an

 sels in AS because they represem the smallest discormible gromp of wiocta.

 to introduce the following notions cited from [Pawiol:
(i) The lower approximation of.S^{\prime} in $.1 . s^{\prime}$ is derined as:

$$
\underline{I N D} \cdot X=\left\{r, \in\left[\cdot \| \cdot r^{\prime}\right] / \sim \sigma_{-}, X\right\}
$$

 For any $x_{i} \in \mathcal{Y} \because \mathrm{O}$. it is cerain that it bolongs $10 \mathcal{N}$.
(ii) The upper approximation of X^{\prime} in 1,5 is defined as

$$
\overline{T . V D} X=\left\{r_{1} \in C^{\prime} \mid\left[r_{2}\right] / \times 1, \cap\right) X \neq(\theta\}
$$

 to λ^{\prime}.

 to X or not based on the deseriptions of the elementary sets of $/ X /$.

The following diagram Figure 4.1 illust rates the remationshipe among, Ihem.

 X. Let X and y^{\prime} be subset of I^{\prime}. lower and upper approximations in . I. hand lar following properties [Paws')]:

Figure 4.1: The diagram of rough set model

Example 4.1 la ns ronsider a gencralized rar relation given by Table l.1. $l^{\circ}=$
 and 1$)$ - mileage is the decision: attribute. Thas the decision at tribute consists of two

$$
\begin{aligned}
& D_{1 /: D \|: M}=\{1.2 .3 .4 .5 .6 .7\} \\
& D_{I\|r i\|}=\{8.9 .10 .11 .12,13.11\}
\end{aligned}
$$

we hate the erguivalence classes of $I \bar{X} \mid$ as below
 $\{9\} . L_{:}=\{12\}$

The rorroponding lower approximation and uppor approximation of 1 are as follows:

	liake inotirl	691	1001	diaplare	（119190as	Hewrs	11.118	Wägha	
1	T，	\％	＇	जाना		Thaith	त1］	WTTII	\111］ 11
2	1 ミス	（	1	WEfutM	WFly	\1F1）14	1131 11	W1141	\1F｜l
＊	1 シ	1	\％	\＃MAI．	1llail	\11］11 1	111.	W1171	V11．11
1	1 5 A	1	：	Whill M	जtibll	W1］：II	111811	9111.1111	111111 4
：	$1 \therefore \therefore$	1	？	M1：1H：3	W8： 1011 a	H16：11	11 ± 16	\＄11 1017	，111011
6	$1 * * A$	6	1	WEDII	S11．11．	IIG：1\％	1110	111111	W111 11 M
：	$1 \cdot \mathrm{~A}$	1	2	WFIII 1	W子\｜ll	113．．H1	111.	1111．11 1	WIIt ${ }^{\text {d }}$
8	1 ミA	1	：	\＃Fthl 11	114：11	III．11	418．111	11．111	111． 11
9	リハリ入｜	1	：	－ 1181.1	1IIIAH	1：3	\＃19 11	1 la 111	111．11
10	JMfas	1	：	vill	W1ind w	111．1．11 11	11911	9111．11 11	131． 11
11	1AP入	1	t	－ 1181	114：31	IIMill	1111	\11！！ 11	H： 1711
12	1ヵP入入	1	2	जWM．1．	MFill	1 いい	118＊11	1111．11 1	Hil．il
1．	1入P入＊	1	2	＊UAIt，	111：11	N1．1nt 11	11． 11.111	111111 11	111．1\％
11	U＇s．	1	2		H1：al	111：11 11	81， 1111	111，11 4	111． 11

Table l．I：A gemeralized can rolation

4．1．3 Core and Reducts of Attributes

 system．A core is the common parts of all the reducts．

$$
P\left(S_{B}(D)=U\{\underline{B} X: X \in \dot{D}\}\right.
$$

The positive region $P^{\prime}\left(\mathscr{S}_{B}(D)\right.$ includes all oljeets in I° which can be classified into dassen of \dot{D} withont error based on the classification information in \vec{B}.

We as that the set of attributes D) depende in degree $k(0 \leq k \leq 1)$ on the subset R of ('in S if

$$
k(R . D)=\operatorname{card}\left(P O \mathscr{S}_{R}(D)\right) / \operatorname{card}\left(l^{\circ}\right)
$$

The value $k(R . D)$ provides a measure of dependency between R and D.
Definition 4.1 . In athribute $p \in B$ is aperfluous in B with respect to D if $P O . S_{B}(D)=$

If all attribute is superfluous in the information system. it can be removed from The infonmation sustem without changing the dependens relationhip of the original systom. While an indispensable attribute cames the essemtial information about objeets of the information system. It should be kept if you do not want to change the dependeney relationship of the original system.

Definition 4.2 If rerey allribule of B sindispensable with respect to D. then B is orthogomal with reapect to D).

Definition $4.313 \subset($ in drfined as reduet in Sif B is orthogonal with respect to D alid $P^{\prime}\left(0 x_{P}(1)\right)=P\left(O \dot{x}_{B}(1)\right)$

He reduct of (' is a nonredundant subset of attributes that discerns all object diernmible ha the entire set of attributes. lisualls. C may have more that one reduct.

Definition 4.4 The wh of all attribules belonging to the interarction of all reduch. of (' woth respere to D is colled the core of ('. drnoted an C'ORE((' D).

Ihe wherpt of the core can be used as the starting point for computation of reducts.

4.2 A Generalized Rough Sets Model

The theory of rough sets. as propored by Pawlak. prosides a formal tool lion dealing
 learning. expent system design, and knowledge repremention [Slot? Sumamial progress has been achieved in understanding pratiodimplin ation and limitation of this approach. In particular. the inability to model martain intormation wa ume limitation frequently emphasized by researchers. It mat be inderguate lo wed wish situations in which the statistical information plase an impentant whe. Comiden. for example two equivalene classes E_{1}. E_{2} in the partition $I^{\prime \prime} l$) wh that col han 100

 X may be a result of noise. Therefore the origimal rongh wed model an be wemitine to noise often encount ered in man! real-world applications [$W \%$ sti]. This imitation severely reduces the applicability of the rough sel aphoach w woblan whinh ate more probabilistic in nature. . In attempt to wemome this tethition wan womterl in [PUZZ88]. However. the proposed gencralization was bacel on stome hatintid assumptions and did not directly inherit all of the useful popettion of the oniginal model of the rough set.

In this section. a new gencratized vemion of the romgh wet model in propered.

 have different noise ratios. The standard romgh set model and the V'P monelel of somgh sets [Zia9:3b] become a special rase of the (iRS-model. 'I he miman! ahomatere of the GRS-mordel is that it modifies the traditional rongh wh morlel to worl wall in "
misy caviromment.

4.2.1 Uncertain Information Systems ($\mathscr{C}^{-} I S$)

In genemal. an information system represents objects crisply. That is. for a given whow int the database and a given property (attribute-value pair). there is no uncertamy whether or not the object has that property. This certainty is restrictive. Such a reperentation restricts our representation power in two ways. First. all objects in the miverse must be represented by a mifom representation. Second. representative power is alsu restrictive because the object representation is crisp. i.e. there is nus lown fon the expression of degree in an objects representation. That is. an object cither has. or does not have a properts.

To manage objects with uncertainty and different importance degrees. we introduce an mucertain information ststem ($l^{\circ} l, S$) based on the information systems defined b. Pawlak [Pawie]. In the uncertain information system. each object is assigned an uncertainy " and an importance degree d. The uncertainty $"$ is a real number in the range from 0.0 to 1.0. If uncertaint! "equals 1.0 . it represents a completely positive object. If uncertaints "equals 0.0 . it represents a completely negative object. The importance degree d represents the importance of the object in the information system. The $d \times \pi$ induces the positive class and $d \times(1-u)$ induces the negative clan in the uncertain information system. An example collection of classes (oljejects) of an uncertain information ssistem is shown in Table 12 . The ancertain information system (l'l.') is defined as follows:

Definition $4.5 \mid \cdot I . S^{\prime}=<I^{\prime} .(\cdot D)\left\{I^{\prime} A I_{n}\right\}_{n \in C} \cdot$ u.d $>$ is an unerriain information systrm. uthere l^{\prime} is a non-rmpt!y set of object. (' is an non-empty set of condition allrobults. D is a decision altribute with uncrevainty u. I'ALn is a domain of a condition athributs "a" with at least two clements. F"ach condition attribute a \in (' con be percived as a function assigned a ralue a(obj) $\in I^{\prime}$ ' $I_{\text {a }}$ to cach object wh $\in l^{\circ}$. d(obj) is a function assigned an importaner degree to cach object obj $\in L^{\circ}$. E'mely object which belongs: to l° is therefore associaled with a set of certain values comesponding to the condition attribute (', an uncertain value corresponding to the

OBJ	$\mathbf{c 1}$	$\mathbf{c 2}$	dec	d
6	0	0	0.7 .7	1
12	0	1	0.67	3
6	0	2	0.3 .7	1
1	1	0	0.7 .7	1
6	1	1	0.67	3
6	1	2	0.3 .7	1

Table - 2.2 : An macorain information system
 the object.

Example 4.2 In the Table 4.2 we have a set of ojerets $l=\left\{\begin{array}{l}\text { w. where } \\ l\end{array}\right.$ 1.2....6) are the rows of the table. The set of condition attributen is $\left(^{\circ}-\left\{\cdot l . r^{2}\right\}\right.$ and the domains of condition attributes $\left(\right.$ are $l_{i, 1}=\{0.1\} .1_{2}-\{0.1 .2\}$. and the aleci

 importance degree is $d\left(o b j_{2}\right)=\{4.3 .4 .4 .3 .1\}(i=1.2 . \ldots .6)$.

4.2.2 Noise Tolerance in Uncertain Information Systems

To manage noise in meretain information systems. We aloph the comeph of id.

 in the information system mas contain different meses. Two dassilicalion facton, I^{\prime}, and $N_{3}\left(0.0 \leq P_{3} . N_{3} \leq 1.0\right)$ are introducerl to solve this prothem. V_{3}; and N; mas be the same values and simultancomsly exist. they rambe deteminerl la wimating noise degree in the positive region and the negative region rebpertively.

Ler X^{\prime} be a non-empty subset of a finite miverse l^{\prime}. The measure of the relative degree of mix lassification of the sed X with respect to the positive class Pituss and ugative clane $\mathrm{I}_{\text {thes }}$ defined as

$$
\begin{array}{ll}
\left({ }_{N}(X)=\frac{\sum\left(d_{1} \cdot\left(1-u_{1}\right)\right)}{\sum d_{1}}\right. & \quad i f o j_{2} \in X . X \subseteq O B . J \\
\left(V_{1}(X)=\frac{\sum\left(d_{1} \times u_{1}\right)}{\sum d_{1}} \quad, f d_{j_{1}} \in X . X \subseteq O B . J\right.
\end{array}
$$

where $\sum d_{1}$ is the sum of importance degree of objects belonging to the set $\mathcal{X} . \sum\left(d_{1} \times u_{1}\right)$ is the sum of inducing poritive class degree of objects belonging to the set.X. and $\sum(d, \quad(1-u)$,$) is the sum of inducing negative class degree of objects belonging to$ the set Y .
$\mathcal{C}^{\prime} \vec{\prime}\left(X^{\prime}\right)$ in defined as the ratio between the sum of inducing negative class degree of wheres and the sum of importance degree of objects in the set X. ($X(X)$ is defined ds the batio betwern the sum of inducing positive class degree of objects and the smm of importatce degree of objects in the set A. If we classify objects belonging to the set \mathcal{X} to the positive class. we may have an classification error rate (' $p(X$)) . If we clasify objects belonging to the set \mathcal{X} to negative class. wo may hate an classification ertor rate (' (\mathbf{N}^{\prime}).

Baned on the measure of relative classification error one can define the set of objerts. I which belongs to the positive class if and only if the classification etror ('r (X^{\prime}) in less that or equal to given precision level P_{2}. or the negative class if and
 I hus.

$$
\begin{aligned}
& \lambda_{m} \supseteq . \quad \text { if only if }(\cdots) \leq N_{3}
\end{aligned}
$$

otherwine. the sed of situation I belongs to the bounclary region.

Example 4.3 Assmang the same sel of ohjects 1 as denctibed by lidne 1.2 and

$$
\left(_{r}\left(. X^{\prime}\right)=\frac{4 \times(1.0-0 . \pi)}{1}=0.3 \quad\left(\cdots(X)=\frac{1.0 . \pi}{1} \quad 0 . \pi\right.\right.
$$

Similarly:

$$
\begin{aligned}
& \left({ }_{p}\left(. X^{\prime}\right)=\frac{3 \times(1.0-0 .(6 i)}{3}=0.3: 3 \quad(1(X 2) \cdot 3 \cdot 0.6 i \quad 3 \quad 0.10\right. \\
& \left({ }_{P}\left(. X^{\prime} 3\right)=\frac{4 \times(1.0-0.35)}{1}=0.65 \quad(11 \times 3)=1 \cdot 10.35 \quad 0.35\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left({ }_{p}(. X .)\right)=\frac{3 \times(1.0-0.67)}{3}=0.33 \quad(1,1.5)=\begin{array}{c}
3 \cdot 0.10 \\
3
\end{array} \quad(0.67
\end{aligned}
$$

Now we can say

$$
P_{1, t)}=\{Y|. S|\}
$$

and

$$
X_{t m s,}=\{X: S . X 6\}
$$

4.2.3 Set Approximation in the GRS-Model

In the original model of rough seth the appesimation phate is delined ar a pain

 indiscemibility relation. corresponds to a partitioning of the mivan I inno a coller

In the gencralized wongh set model objects which belong to an elementary set are peraival ds identical. it may mot be possible to detemine set inclusion criteria for "wens subed of the miserse l^{\prime}. We can consider some elementars wets in the upper appoximation phate with degree of classification error lower than given P.s and $N_{\text {, }}$; factors. It means that this will diaw some chementary sets of bonndary area into the fower approximation space.

B3 ming two classification factors. P_{5}, and X_{s}. we obtain the following generalizalion of the comept of rough approximation:

 wo real numbers as defined in previous section. such that $0.0 \leq P_{8} . \quad N ; \leq 1.0$. (iven any arhitrary subset $X \subseteq O B . /$ its positive lower approximation $P^{\prime}\left(\mathcal{S}_{p}\left(\mathcal{N}^{\prime}\right)\right.$ in arfined as a mion of those elementary sets whose chasification criteria guarantere that the redative orror ('re(\because) of the ser X will be less or equal to P_{3}.

$$
P^{\prime} O \varphi_{P},(X)=\bigcup\left\{\because \in I D_{P, .}:\left({ }^{\prime}(E) \leq P_{, 3}\right\}\right.
$$

If ungative lower approximation $. \mathcal{V}:\left(X_{i}(X)\right.$ is defined as a mion of those elementat! whe whe dasifieation criteria guarante that the relative errot ($V(E)$ of the sed X will be lese or equal X_{3}.

$$
V E(i, N)=\bigcup\left\{E \in I \bar{N} D_{P, V}:(V) \leq V_{3}\right\}
$$

Its upper apposimation of the positive region ($P P^{\prime} p(N)$ is defined as a mion of thence clementan nets whene classification criteria guatanter that the relative error

$$
r P P_{P}(N)=\bigcup\{l: \bar{N})_{P: I}:\left({ }^{\prime}(l:) \geq V_{3}\right\}
$$

If. - uper approximation of the negative region $V^{\prime} P P^{\prime}(X)$ is defined as a umion of these chementary sets whose classification criteria guarantee that the relative error ($n(f)$ of the set X will be greater than or equal $P .3$.

$$
l P P \cdot(N)=\bigcup\{l \in I \bar{X})_{P, 1}:(P(l:)-P\}
$$

 sets whose classification do not belong to the pesitive wegion and the medive nepion of the set l.

Example 4.4 For the uncernany information system in lable 1.2.

$$
\begin{aligned}
& P() s_{p}(D)=\{\text { VI. ソ } \mid\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{P P} P_{P}(D)=\{X \mid, X O N 1 . N:\} \\
& Y P P M(D)=\{Y 2 . N B, N: N 6\}
\end{aligned}
$$

4.2.4 The Degree of Attribute Dependencies in the GIRSModel

 $\gamma\left(C^{\prime} . D . P_{3} . ._{3}\right)$ if :
 all elementary seth of the partition $\dot{D}=\left\{P_{\text {, lass. }} . V_{\text {inss }}\right\}$ in the approximation space
 imporance degree of objects in the set X. such that

$$
I . I I P(O B . I)=\sum_{t=1}^{n} d_{1} \quad \quad o b j_{t} \in O I B . J
$$

alld

$$
\begin{aligned}
& I . M P^{\prime}\left(I M P\left(\left(C . D . P_{3}, M_{3}\right)\right)=\sum_{p, s=1}^{n} d_{p, s}+\sum_{n \in g=1}^{b} d_{n e g} .\right.
\end{aligned}
$$

Wie can transer the above formula to:

Informally speaking. the dependency degree $\left(C^{\prime} . D . P_{.} . N_{3}\right)$ of attributes D on the
 Which can be clasificel into corresponcing classes of the partition \dot{l} (positive class dud negative class) with an error rate less than desired value (P_{3}, N_{3}) on the basis of the information represented ber the classification $(\therefore$.

Wxample 1.5 Based on the uncertain information stsom given in Table 1.2. we can raldentate the degree of dependency betwern condition attributes ('and the decision altribute 1) with classification factors $P_{3,}=0.30$ and $\lambda_{3}=0.60$. From Example 1.4 . we ohtained the following:

$$
\begin{aligned}
& P\left(O S_{P}(D)=\{X 1, X 1\}\right. \\
& X B\left(i_{N}(D)=\{X 3 . X G\}\right.
\end{aligned}
$$

S that. the degree of dependency between (2 and D is.

$$
\gamma((.1) \cdot 0.30 .0 .60)=\frac{1+4+1+4}{22}=0.73
$$

4.2.5 Attribute Reduct in the GRS-Model

 $P \subseteq C^{\prime}$. and given classification factor $l_{3} . \lambda_{3}$
 o(P.D. $P_{3 .} . V_{3}$): otheruise the attribule a is indiaperasable
 orthogonal

 dant independent subset of condition attributes that discente all whe.je which ate discemable by the entire attribute set.

The (elRS-reduct. or approximation reduct. of the sel of combition allathmerer
 which satisfies the following two criteria:

 first criteria

Example 4.6 C'onsider dropping the condition atribute al in lathe 1.2 and ant

$$
\begin{aligned}
& C^{\prime} P\left(X^{\prime} 1\right)=\frac{2 \times 1 \times(1.0-0.75)}{8}=0.25 \quad\left({ }^{\prime}\left(X^{\prime} 1\right)=2,1 \times(1.75 \quad \text { (1.7.) }\right. \\
& \left({ }_{p}\left(X^{\prime} 2\right)=\frac{2 \times 3 \times(1.0-0.67)}{6}=0.33 ; \quad\left({ }^{2}\left(X^{\prime} 2\right)=\frac{2,3,0.67}{6} \quad 0.6 i 6\right.\right.
\end{aligned}
$$

 sal!

$$
\left.3\left(r^{\prime} .1\right) .0 .30 .0 .60\right)=\frac{s+s}{2.2}=0.73
$$

 $r^{\prime} \therefore\left\{\begin{array}{c}2 \\ \}\end{array}\right.$ in a reduct of (${ }^{\prime}$ On D).

The idea of ieduct is most useful in thone applications where in is necessary to find Whe num impontant whertion of condition athibuter responsible fol a catuse-tfect relationship and alos uneful fon climinating irvelerant athilutes from the information stom. (iacen an information system. Where may exist more than one reduct. Bach
 hibules whid could represent the original information sustem with the classifieation
 of $R E \cdot D\left(C^{\prime} . D . P_{3}, V_{3}\right)$. The selection can depend on the optimatity criterion associater willatribute.

Chapter 5

Rough Set Based Data Reduction

an all the athibutes in the generalized relation and thus simplifs the generalized

 a men framework for knowledge disconery in databases. Which combine database operations. machine leaning technigues and rongh set theory. In our sasem. the leaning provedure comsists of two phases: data generalization and data reduction. In data gemeralization. our method gemeralize the data by perfoming attribute momotal and attributeon ionted concept tree ascension. thus some undesirable attribute to the leathing task are remoned. Sulonequenty the primitive data in the databases are
 mas be gencralized to the same genemalized tuple. The goal of data reduction is Io lind a shbere of interesting attribute that have all the essential information of the generalized rebation. so that the subset of the attribute ean be used instead of the cutire attributes ser of the gencralized relation. l:inally the tuples in the reduced relation ate tranformed into diflerent knowledge rule based on different kmowlodge discosery agosithms. Onf mothod analy ase the canse-offect relationship drong the comdition and decision attributes, meaning ful properties of data. such as data dependems among the attributes are explicitly analyed by rule-generation algomhans. The method is able to identify the essemtial subse of mon-redumdant altributen (lactors) that determine the decision tash. thes the rulengenerated in this way are very concisen and strong with no rechundancy information or monecessary comstrants in them. In this chapter we will disenss two algorithms: DI3Deci and DB.Daxi. One is to lind a sed of eoncise decision rules. The other is to compute all une manmal gemeralized rules from the gemeralized relation by using a derision maria.

5.1 Reduction of the Generalized Relation

 the considered data. Whereas a core is in a cemdinsense its mos impontan pant. Ra

 data which is really useful.

5.1.1 Significant Value of Attributes

 lionship betweren the romdition and derision athibumes.

 be

$$
S(i l \cdot(a . l . l))=l(l i+\{a\} . l) \quad l(l i . l)
$$

 0.07 .

5.1.2 Criteria for the Best Reduct

 ongimal botem. Go a matmal guention in which reduct is the beat. The selection deperdo on her optimality atorion aworiated with attribmes. If it in porsible to
 the combinad minimmm contriteria. For example. in the medical domains some diaguostic poredure are murh more expensise than others. Bs weleting the least
 anding an le acomplished withon decreasing the quality of the diagnonis. In the

 with atme minimal manber of atribater. then the reduct with the lean mamber of combination- of values of it attribute is selecterd.

Discemibility Matrix

In this subercion. we gite a modified definition of a discemibility matria baned
 "-lomerni
 a,

Ihn entre m, contain the alributen whose values are not identical on both
 comephl. In other worth. $\mathrm{ma}_{\text {, }}$ representh the complete information to dintimguinh
 $1 \cdot 1 \cdot 11$.

 the other attributes are condition atribuncon

5.1.3 Core and Discernibility Matrix

 \{. Matie _model.tran.s \}.

Compute the best reduct or user minimal atribute subse:

 better alome the dex inion task and may profer to emphasize some attributen in the Nexision mahing pocess and want to ine lude these athilonte values in the final decision man. Band on the dependemes metion and the significant whes of attributes. it is Wrs cas dud dilicient to lind a "best" reduct or a "minimal" attribute subset (called
 has the adme divemabilits as all the attribues in the original relation. In the later (dse. the remult mat on mat not be a reduct. If the attributen the user is emphasizing der superthum with respect to D. then the result is not a reduct but still has the

Here we peremt our atgonithm to construct the "best reduct or the user "minimal" atribute uldoe be ming core as the sarting point. The algorithm is very
 then the algonithm jun fims the bey redut which consists of thone attibutes with the lagest signilitant valuen in eath sepe. If the were prefers some particulat at-

 onigmal information ulatem.

Algorithm 5.1 (Reduct Algovithm:) ('ompule the best irdurt or aner minimal allodull subal.
 whtion h^{\prime}. whin h_{1} in (amified into condition atuributes (${ }^{\prime}$. and decision athibutes D)

Mothod

Step 1: RFM) - (O):1:
Step 2: $1 / i=1 i-R i)^{\circ}$

Step 4: If there are several attributes $a_{1}(i=1, \ldots . .1$) with the same masimal whe
 tion values with those atmibutes in $R I E D)$.
Step 5: $\left.R E D I^{\circ}=R E D\right)\left.\right|^{\circ} \cup\{a,\} .|R=| l i-\{a\},(i=1 \ldots . \ldots m)$
Step 6: If $K\left(R E D I^{\circ}: D\right)=1$, then terminate. othemise go to. hap : 3.
The best reduct of the generalized car relation in lable 1.1 i- \{ Wake model. com. persis. trans $\}$ using this algorithm. On the other hatad. if the was watl tulath the eflect of a cars weight on the mileage and prefen to cmphanime the whilute we ruht

 this case. the result happens to be a reduct). We can limel the best wedoct at med minimal attribute subset in $S_{1} \times\left(N^{\prime \prime} \cdot V^{\prime \prime}\right.$ in the worn we. where V_{1} in the mumber of atributes in the generalized relation $h^{\prime \prime}$ dal I^{\prime} in the mumber of tuplen in R". Cually.$^{\prime \prime}$ is not big in the gencralized retation h^{\prime}.

5.2 An Attribute-Oriented Rough Set Approach to Discover Decision Rules

 (displace). complession ratio (compress). power. Npe (f) tammininn (trans).

19， 1	1135－816，1．1	14， $1+148$	1.1	drat	dialime	1014pipen	jownt	11811.	4 clght	Hilleage
ir 1010	－n，－mit	alser	${ }^{1}$	2	Vmlont	ligig	hight	1110	1020	niedmitn
1：1．1／	－hastole＇rerbitr	人1＋	1	2	－thall	Has！	110443134	（11） 114	8×10	Hath
1611\％＊	＇haveme：cesbrit	brenti	1	2	－311 11	Highi	He－dnuma	1．50	Smy	tamama
i1 1． 0 ，		स4．14	1	：	V－dantu	\1－duma	meedbuta	146\％14	120	miththat
1.14		bleb	1	2	－！n lil	Vicdurn	Ios	［16：3114	800	liof ${ }^{\text {d }}$
$1 \times 1 \div 1$	1－3，furde	whow	1	＇		\！rdunt	Hectaman		－ 40	meed：ntm
＇，4，1．！		H1．．	\％	1	\etturn	Vedama	high	sutt．	1180	medtutn
1 i 1114，		lixtit ：fur	4	1	VIrchutir	Vectuatm	luth	wito	\％00	＇tacdinma
$111: 3$		fed	1	2	We－dinm	VIatimi	3ugh	1116	1180	tardatan
1：M1：W		Ifeht grotid	1	\cdots	Vadam	\fadmm	tash	12to	11：0	trectunn
－ 1111	｜，．1．l＋．tt	bumh	1	2	\ectum：	Jhigh	hagh	＊ 6 L14	Exy	hagh
［14．才1，		h．l．eh	1	\cdots	Vechaita	light	fugh	（19204	Fou	lunit
（11）－n！		puh	1	4	－minll	1145：	lon	14， 11	7	lugh
\＆${ }^{18}$ ， 11	Vm，－	＊＊＊	1	－		Bigir	low	Hant	F（m）	hugh
$1 \mathrm{H} \cdot \mathrm{p} \cdot 1$	1－o．dx hatex	1．d	6，	1		V1．tamim	tirathat	（titill	K－0）	nuedimat
1uヶ\％\％	touth 6－－Mat	his，	1	：	－sintill	ilish	Himinm	＊1\％	4 ${ }^{1 / 1}$	mine dunta
W1		$4 い$	1	？	Vednitn	Vedinut		th1：4］	9（4）	litgli
	\106：	alton	1	2	－irsali	1月女号	tow	min4	－ 1.4	lisith
人1：	thetgr livion	kiren	1	$\stackrel{-}{+}$	Medmat	Vedumb	mirdtum	H1114	11%	nicdinum
1．1 1114.4	H．，mi，watat	beownt	1	\pm	－\％ 1 x1！	Hix！	hight	H4：14	※＊10	high
1181／4．	Hernis irchat．	bllon	；	－	－	High	もいぐい	14：34	（大リ）	lush
1 \％Mx．4．		дt．${ }^{\text {a }}$	＋	；	Mratima	Hishis	ligh	114．3	iuxil	mindintu
$11110 \cdot 1$		What	，	1	Vedintu	Wertamm		（110）	1116	mediuti
＂1夈：	Waxts es＇	purstr	1	\cdots	－ $\mathbf{1 1}$ 2ll	E！ish	tackutar	\＃14！	cxit	hish
11：11		thwh	；	4	Vedinm	Merlintm	turifutur	H19n4	110．4）	Thudturn
：10x－3	It．unt latioh	othse	1	\cdots	\o．fumen	Ve．huti	the．thuth	1＂24！	1：＂0	murlanza
1：1 ${ }^{\prime} \times$		bluh	；	$\stackrel{2}{2}$	－mill	High	$1 \sim 6$	171111	111%	medturn

Table J．2：（ar rolation．
\｛Fordescort．Ford probe．．．．．Ford＿tanrus $\}$ © Ford

\｛Dodgerstealth．Dodge－daytona．．．．Dotgedyasty $\} \subset$ Dodge
\｛Ford．Dorlge．．．．．（＇hevrolet \} [1S.S(C'ar)
\｛．Japan（（＇ar）．．．．．SS．M（＇ar） 6 Ansi Makemodel）
$\{0 . .800\} \subset$ Light
$\{\times 01.1200\} \subset$ Morlimm
$\{1201 . .1600\} \subset \mathrm{Har} 9$
\｛low．Medimm．High $\}$－Ins（Weight）
On whentive is to learn the decision rule which tell which feature of a car really determine the milenge．The reguest is apecified as follows：
learn decision rule
for Mheragr
from（＇ar－rchation

Notice in this leaming request. the concept hietathien and thenthold ate not specified. thus the default omes will be wed.

 Table I.I.

 "mileage" to reduce the gencralized relation limther.
Strategy 1 (find the desired reduct or user minimat attributer and redure the generalized relation)

Wikn－thic，lat	＂natiptex	14111－	tmileage
f \cdot ¢	1119．11	त17	H1． 11
： 11	v！ग\｜勺！		VFIJIV
11	vithll	人1＇1	VEIS］ 11
$1 \cdot \lambda$	H11；${ }^{\text {d }}$	VAN1	H1／；
mis	111， 11	VAV1 11.	H16：
DABS	A1．11 4	VAN1 AL ．	H16，

lable i．．3：Rerluced table with best reduct

Uikessmodel	（1apht	11．319	いdsht	malasye
T－	MF！ 11	At11）	WhDT	गETJI
1－1	WIIJt 1	WAv． 1	WEDtH	Mtebll
$1-\lambda$	－ 11×1.1	呵！	WFDT U	\FPblt 1
1－A	\1．1月 ${ }^{\text {a }}$	U．才\A．	I．J（BET	Hしく：
JdVV：	－\121．1	UN\A1．	1．16．E］	H16：
1AlV	WFlull	い入N入1．	Wh．1， 11	111931
I．NA）	－MAL．I．		VEDI 1	H1：3H
1－1	－11，	BEDH U	VELI U	H16， 11

Fable ．i．I：Reduced table with user minimal atributer subse

The dependeme whenship betwen the mileage and the condition atributes．The genctalized a radation in Table 1.1 is further reduced．resulting in Table is． 3 using the beat reduct and Table i．I using the user minimal attribute suber respectivel． （la our later discussion．We only discuss［able 5．3）

Strategy 2 （combine the similar tuples）

In the reduced table．as shown in Table in．3．in the same class．two tuples can be combined into one if the valuen of the comdition attributen differ in only one atribute：
 the combine tuphen wer all the pussible values of the attribute in the comesponding

 reducer lable Table $\% .3$ is further simplified to Table is．is．

Strategy 3 （＇lransform the tuples in the reduced relation into decision rules for each class）

Vinhrumodet		11211	Hith tse
T- 5		\T,	
1-1	W! 1/11		\1 l-11 1
	H1. ${ }^{\text {H }}$	い1N11	H1., ${ }^{\text {l }}$
J19		U111	1t1. H

Table i..is: Reduced table after combination
 with mileage $=.1 /$ dium or mileage $=/ 1 /$ ght respectively:

 then (milcage=1Hl(iH)

 car is mediam.

In summary: we presen the algorithom below:
 Decision Bules in Databanes

 value T

Output. A sel of decision rules for arth class of l).

Method

Step 2. Fiand the best reduct or uncr mimmal allizhult aulial wall rapmal lo |) (Reduct Algorithm).
 in the reduct or user minimal allributes subarl.

Step 4. Combine similar luples in Inr reduced wlatoon.

Step 5. Tirensform the luples in the redured erlation into decision rule for ach dass (II).

5.3 Computing Maximal Generalized Rules

In [\%ise:3]. Ziarko and Shan proposed a decision matris to compute the minimal mate liom a derision table. Based on their ideas. we propose a method which can find all the maximal generalized rules from databases by integrating attribute-oriconted indmetion wilh derision matrix. It is shown that finding all the maximal generalized rulon in redne to the problem of smplifying a gromp of associated Boolean exprestions. Bolow we first give the definitions of maximal genetalized rake and decision matrix. and then discress the algorithm DBMaxi.

5.3.1 Rules in Information System

Is discussed in (hapter l. a relational database may be considered as an information s.uncm in which columes are labelled by atributes. rows are labelled by the ohejers and the emtry in column p and row e has the value $p(e)$. The collection of all fuples constituten a sot of training sample. Also. one of the attributes. say $d \in A$. in considered to be the learning target. or decision attributes representing the "concept or "comepts" wo le learned. The coneept is simply a particular value lid of the athibute d. The objeet of learning is to find a diseriminating deseription of the subere $\|$ it of objects with the value of the attribute decpal to lit that is as simple as posible. i.e. . to learn the deseription of the set

$$
\left|\|_{i}\right|=\left\{1 \in l^{\prime}: d(c)=l_{i}\right\}
$$

Here 1, will be referred to as the target class (concept) or the set of possible canco.

Fion a value 1, of the decision attribute d (which is the "concept" we inteme to leamb, "raler for lis is defined as a set of attributeralue pair

$$
r=\left\{\left(a_{11}=l_{i 1}\right),\left(a_{2}=l_{i 2}\right) \ldots .\left(a_{1,1}=l_{i n}\right)\right\}
$$

such that

$$
.1,=\left(a_{1} \cdot a_{2}, \ldots, a_{1 n}\right) \subsetneq .1
$$

and

$$
\begin{equation*}
\therefore u p(r)=\left\{r \in l^{\circ}: 1,(c)=1 ;\right\} \subseteq \|, \tag{5.2}
\end{equation*}
$$

where $I_{r}=\left(I_{i 1}, I_{i 2} \ldots . I_{i,}\right)$.
 information vectors matching this combination is comtamed in the a of infinmorion
 donoted as a logical implication

$$
\left.r:\left(a_{11}=l_{i 1}\right) \wedge\left(a_{t 2}=l_{i 2}\right) \wedge \ldots \wedge\left(a_{11}=l_{1,1}\right) \quad \therefore(d) \quad l_{1}\right)
$$

 refered to as rule condition patt coud(r) and the right hand vide in a dee inion part

 matela the me conditions r.

5.3.2 Maximal Generalized Rules

 ordered with regard to the relation of inchesion.
 ordered rule sel.

The maximal generalized mites minimize the number of male romlition, and an in a sense better becanse their comditions are nom-redumdant
 decision lid.

5.3.3 An Algorithm to Compute the Maximal Generalized Rules

 peness. the tomgh sen mothod is performed on the gencratized relation. The decision matis for the derision values of the decision athibute are romstructed and the maximal gemeratized rules are computed from them.

Decision Matrix

 belonging to $1-\{d\}$. we will smmatare all the atribute-value pairs distinguishing objects belongine to $\left|\begin{array}{ll}\text { in }\end{array}\right|$ and $l^{\prime}-\left|D_{i}\right|$ in the matrix format defined as follows.

$$
D) \cdot M_{2,1}=\left\{\left(a, a\left(c_{2}\right)\right): a(c,) \neq a(c,)\right\}
$$

The set $/$ IM $M_{1,}$, contains all paits whose values are not identical on both 6 , and 4. In other worls. D. $M_{1 .,}$, represents the complete information neded to distinguish
 represented in the form of a matrix $\left.I . I /=[I) . I_{4}\right]_{1 / \times \cdots}$.

Example 5.2 Suppone after data genealization. We have a simple car genemalized telation in lable i. if. In order to make our explanation simple. we int roduce the momertial seprexemation of the reduced form les replacing the symbotio value with mumerical numher. L'or example. for the . Make model. 0 stands for L'SA. I for dapan. similar ublatitions apply to other attubutes. (Note that the satae number in differ-

Inke－ 10 del	cornp）	ponel	1111	mutit is．
\％－	H1／ 111	116．11	त11	\11：11
t ，入	WIMt 1	L1．141 if	\1．1 11	W11．11
1－1	illall	1.16	\111 1	\11 11
I＊A	111：3	W1．11 1	111.	W1101
1.1	Wrim 11	14H．11	V1： 11	\11H1
1－A	WEinl 1	H14．11	111.	W1111
［－人	H16：II	111．：11	1191 1	111． 11
JAld	111911	1 m	\11．1 11	111． 11
JAPA	WELx／1 1	41：1911	V191 11	111．11
JハウA	113il	141，11	v111．11	111．ill
JAPA	MESHI 1	1 ¢	11911	111．， 11
And	［11く：1！	W1011	\＃M 1	111．814
$1-1$	H16：11	1111111	\11．1 ！	111．911

Table is．（i：A simple gemeralized arar mation

1	1	4 1 ， 1	8		F	1	vilus．
1		－1	${ }^{1}$	1	11	1	1
2		cr	＇	1	1	－	4
		－	is	11	\therefore	1	＂
1		． 1	11	11	1	＂	＂
．		－	11	1	11	1	11
${ }^{\prime}$		－1．	＂	1	＂	1	1
	1	0	${ }^{\prime \prime}$	＂	1	1	1
	\pm	－	1	＂	1	1	1
	，	＊＇	1	1	1	1	1
	1	－10	1	${ }^{\prime \prime}$	$1 /$	1	1
	\cdots	－11	1	1	4	1	1
	：	－12	1	＂	1	1	1
	\％	！！	1）		1	1	1

	1.1	12	1	11	$1:$	1.	17
1	[11\%		$\begin{aligned} & \text { "901601 } \\ & 1961101 \end{aligned}$	(110179	$\begin{gathered} 190160 \\ 1 P o+601 \\ \hline \end{gathered}$	$\begin{aligned} & \left(\begin{array}{ll} 19 & 0 \\ (1) & 10 \end{array}\right. \\ & 10 \end{aligned}$	1P07901
"	14 117.6		प为	Mmit 110	- 5016	(10) 111	711
	(1, a $^{\prime}$	तब"	$\begin{aligned} & \text { काओ } 7 \text { का } \\ & \text { if } \end{aligned}$	1791021	(100) ${ }^{\circ} \mathrm{C}$	(10) (1)	(12)
11	[11) 11		$\begin{aligned} & 76(60) \\ & 1101 \\ & \hline \end{aligned}$	त00 (F!T0)	$\begin{aligned} & \text { MO } 1960 \\ & 111118 \end{aligned}$	(M0) (0)	(T.0)
	$1{ }^{11}$	Tリ1110!	11010	18911911,			(ry) (pat
	" त min		18076 1101	तोण	$\begin{aligned} & \text { Mo1 } \mathrm{FO} 07 \\ & \text { ITO } \end{aligned}$	$\begin{aligned} & \text { (m0) } 601 \\ & i p o g 190 \\ & \hline \end{aligned}$	(1).(1).0) (T 0)

 Mperents the momerical form of the infomation about cars given in Table 5.6. In this represemation $.1 /$ is an ablere iation of "Make_model". (' For "comprese". and so on. Tiwo exta index colmme $1 . j$ are added to mumber the objece belonging to the

 Parh rall (i, j) in this matris is a collection of athibute-value pairs distingnishing row of the target class from row, of its complements.

Decision Matrix and Maximal Generalized Rules

In this suberetion. we will present the basie melhod to compute the maximat
 introduce the following notation cited from [\%is $9: 3$. IIS($\% / 9$)/a].

$$
B l^{\prime} l_{1}=\left\{r \in I^{\prime} l:: A_{r}\left(c_{1}\right)=l_{r}^{\prime}\right\}
$$

$$
R I^{\prime} l=\bigcup_{1} R l^{\prime} L_{i}
$$

 consider the assuctated set

$$
\dot{r}_{1}=\left\{\{1\}: 1,-r_{i}\right\}
$$

Where $\{1\}$ is a sed of all distinet componemt somained in the weron 1 .

 the set of minimal elements in this demoter as $. M / X$, .

 [\%is!:3].

belonging to each set $D M_{i,}(j=1.2, \ldots . \gamma)$. That is.

$$
B_{i}=\bigcap \bigcup D M_{1,}
$$

where \cap and U are respectively generalized conjumedion and disjundionoprators.

Example 5.3 Based on the decision matrix given in 'Table.t.s. we can comstrat the following decision function for row 1

$$
\begin{aligned}
B_{1} & =((T, 0)) \wedge\left((M .0) \vee(P .0) \vee\left(T^{\prime} 0\right)\right) \wedge\left((M .0) \vee\left(\left(C^{\prime} .0\right) \vee(P .0) \vee\left(F^{\prime} .0\right)\right) \wedge((M .0) \vee\right. \\
(T .0)) & \wedge((M .0) \vee(C .0) \vee(P .0) \vee(T .0)) \wedge((M .0) \vee(P .0) \vee(T .0)) \wedge\left(\left(I^{\prime} .0\right) \vee(F .0)\right)
\end{aligned}
$$

By applying the distribution and absorption laws of Boolean algehnd. card derision function can be expressed in a simplified form of a disjunction of minimal conjuntive expressions.
 $10 B_{1}=(T .0)$,

This corresponds to the rule:

$$
\text { brans = AUTO } \rightarrow \text { mileage }=M E D \| M
$$

Directly from the Theorem 5.1, we can derive the general procedner for computing all maximal generalized rules for the given targen decision. The procerlure reguires the construction of the decision matrix for each target decision pion te compmation of rules. The key steps to compute the rules are summarized in algonithm (I) (B:Masi).

Algorithm 5.3 DBMaxi: Compule The maximal grone ralizal rules
Input: a rolational system R
Output. the maximal generalized rules
Method
Step 1: Extract the gencralized relation R" from R. ((ienemalization Algonithm)
Step 2: Compute the decision matrix for the current decision category in R '
Step 3: For each positive case $c_{i},(i=1,2, \ldots, p)$ compute the set, of all maximal gencralized rules M / N_{t} matching this case by evaluating and simplifying (msing the absorption law) the associated decision function B_{i}.

Step 4: C'ompute the mion $U M / N_{2}$ of maximal generalized rule sets to find all maximal generalized rules for the current decision category.

The cental component of the above algorithm is the simplification of the decision functions associated with the positive cases of the information table. For example, to rompute the maximal gencralized rules for the decision class milcage $=. \mathrm{MEDIL} \mathrm{M}$, decision functions have to be created and simplified for row 1-6 in 'Table is.8. As can be verified from 'lable $\overline{5} .8$, the simplified functions yield the following complete set of maximal generalized rules for mileage $=M E D I U M$:
(1) If lrans = AU'O then mileage = MEDIUM
(I) If makemodel $=l^{\prime} S A(c a r) \wedge$ compress $=M E D I L M$ then mileage $=$ MEDUMM
(3) If make_model $=U S A($ car $) \wedge$ power $=L O W$ then mileage $=M E D I U M$
(4) If compress $=M E D I U M \wedge$ power $=H I G H$ then mileage $=M E D I U M$.

Similarly, we can find the maximal generalized rules for mileage $=H I G H$:
(5) If compress $=H I G H \wedge$ power $=H I G H \wedge$ rans $=M A N U A L$ then milerage $=$ IIGGH
(6) If makie_model $=J A P A N(c a r)$ then mileage $=H I G H$
(7) If compress $=M E D I U M \wedge$ power $=L O W$ then mileage $=H I G H$

5.3.4 Complexity of Maximal Generalized Rules

In this subsection we give a quantitative analysis of the possible number of maximal gencralized rules. Suppose after data generalization, there are N^{\prime} tuples with K altributes left. For a particular learning task, the number of positive tuples is n and so the number of negative tuples is $N^{\prime}-n$. Then we can construct a $n \times\left(N^{\prime}-n\right)$ decision matrix, for each entry of the decision matrix, there are maximal K terms becanse that is the maximal number of different attributes number between the positive and negative iuples. Each row of the decision matrix corresponds a set of maximal generalized rules, so the maximal number of maximal generalized rules from each row is $h^{k^{\prime \prime}-n}$. there are total n row in the decision matrix, so the total number of possible maximal generalized rules are $n \times K^{N^{\prime}-n}$. As a example, if we have 30 tuples with

5 attributes and 10 positive tuples, then the possible maximai generalized rules are 9.536E+14. From a pactical point of view, we are not able to compute all these possible maximal generalized rules even using the fastest componter. Hence in order to define a tractable algorithm. we will need to "prome" the ade of possible masimal generalized candidate rules considerably. We believe that using a good rule med sure can help considerably when we are trying to learn mes from data. I ledsil)le algorithm should learn the best set of rules mather than exhanstive learning all the possible rules. It is one of the topics for our future research.

Chapter 6

Multiple Sets of Knowledge Rules and Rough Sets

The importance of redundancy for coping with noise in communications is well known [ShW64]. Recently, the subject of Multiple Sets of Knowledge Rules (MSKR) (also called inultiple knowledge bases) and multiple experts have received considerable attention [KoK93, VgB92]. Some of the arguments raised in support this approach include: (1) in cases where expertise is diffused and a true expert in the domain of interest can not be identified, combining the insights of "competent people" could improve the application; (2) large complex domains which are generally not mastered by a single iudividual, requiring the use of multiple experts to ensure comprehensive coverage; (3) the acceptance of expert systems in the busincss world reguires the consensus of organizational "experts", therefore, it is necessary to incorporate multiple experts into Expert Systems (ES) the contributions of several experts; (4) large classes of problems could be more easily solved if we move away from the notion of a single expert as the basis of ES to the broader based on "community of experts" premise for ES applications [$\mathrm{NgB9} 9$]; (5) to improve the classification accuracy in the presence of noise data in the database.

The informativity of the knowledge bases with redundant rules seems to be much better than without them. Redundant rules can be trimmed off and an "usual" knowledge base is obtained as a downgraded version. Since the user can define the number of redundant rules, the preference function and other parameters, this enables
a thorough extraction of most valuable rules. The efliciency of the learning algorithms remains practically the same when using redundant knowledge [Gam! $)$].

At this point it seems essential to understand how and why redundand knowledge or multiple knowledge rules help. First, empirical tests [Kion9), Rokigi| indicato that redundant knowledge is more helpful if it is as accurate and reliable as possible amb at the same time as different from the other knowledge as possible. This also seroms plausible in real life. Adding a noviec is probably commerproductive and adding an expert whose knowledge is too similar to some other members will onls give more importance to the previous expert. Another problem is the cooperation betweren redundant knowledge. Indeed this might be a more difficult problem than lu dedermine whether to add another redundant method or not. Similarly, it is very diflienlt to analyze the conperation between experts.

Several strategies for using multiple experts in ES development have heren proposed. Garvey et al [GLFS1] feel that conflicting the knowledge of st woral specialists who are more competent in specific contexts with a mechanism to choose among the opinions of experts. Boose [Boos6] has proposed an approach for combining the expertise oi several individuals by utilizing a common grid via tho lixpertiso Thasfor System (ETS). Others have approached the problem from the joint of view of an autonomous attempt to obtain consensus among the experts during line kiow leage acguisition phase. Gragun and Steudel [GrSS7] have proposerd an algorithon for trallsforming a rule-base into a decision table and splitting the table into context-gromps for analysis. However this approach is limited with regard to rule-set integration and validation early in the life-cycle because it focuses on rule-base rebngging. Baserl on these considerations, we propose a rough set approach to construct multiple sots of knowledge rules. The concept of rough set offers a sommd theoretical fommation for multiple sets of knowledge rules. Multiple Kıowledge Base Systems can lo formulated precisely and in an unified way within the framowork of rough sot, theory. The method we propose here is more general and flexible: (I) it arlvocates the use of inductive-learning techniques to discover knowledge rules from the collecterd datia in databases; (2) it can deal with development situations where more than ome denain expert is used; (3) it can be used to merge two or more miles based kil into one
eomprehensive KB.
In this chapter we discuss the connection of rough set theory with multiple knowlrelge rule sels and present an algorithm which uses the decision matrix approach to ronstruet multiple sets of kiowledge rules.

6.1 Multiple Sets of Knowledge Rules

In the decision making process, the Kinowledge Representation System (KRS) must represent and generate a way of making decisions concerning the object class. The process of rule generation is an important part of data analysis in a knowledge base system. Different algorithms and approaches will generate different minimal decision trees or sets of decision rules (the different knowledge bases) which may or may not use the same condition atuibutes from the KRS. The word "minimal" moans that each expert employs only the infomation necessary to represent the example data (or training data) withont any loss of essential information. Depending on the criteria, one knowledge base can be more useful than another which employs difforent information.

By considering all the reduct tables of the experts in a KRS: the KRS can generate multiple sets of knowledge rules because it usually has more than one expert and there are many knowledge bases associated with each expert. The KRS could be partitionod into sub-systems based on the decision attributes. Each expert uses only the necessary condition attributes without changing the dependency relationship of h. He original KRS. A structure of the MSKR system is shown in Figure 6.1.

Figure 6.1: Structure of multiple sets of knowledge rules

In a KRS. it is possible that some condition attributes are superfluous, so it is
very important to identify the essential subse of nonerdumbut athibutes (lactor) that determine the decision task.

6.2 A Decision Matrix Approach for Constructing Multiple Sets of Knowledge Rules

One can use different algorithms and systems to gemerate seromal difleren knowl. edge bases from a given knowledge representation system. and embed thene hambelge bases into a expert system to form a multiple set of knowledge mine fShllon.Insen|. Different knowledge bases are taken into accomt in the prollom whing phase. His method does not have an incremental loming capability. When new informatism is
 ate the knowledge bases from the newly organized knowledge representation sysum.

 to accept new information incrementally. without needing t.e regenerate fiom arrat fis.

In Chapter ${ }^{\text {a }}$, we presented a decision matrix approach to compute all masimal generalized rules from a database. In this section the mothorl is expatided fimber. Our extended method has an incremental learning capability and can la borl to compute all maximal generalized decision rules and the reduct sels ol a howlorlge representation system S. It provides a way to gemerate ilie simplest act of derision
 upon the construction of a number of Boolean functions from decisism maticis.
 as used before. That is, we will assume that all positive and negative ohjerth are separately numbered with subscript i ($i, c, \quad i=1,2, \ldots j$) and,$j(i, c, j=1,2 \ldots, \ldots)$ respectively. To distinguish positive from negative objects we will use shpertseripter V and $\sim V$, for instance, obj j_{i}^{V} versus obj j_{j}^{V} for the class " V " and class " $\sim V$ ".
 set $M_{i j}$ contains all attribute-value pairs (allribulc, value) which are met idrmital between obj j_{i}^{V} and $o b j_{j}^{\sim V}$. In other words, W_{1} represents the complete information

'The sel of maximal gemeralized decision males $\left|B_{i}\right|$ for a given object obj $j_{i}^{\prime \prime}$ ($=$ $1,2, \ldots \gamma)$ is obtained by forming the Boolean expression

$$
B_{i}^{\prime \prime}=\bigwedge_{j} V M_{i j}
$$

where \wedge and \vee are respectively generalized conjunction and disjunction operators.
The Boolean expression called a decision function B_{i}^{\prime} is constructed from row i of Hre decision matrix, that is ($M_{i 1} . M_{12} \ldots . . M_{1 p}$) by formally treating each attribute-value pair occurring in the component $M_{t j}$ as a Boolean variable and then forming a Boolean ronjunction of disjunctions of components belonging to each set $M_{i j}(j=1,2, \ldots, \rho)$.

The decision rules $\left|B^{\prime}{ }^{\prime}\right|$ are obtained by turning such an expression into disjunctive normal form and using the absorption law of Boolean algebra to simplify it. The conjuncts, or prime implicants of the simplified decision function correspond to the maximal gemeralized decision mos. By treating each of the classes as a target concept, a sot of maximal generalized decision rules can be computed for each of the classes. Similarly, by treating the complement of the class " V " as a target concept, a set of decision rules can be computed for each object of the class : $\sim V$ using the same approarli.

Once all the decision rule sets $\left|B_{i}^{\prime^{\prime}}\right|$ have been computed. a set of all maximal gencralized decision rules $R L^{\prime} L\left(\left|V_{d}^{\prime}\right|\right)$ for the concept $\left|V_{d}\right|$ corresponding to the decision value $V_{d}\left(\left|V_{i}\right|=\left\{o b j \in O B J: d(o b j)=V_{d}, d \in D, V_{d} \in V A L_{d}\right\}\right)$ is given by

$$
\operatorname{RUL}\left(\left|V_{d}\right|\right)=\bigcup \mid B_{i}^{V^{\prime} \mid} \quad(i=1.2, \ldots \gamma)
$$

For computing the set of reduct, of a knowledge representation system, we will introduce the concepts of the phantom decision function \tilde{B}_{i}^{\prime} and the reduct function F'RLD(D). A plantom decision function \hat{B}_{i}^{V} is a Boolean expression defined by the conjunction of all Boolean expression $V \dot{M}_{i j}$ of row i in the given decision matrix, where $V \dot{I}_{I J}$ represents the disjunction of the only attribute names (does not contain the value of attributes) of the component $M_{i j}$. So that we have the following formula:

$$
\dot{B}_{i}^{\prime}=\bigwedge_{j} \bigvee \dot{M}_{i j} \quad(j=1,2, \ldots, \rho)
$$

Informally speaking. a phantom derision function $\dot{B}_{1}^{\prime \prime}$ is a similarit of a derision function except for the elements of Boolean expression withoul the salar of athibutes. One can directly derive the result of a phantom decision lunction $\dot{B}^{\prime \prime}$ from the result of a decision function $B B_{1}^{V}$. it just dimiates the values of athibues in the prime implicants of the result.
 of all phantom decision function \dot{B}_{1}^{\prime} in the decision matrix. So that we hase the following equivalence,

$$
F_{R B D\left(V^{\prime}\right)}^{\prime}=\bigwedge_{1} \dot{B}_{i}^{\prime} \quad(i=1.2 \ldots ., \gamma)
$$

or

$$
F_{n E D(V)}=\bigwedge_{i}\left(\bigwedge_{j} V \dot{M}_{i j}\right) \quad(i=1,2 \ldots ., \gamma: j=1.2 \ldots ., 1)
$$

'The set of reducts, denoted as $R E D(|V|)$, is obtained ly promining the mul

 function, are the whole set of reducts for the target concept Vin a given knowledge representation system.

A minimized knowledge rule sets corresponding to a redued is a sot of derision rules which is fully coured by the athibutes of a reduct. 'The lilly cover manas that all the condition attributes used by the decision rules is also the atiribules of the reduct table,

Let $R U L_{m a x}=\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}$ be the set of all maximal gemomizorl derision milos
 be the set of attribute reducts. A minimal knowledge base referred to $R \angle: B)_{1}(R 1 ;)_{i}$ e $R E D)$ is denoted by $R U L_{\text {max }}\left(R E D_{i}\right)$ and defined as

$$
R U L_{\max }\left(R E^{\prime} D_{i}\right)=\bigcup\left\{C^{\prime} o n d\left(r_{k}\right) \subseteq C^{\prime} \operatorname{mr} d\left(R I^{\prime} D_{i}\right): r_{k} \in R H^{\prime} I_{m a r}\right\}
$$

where Cond() is the set of attribute names.
Example 6.1 Figure 6.2 depicts two decision matrices oltained from llw kurwledge representation system given in Table 6.1. Each cell (i, j) in a decision matrix is a

Obl.	S	11	E	(CLASS
obj	0	0	1	0	0
ob, ${ }_{2}$	1	0	2	1	1
obj3	1	1	1	0	0
obja	0	2	1	1	1
objs,	1	2	1	0	1
objo	1	0	1	0	0
objis	1	2	2	1	1
oljs	0	0	2	1	1

Thabe 6.1: A knowledge representation system.

	J	1	2	3	1	5
i	OB.I	$\omega^{\text {a }} \mathrm{j}_{2}$	$\sigma^{6} j_{4}$	ribjs	abj-	$\mathrm{C}_{\text {ajg }}$
I	diji	$\begin{gathered} (S, 0)(E, 1) \\ (C, 0) \end{gathered}$	(11.0)(C,0)	(S.0)(11,0)	$\begin{aligned} & (5,0)(11,0) \\ & (E, 1)\left(C^{\prime}, 0\right) \end{aligned}$	(E.1) ${ }^{(C, O}$)
2	abj_{3}	$\begin{gathered} (11.1)(E, 1) \\ (C, 0) \end{gathered}$	$\begin{gathered} (S, 1)(11,1) \\ (C, 0) \end{gathered}$	(11.1)	$\begin{gathered} (11.1)(E .1) \\ (C .0) \end{gathered}$	$\begin{aligned} & (S, 1)(11,1) \\ & (\mathrm{E}, 1)(C, 0) \end{aligned}$
3	objs,	(E, l) (C, O)	$\begin{gathered} (S, 1)(1,0) \\ (C, 0) \end{gathered}$	(H, O)	$\begin{gathered} (11,0)(1,1), 1) \\ (C, 0) \end{gathered}$	$\begin{gathered} (S .1)(E .1) \\ (C, 0) \end{gathered}$

(a) A dectsion matrir for class 0°

	j	1	2	3
i	OB. ${ }^{\text {a }}$	obl	obj3	$\square^{\text {bjuc }}$
1	obj2	$\begin{gathered} (S, 1)(E, 2) \\ (C, 1) \end{gathered}$	$\begin{gathered} (11,0)(E, 2) \\ (C, 1) \\ \hline \end{gathered}$	($\mathrm{E}, 2 \mathrm{~L})(\mathrm{C}, 1)$
2	$\mathrm{O}_{0} \mathrm{~b}_{4}$	(11,2)(C,1)	$\begin{gathered} (5,0)(11,2) \\ (C, 1) \end{gathered}$	$\begin{gathered} 7(S, 0)(11,2) \\ (C, 1) \end{gathered}$
3	abj	(S,1)(11,2)	(11,2)	(11,2)
1	obj;	$\begin{aligned} & (S, 1)(11,2) \\ & (E, 2)(C, 1) \end{aligned}$	$\begin{gathered} (11,2)(1,2) \\ (0,1) \end{gathered}$	$\begin{gathered} (11.2)(\mathrm{E}, 2) \\ (\mathrm{C}, 1) \end{gathered}$
5	obis	$(\mathrm{EL,2} 2)(\mathrm{C}, 1)$	$\begin{aligned} & (S, 0)(11,0) \\ & (E, 2)(C, 1) \\ & \hline \end{aligned}$	$\begin{gathered} (S, O)(E, 2) \\ (C, 1) \\ \hline \end{gathered}$

(b) A decision matriz for class 'I'

Figure 6.2: Decision matrices for Table 6.1
collection of atribute-value pairs distinguishing row i of ine darge dass from whun j of its complement.

Based on these decision matrices we can obain the following derision lime tions $B_{i}^{(1)}(i=1,2,3)$ from the class " 0 " derision matrix (amd similatys. we call ohain B_{i}^{\prime} ($\mathrm{i}=1.2, \ldots$,) from the class $" 1 "$ (lecision matrix).
(thass "0" decision functions:

$$
\begin{aligned}
& \wedge((S, 1) \vee(11.1) \vee(1: .1) \vee(C .1(1))=(11.1)
\end{aligned}
$$

$$
\begin{aligned}
& \wedge((S, 1) \vee(E, 1) \vee(C, 0))=((11,0) \wedge(E \cdot, 1)) \vee((1 /, 0) \wedge(C, 1))
\end{aligned}
$$

 class "0" of the kuowledge representation system stown in 'lable i i, l:

$$
\begin{aligned}
& (I I=0) \wedge(V=1) \rightarrow\left(C^{\prime} L A S S S==^{\prime} I^{\prime}\right) \\
& \left(11=(1) \wedge\left(C^{\prime}=(1) \rightarrow\left(C^{\prime}\right) A S S==^{\prime}\left(0^{\prime}\right)\right.\right. \\
& (I I=1) \rightarrow\left(C^{\prime} L A S S=O^{\prime} O^{\prime}\right)
\end{aligned}
$$

Similarly, we can obtain the set of all maximal genematizer derision rules for wo class "1":

$$
(E=2) \rightarrow\left(c L A S S S==^{\prime} 1^{\prime}\right)
$$

$$
\begin{aligned}
& \left.(I I=2) \rightarrow\left(C^{\prime}\right) \text {, Asis }=I^{\prime} I^{\prime}\right)
\end{aligned}
$$

Now, let as compute the reduct function for we class "ן" and class " 0 ". such mat

$$
\begin{aligned}
& H_{H: m(H)}=\bigwedge \dot{i}_{i=}^{\prime \prime} \quad(i=1.2 .3)
\end{aligned}
$$

So that we ean ohain the sets of reducts for the class " 0 " and the class " 1 ",

$$
M E D(0)=\left\{\|E:\| C^{\prime}\right): \quad M E D(1)=\{I I E: / / C\}
$$

Wo have the set of reducts $R E=O=\left\{I / E: / / C^{\prime}\right\}$ with respect to the decision attribule, . Areording to the above definition. the minimized knowledge bases corre-
 " $/ 1$. ("" on the class " 1 " are the following sets of decision rules extracted from all maximal gemeralized decision rules:

$$
\begin{aligned}
& (I=0) \wedge\left(b^{\prime}=1\right) \rightarrow\left(C^{\prime} l, A S S==^{\prime} 0^{\prime}\right) \\
& (I I=1) \rightarrow\left(C \cdot A S S==^{\prime} 0^{\prime}\right)
\end{aligned}
$$

T'he marimal !frervalizal dreision rules for reduct "/l. ('" on the class "()" is

$$
\begin{aligned}
& (I I=0) \wedge\left(C^{\prime}=0\right) \rightarrow\left(C^{\prime} \operatorname{LASS}=^{\prime} 0^{\prime}\right) \\
& (I I=1) \rightarrow\left(C^{\prime} L A S S==^{\prime} 0^{\prime}\right)
\end{aligned}
$$

I'lu muximal !fent ralizad decision rules for reduct "Il. E'" on the alass "I" is

$$
\begin{aligned}
& (E=2) \rightarrow\left(C L A S S=I^{\prime}\right) \\
& (1 /=2) \rightarrow\left(C l \text { I } A S S=I^{\prime}\right)
\end{aligned}
$$

I'hr marimal generalizal decision rules for reducl " $I I$, C " "on the class " 1 " is

$$
\begin{aligned}
& \left(C^{\prime}=1\right) \rightarrow\left(C L A S S==^{\prime} 1^{\prime}\right) \\
& (I I=2) \rightarrow\left(C L A S S=I^{\prime} 1^{\prime}\right)
\end{aligned}
$$

$:(6.6943)$

向！＂
－［ 1 （6） и वиו！！！
 ，位位

 мй

路

or more rules have logically equivalent condition parts but different action parts: and (c) dynamic during processing of the rule-base, rules may develop any of the above byes of inconsistencies. It consists of two phases: in Phase I, a 0-1 decision matrix is prepared and analyzed separately for each expert. The inconsistencies discovered are resolved by the knowledge engineer before the rule-sets are merged in Phase II. In Phase II, the rule-sets are merged and analyzed. Problans identified at this level are discussed and resolved in a group setting.

The above four strategies are complementary to each other. each has its strong and wak point depending on the domain. A deep analysis and comparison of these strategies and developing new methods for combining multiple sets of knowledge rules are one of our current research topics.

Chapter 7

Implementation and Experiments

To test and experiment on the database leaning algorithms developed in the previous chapters, an experimental database learning system. DBROUGH|Hluc'9ta. HCH931. HSCZ94]. has been constructed and some interestilig experiments hate leen conducted in the learning system.

7.1 Architecture

DBROUGH is a descendant of DBLEARN [CCH9I. HCC TY2a]. The architerture of the system is shown in Figure 7.1. The system can discover differemm kinds of knowledge rules from relational databases. including characteristic rules. liserim ination rules, decision rules. maximal generalized rules. data trend regularities and multiple sets of knowledge rules for the discovery task. The system takes, SQI, like database learning requests and performs different algorithms to find differom anken. The background knowledge is stored in a concept hierarchy talde. The provided concept hierarchies can be adjusted dynamically according to database statistios; and specific learning requests.

DBChar: Find the characteristic rules for the target class
DBClass: Find the classification rules of the target class with other classers
DBDeci: Find the decision rules for the decision attributes
DBMaxi: Find all the maximal generalized rules
DBTrend: Find the data trend regularities for the target class

Figure 7.1: The architecture of DBROUGH

DBMkrs: Find multiple sets of knowledge rules for the target class
In order to constrain a knowledge discovery process to generalization on a particular set of data using a particular set of background knowlodge, learning should be directed by specific requests. A database learning request should consist of (i) a database query which extracts the relevant set of data, (ii) the kind of rukes to be learned, (iii) the specification of the target class and possibly the cont rasting classes depending on the rules to be learned, (iv) the prefored concept hicrarchios, and (v) the preferred form to express learning results. Notice lhat (iv) and (v) are optional since default concept hierarchies and generalization threshold values can low med if no preference is specified explicitly.

In our system í)BROUGH, the learning procedure is initiated by a user learning request. The learning request can be viewed as an extension to rolational language SQL for knowledge discovery in databases.

We have implemented DBROUGH using C ' under an Unix/Sybase enviromment. A high level interface has also been constructed with the assistance of l'NIX software package LEX and YACC (for compiling the JBROUCH language interface) for the specification of learning tasks (either characteristic rukes, chassification mos, derision rules or maximal generalized rules and so on), conceptual hierarchics and threshotris as well as for communication with users in the learning process.

The syntax of the language is specified in Table 7.I using extended ISNF', where \{ \} denotes one or more occurrences, Target_Class_Name, C'onlrasi_C'lass_N'ım, Rel_Namu, Attr_Name, Concept_Hierarchy_Name are the corresponding names specilien by usert, and $I n t_{\mu} V a l$ is a constant greater than 0.

<DBROUGH>	:= learn <rule_type>		
<rule_type>	$:=$ <charact_rule> \| <class..rule>	<decision_rule>	
	<maxi_gen_rule> \| <mkr_tule>	<datatrend_rule>	
<charact_rule>	$:=$ characteristic rule for <Class_name> <I)B_name>		
	<Cond> <attr_list><tab_threshold> <con_hierarchy>		
<class_rule>	$:=$ classification rule for Target_Clas_Name vs		
	\{Contrasting_Class_Name\} <DB_name><Cond>		
	<attr_list><tab.threshold> <con_hierarchy>		

<decision_rule>	:= decision rule for < Class_Name><DB_name><Cond> \{<attr_list>\}<tab_threshold> <con_hierarchy>
<maxi_gen_rule>	```:= maximal generated rules for <Class_Name> <DB_name><Cond><attr_list><tab_threshold> <con_hierarchy>```
<mkr_rule>	$:=$ multiple knowledge rule for <Class_name> <DB_name> <Cond><attr_list><tab_threshold><con_hierarchy>
<datatrend_rule>	```:= data_trend_regularities for <Class_name> <DB_name> <Cond><attr_list><tab_threshold> <con_hierarchy>```
<DB_name>	$:=$ from relation \{Rel_Name\}
<Cond>	$:=$ where Condition_Sentence
<attr_list>	$:=$ in relevant to attributes <attr>
<attr>	:= <attrs>, <attr>
<attrs>	:=Attr_Name
<Class_Name>	$:=$ Attr_Name \| Attr_Name=attribute_value
<tab_threshold>	$:=$ using threshold Int_Val
<con_hierarchy>	$:=$ using hierarchy hier_name
<hier_name>	$:=$ Concept_Hierarcy_Name

Table 7.1 Syntactic specification of DBROUGH.

7.2 Experimental Results of Some Algorithms

'lo test the effectivencss of our system DBROUGH, we present the experimental results of some discovery algorithms of DBROUGH on Canada's Natural Science and Engineering Research of Council (NSERC) Grants Information System and Car Relation as shown in Chapter 5.

Figure 7.2: Schema diagram for NSBRC grants information systom

7.2.1 NSERC Grants Information System

The NSERC' Grants Information System is a software package consisting of a database of information about the grants that are awarded by NSLiR(' and a memin based interface to that database. It is intended to be used by individuals in "miver. sities, government agencies and industry... to search for grants that are of particular interest" [HCC92a].

The NSERC' Grants Information System contains a database of information about the grants that are awarded by NSERC'. 'The central table in the chatabase has 10,0s7 tuples with 11 attributes currently. The central table in the database is male of rows each of which describes an award by NSERC' to a researcher. The values constituting each row specify the different properties of the award, including the name of the recipient, the amount of the award and so on. In the schema rliagram Fignte 7.2 , nodes representing the properties of awards are reptesented by norkes linked to the "Award" node. In the schema diagram, tables are specified by rectangnar nodes.

The NSERC database can also be represented by the following relation-like sehema.
Award(recp_name, dept, org_code, fiscal_yr, comp_yr, area_corle, amomit, ghat._corle, ctee_cde, installment, discipline_code, project)

Organization(org_code, org_name, province)
Area(area_code, area_title)
Grant_type (grant_code, grant_title, pmi)
Commitlee (ctee_code, cname)

Discipline (disciplinc_code, disc_title)
The task-specific concept hierarchies (shown in Figure 7.3) are constructed by both domain expert and knowledge discovery tools based on the statistics of data distribution in the database. The most general concept is the null description (described by a reserved word "ANY"), and the most specific concepts correspond to the specific values of attributes in the database.

```
{0-20,000 } \subset 0-20Ks
{20,000-40,000 } \subset 20K.s-40Ks
{40,000-60,000 } \subset 40Ks-60Ks
{60,000-- } \subset 60K.s-
{0-20Nis } C Low
{20Ks-40Ks, 40Ks-60Ks } \subset Medium
{60L:-- } C IIigh
{Low, Medium, High } \subset Any (amount)
{0-15)}\subset Operating-Grants
{150-165}}}\subset\mathrm{ Strategic-Grants
{16-149, 166- } \subset Other
{Oporating-Grant, Strategic-Grants, Other } \subset Any(grant_code)
{23000-23499 } \subset Hardware
{23500-23999 } C System_Organization
{24000-24999} } C Software
{24500-25499 } \subset Theory
{25500-25999 } \subset Database_Systems
{26000-26999 } \subset AI
{26500-26999 } C Computing_Method
{0-22999, 27000- } C Other-Discipline
{Hardware, System_Organization, Software, Theory, Database_Systems, AI, Comput-
ing.Method, Other_Discipline} \subset ANY(discipline_code)
{British Columbia } \subset B.C.
{Alberta, Manitoba, Saskatchewan } \subset Prairies
{Ontario }\subset Ont.
```

$\{$ Quebec \} \subset Quel.
\{New Brunswick, Nova Scotia, Newfoundland, PLII \} C Maritime
\{B.C., Prairics \} \subset West_Canada
\{Ont.. Queb.\} © Central_Canada
$\{$ Maritime $\} \subset$ East_Canada
\{West_Cunada, Central_Canada, East_Canada\} C Any(prowince)
Ligure 7.3. A concept hierarchy table of the NSEC'R grams database

7.2.2 Some Test Results

Example 7.1 (DBChar)
The learning task "learning the characteristic rule for the operating grauts awarded to computer science discipline from relation aurard, organization, and grom! -!yper refer ring attributes: amount, province. with a table threshold value egual to is by using concept hierarchy file disc, amount, prov, and grant_type" can be speceificed as follows.

DBROUGH $1>$ learn characteristic rule

DBROUGH $2>$ for "CS_Op_Grants"
DBROUGH $3>$ from award A, organization O, grant - yppe $(G$
DBROUGH 4> where O.org_code = A.org_code AND G.grant_order ="()perating_Grants" AND A.grant_code $=$ G.grant_code AND A.disc.cocle = "Computer" DBROUGH 5 $>$ in relevance to amount, province, prop(votes), prop(amomi) DBROUGH $6>$ using table threshold 18
DBROUGH $7>$ using hierarchy disc, amount, prov, gramt._lype

Notice that prop(attribute) is a built-in function which returns the percentage of the summation of the attribute value in the gencralized tuple divided by the summa tion of the same attribute value in the whole generalized relation. The type of the attribute must be "int" or "float". Votes is a special attribute which registerss the number of tuples in the original relation which are generalized to ote tuple in the final generalized relation. Prop(votes) returns the percentage of tuples covered by a
generalized tuple in the final relation.
A defanlt atitibute threshold value, 5 , is used in this query. Finally, you have to type "!r!" on a line by itself. It is the command terminator in DBROUGH, and let DIBROUCII know that you are done typing and ready for your command to be executed.

DBROL'Gill first transforms the user learning request into High Level SQL query as below:

High level SQI, query for task-relevant data
select amomit, province
from award A,organization O,grant_type G
where (O.org_code $=$ A.org_code AND G.grant_orler $=$ "Operating_Grants"
ANI) A.grant, code = (i.grant_code AND A.disc.code ="Computer")

As one can see in the High Level SQL query, "Operating_Grants" and "Computer" are high level concepts in the concept hierarchies and are not the primitive data in the datalase, so DBROUGH replaces them by the primitive data (concept) stored in the database by consulting the corresponding concept hierarchies. For example, "Computer" (discipline_cole) contains \{Hardware, System_Organization, Software, Theory, Database.Systems, AI, Computing_Method, Other_Discipline\}. Hence "Computer" in the query is replaced by the disc_code of the corresponding lower level concept, resulting in the primitive query for task-relevant data as follow:
select amount, province
from award A,organization 0 ,grant.type G
 or G.grant_order $=15$) AND A.grant_code $=$ (. grant_code
AND ($($ disc_code $>=23000$ and disc_code $<233500)$
or (disc_code $>=23500$ and disc.code <24000)
or (disc_code $>=24000$ and disc_code <24500)
or $($ disc_code $>=24500$ and disc_code <25500)
or (disc_code $>=25500$ and disc_code <26000)
or (disc_code $>=26000$ and disc_code <26500)
or (disc_code $>=26500$ and disc_code <27000)))

Then DBROUCH extracts the task-relevant data from the NSRRC' gramts information system, after attributc-oriented generalization and rough set based redur tion, the resultant relation is shown in Table 7.1. henes the characteristic rules for "CS_Op_Grants" is derived as:

The characteristic rule for"CS_Op_Grants" is:

For all x, CS_Op_Grants(x) —->
 or $(($ amount $=20 \mathrm{Ks}-40 \mathrm{Ks})$ and $($ province $=\{$ Ont. , Prairics $])[18.107 \% \mid)$ or $(($ amount $=[40 \mathrm{Ks}-60 \mathrm{Ks}, 0-20 \mathrm{Ks}])$ and $($ province $=13 . C).[8.642 \% /[)$ or $(($ amount $=20 \mathrm{Ks}-40 \mathrm{Ks})$ and $($ province $=$ (Queb. , B.C. $])[10.494 \% /])$ or $(($ amount $=40 \mathrm{Ks}-60 \mathrm{Ks})$ and $($ province $=[$ Ont. , Prairies $])[5.350(\%)])$ or $(($ amount $=0-20 \mathrm{Ks})$ and $($ province $=[$ Prairies, Maritime $\mid)[[5,021 \%])$ or $(($ amount $=[40 \mathrm{Ks}-60 \mathrm{Ks}, 60 \mathrm{Ks}-])$ and $($ province $=$ Queb. $)[1.2: 35 \%])$ or $(($ amount $=60 \mathrm{Ks-})$ and $($ province $=\{$ Ont., Prairies $\})|1.646 \%|)$ or $(($ amount $=20 \mathrm{Ks}-40 \mathrm{Ks})$ and $($ province $=$ Maritime $)[0,010 \% /\}$

amount	province	prop(votes)	prop(amount)
$0-20 \mathrm{Ks}$	Ont.	24.49%	3.88%
$0-20 \mathrm{Ks}$	Queb.	13.79%	2.92%
$20 \mathrm{Ks}-40 \mathrm{Ks}$	Ont.	12.76%	2.22%
$20 \mathrm{Ks}-40 \mathrm{Ks}$	Prairies	5.35%	9.69%
$40 \mathrm{Ks}-60 \mathrm{Ks}$	B.C.	1.23%	4.58%
$0-20 \mathrm{Ks}$	B.C.	7.41%	4.24%
$20 \mathrm{Kis}-40 \mathrm{Ks}$	Queb.	5.14%	5.22%
$40 \mathrm{Ks}-60 \mathrm{Ks}$	Ont.	5.14%	5.54%
$0-20 \mathrm{Ks}$	Prairies	8.23%	11.20%
$0-20 \mathrm{Ks}$	Maritime	6.79%	4.61%
$20 \mathrm{Ks}-40 \mathrm{Kis}$	B.C.	5.35%	7.01%
$40 \mathrm{Ks}-60 \mathrm{Ks}$	Prairies	0.21%	3.32%
$40 \mathrm{Ks}-60 \mathrm{Ks}$	Queb.	1.03%	4.23%
$60 \mathrm{Kis}-$	Ont.	1.23%	10.66%
60Ks-	Prairics	0.41%	4.99%
$20 \mathrm{Ks}-40 \mathrm{Ks}$	Maritime	1.03%	6.37%
$60 \mathrm{Kis}-$	Queb.	0.21%	3.78%
60Ks-	B.C.	0.21%	5.54%

Table 7.1: The final generalized relation

disc．code	grant＿order	athollit	volt
Computer	Operating＿Grants	20kis－10kis	（62
Computer	Operating＿Crants	10に5－60）に	25
Computer	Other	60）R－	i
Computer	Other	f0に5－601．	；
Computer	Strategic＿Cirants	60）${ }^{\text {cis－}}$	8
Computer	Operating＿Cirants	60）Rs－	（
Computer	Strategic＿Crants	40ks－（6）K゙s	1

Table 7．2：The final generalized relation
or $(($ amount $=60 \mathrm{Ks}-)$ and $($ province $=$ B．C．$)[0.002 \% / 1)$

Example 7．2（DBC＇Lass）
Similarly，the following learning request learns the diserimination rule that ean dis－ tinguish the computer science grants awarded to Ontario from those awarded to Now． foundland．

DBROUGH $1>$ learn discrimination rule

DBROUGH $2>$ for＂Ontario＿CS＿Grants＂
DBROUGH 3＞where O．province $=$＂Ontario＂
DBROUGH $4>$ in contrast to＂Newfommlland＿CS＿（irams＂
DBROUGH s＞where 0 ．province $=$＂Newfoundland＂
DBROUGH 6＞from award A ，organization O ，grantalype（i DBROUGH 7＞where A．grant＿code $=$ G．grant＿code AND A．org＿colle $=$（ ．org＿cod \cdot

AND A．disc＿＿code $=$＂Computer＂
DBROUGH $8>$ in relevance to disc＿code，amount，gramt＿order

Notice that both attribute and table threshold value are default omes．All the concept hierarchy information required is stored in a default file comerepl

```
    For all \(x\), Om_Crants(x) <
( (diseceode \(=\) Computer \()\) and (grant_order \(=\) Operating_Cirants \()\) and
( anomint \(=\) [ 20Ks-40Ks, 40Ks-60ks \(]\) ) [34.357\%] )
or \(((\) dissecode \(=\) Computer \()\) and \((\) grant_order \(=\) Other \()\) and
```



```
or \(((\) disc_code \(=\) Computer \()\) and \((\) grant_order \(=\{\) Strategic_Grants ,
Operating_Grants \(]\) ) and (amount \(=(60\) Ks- \()(5.534 \% \mid)\)
or \(((\) discesode \(=\) Computer \()\) and \((\) grant_order \(=\) Strategic_Grants \()\) and
( amomut \(=40\) Kis-finks ) \((0.004 \%\) )
```

Brample 9.3 (DBBDcci)

Suppose our objective is to learn a decision rule which tells which features of a car really determine the mileage. The request is specified to DBROUGII as follows:

DBROUGGII $>$ learn decision rule DBROUGill $2>$ for Milenge. DBROUCGII $3>$ from Car-relation

Notice in this learning request, the concept hierarchies and the threshold are not sperefifed, thas the default ones will be used.

DBROUGII first extracts the relevant data from the database system, the resultam table is shown in Table 5.2, then the attribute-oriented induction is applied to this table, and we obtain the generalized relation as shown in Table 4.1. Next the rough set method is applied to this generalized table and finds the best reduct \{Makemodel, compress, trans\}, so the generalized relation is reduced further by renoving those attributes: cyl, door, displace, power, weight, resulting in Table 5.4.

Combining the similar tuples in the reduced table, the reduced table Table 5.4 is

1-1	1	2	$\overline{3}$	1 -	!	0 1-1117	
1	(C.1).(T.1).(W.1)	$\begin{aligned} & (6,1,(1) 00 .(6.10) \\ & (\$.11),(1,0) \end{aligned}$	$\begin{aligned} & (1) P, 0),(P, 0) \\ & (14, H, T, 11 \end{aligned}$	$\begin{aligned} & \text { (CX,(0, } 11,0) \\ & (w, 1) \end{aligned}$	$(10,009,(10.3)$	$\begin{aligned} & 64,16,01.117,11) \\ & (111111 \end{aligned}$	(190.014, (WI
2	$\begin{aligned} & \text { (M,1),(C,1),(1,1)} \\ & (p, 2),(T, 1,(W, 1) \\ & (0, p, 1) \end{aligned}$		$\begin{aligned} & (1,1)\left(b^{\prime},{ }^{2}\right) \\ & (T, 1),\left(w^{\prime}, 1\right) \end{aligned}$				
3			$\begin{aligned} & \text { (MS,1) }(D), 0) \\ & (0,1,1),(1,1) \end{aligned}$	[M, 17			NMI
4	$\begin{aligned} & (\mathrm{M}, \mathrm{~T},(6,1) \\ & (\mathrm{D}, 1),(\mathrm{F}, 1) \end{aligned}$	$\begin{aligned} & \left(\prod_{1}, 1\right),(c, 1)(b, 0) \\ & \left(D P^{\prime}, 1\right),(c, 1,0),(P, 0) \end{aligned}$	$\begin{aligned} & (M, 1),(1,0) \\ & (1,1) \end{aligned}$	$\begin{aligned} & (1,1) .(1)+.1) \\ & (1,0) \end{aligned}$			TM.1T. (1TP, 1 (T', 1). (1, 31,01
5	$\begin{aligned} & (\text { (r,i) }(\mathrm{c}, 1),(\mathrm{r}, 2) \\ & (\mathrm{DP}, 1),(\mathrm{cN}, 1),(r, 1) \end{aligned}$	$\begin{aligned} & (1,1),(1,1),(10,0) \\ & \text { (1) } 1,1),(1,2) \end{aligned}$	$\begin{aligned} & \text { TMisics. } 1 \\ & \left(1,21, f^{\prime}, 1\right) \end{aligned}$	(11.1.105,1)	(191)767.1)		$\begin{aligned} & \text { Mr } \left.1)\left(5^{2}\right)^{2}\right) \\ & 110^{*} \end{aligned}$
6	$\begin{aligned} & (\mathrm{N}, 1),(6,1), 11,1) \\ & (\mathrm{D}, 1),(T, 1) \end{aligned}$	$\begin{aligned} & (1,1,(6,1), 1), 01 \\ & \text { (1) } 4,11,(6,1,1) \end{aligned}$	(1.2), (T, 1)	$\begin{aligned} & \text { (in.11. } 107.11 \\ & (6: 1,0) \end{aligned}$	$\begin{aligned} & \text { mi.11.(DP.1) } \\ & \left(1,11,\left(c^{\prime} s 1,0\right)\right. \end{aligned}$		
7	$\begin{aligned} & (\mathrm{C}, 1),(\mathrm{Pr}, \mathrm{I}) \\ & (p, 1),(T, 1) \end{aligned}$	$\begin{aligned} & \text { (C,D),(DP, II, } \mathrm{C}, 01 \\ & \text { (0,0) } \end{aligned}$	(11.1)		(mintim, ${ }^{\text {(17) }}$		

Table 7.3: Decision matrix for the class mikenge=116(in
further simplified to Table 5.7. From Table :3.7, we can derive the following rules:

then (mileagemandium)

then (mileage $=\mathrm{HICH}$)

Example 7.4 (DBMaxi)

DBROUGII $1>$ learn all maximal generalized rules
 DRROUGII $2>$ for Milcaye= 1 IICi:
 DBROUGII $3>$ from Citr-relation

DBROUGH first gets the task-relevant data, then apply the atuributromiduted induction to obtain Table 4.1. After the rough set based data reduction, Ihe derision matrix as shown in Table 7.3 are constructed.

By applying the distributivity and absorption laws of Boolean algel) ra, cach derision boolean function can be expressed in a simplified form of a disjunction of minimal conjunctive expressions.

DBROUGH generates all the maximal generalized rules for the discovery task Mileage $=$ HIG'H as follow:
(1) if $($ cyl $=4) \&($ displace $=$ MEDIUM $) \&($ compress $=\operatorname{IICII})$
then (mileage $=$ HIGII)
(2) if $($ compress $=111 G H) \&($ trans $=$ MANUAL $)$ then $($ mileage $=\mathrm{HIGH})$
(3) if $($ weight $=\mathrm{LIGHT})$ then $($ mileage $=\mathrm{HIGH})$
(4) if $(\mathrm{cyl}=4) \&($ compress $=\mathrm{HIGH}) \&($ power $=\mathrm{HIGH})$
then (mileage $=\mathrm{IHCH})$
(5) if (Make_model $=$ JAPAN $)$ then $($ mileage $=$ HIGH $)$
(6) if $($ power $=$ LOW $)$ then (mileage $=$ HIGH $)$
(7) if $($ displace $=$ SMALL $)$ \& $($ trans $=$ MANUAL $)$ then $($ mileage $=\mathrm{HIGH})$
(8) if $($ displace $=$ SMALL $) ~ \& ~($ power $=$ HIGH $)$ then $($ mileage $=$ HIGH $)$
(9) if $($ displace $=$ SMALL $) \&($ compress $=$ MEDILM $)$ then $($ mileage $=$ HIGH $)$

Chapter 8

Discussion

8.1 A Comparison with Other Learning Methods

Our learning procedure consists of two phases: data gemeralization and data te duction. Our method uses attribute-oriented induction for gemeralization, which pro vides an efficient way to generalize the database and greatly reduce the computational complexity. The efficiency of the attribute-oriented generalization can also be demon strated by analyzing its worst case time complexity. Suppose there are δ luples it the database which are relevant to the learning task, A attributes for cach tuplest, and H levels for each concept tree. the time complexity in the worst case is allalyeed as follows. For each attribute, the time for substituting the lower level concepts by the higher level concepts is N, and the time for checking redumbant tuples, is , V/opi, N '. Since the height of the concept tree is I, the time spent on cach athilome is it most $H *(N+N \log N)$. Obviously, the upper bound of the total time for processing A attributes is $A * H *(N+N \log N)$. In general, A and $/ /$ are much smaller than N in a large database. Therefore, the time complexity of our approach is $O(N$ log N) in the worst case, which is more efficient than the tuple-oriented generalization.

In data reduction, suppose there are only $N^{\prime \prime}$ tuples with A^{\prime} attributes left in the generalized relation, to construct the discernibility matrix, it only takes $O\left(N^{\prime \prime} / N^{\prime}\right)$ steps. To search the core attributes in a discernibility matrix, it costs $O\left(x^{\prime \prime} \times N^{\prime}\right)$. To find the reduct for the condition attributes, in the worst case, the complexity is $A^{\prime} \times O\left(N^{\prime} \times N^{\prime}\right)$. Since A^{\prime} is usually much less than $N^{\prime \prime}$, the worst case in the reduction
process is $O\left(N^{\prime} \times N^{\prime \prime}\right)$.
Then we examine other learning methods. Most learning algorithms in the literature [DiM83] are tuple-oriented algorithms. A tuple-oriented method examines data in the database tuple by tuple and performs generalization based on the comparison of tuple values with the intermediate generalization results. Since the number of the possible tuple combinations is exponential to the number of tuples in the relevant data set, the worst case complexity of the generalization process is exponential to the size of the relevant data sets.

8.2 Search Space

A concept tree ascending technique is the major generalization techniques used in both att ributc-oriented generalization and tuple-oriented generalization. However, the tuple-oriented approach performs generalization tuple by tuple. but the attributeoriented approach performs generalization attribute by attribute. We compare the search spaces of our algorithms with that of a typical method of learning from examples, the candidate elimination algorithm [DiM83]

In the candidate elimination algorithm, the set of all concepts which are consistent with the training examples is called the version space of the training examples. The learning process is the search in this version space to induce a generalization concept which is satisfied by all of the positive examples and none of the negative examples.

Since generalization in an attribute oriented approach is performed on an individual attribute, a concept hierarchy of each attribute can be treated as a factored version space. Factoring the version space significantly improves the general efficiency. Suppose there are p nodes in each concept tree and there are k concept trees (attributes) in the relation, the total size of a k factorized version space is $p k$. However, the size of the unfactorized version space for the same concept tree should be p^{k}.

8.3 Utilizing Database Facilities

Relational database systems provide many at tractive features for machine learning, such as the capacity to store a large amount of information in a structured and organized manner and the availability of well developed implementation terhmigues. However most existing algorithms do not take advantage of these database lacilities [CCH91]. An obvious advantage of our approach over many of her learning algorithms is the integration of the learning process with database operations. Most of the operations used in our approach involve traditional relational database oprations, such as selection, join, projection (extracting relevant data and removing attributes), tuple substitution (ascending concept trees), and intersection (discovering common tuples among classes). These operations are set-oriented and have been ciliciently implemented in many relational systems. While most learning algorithms suffer from
 approach can use database facilities to improve the performance.

8.4 Dealing with Different Kinds of Concept Hierarchies

In our examples, all of the concept hierarchics are represented as balanced soncept, trees and all of the primitive concepts reside at the same level of a concet trex. Hence generalization can be performed synchronously on cach at tribute lo gencralize the attribute values at the same lower level to the ones at the smme higher level. However, we may encounter other kinds of concept hierarehies or we may enconnter the case where the primitive concepts do not roside at the same level of a concept tree.

Generalization of the Concepts at Different Levels of a Hierarchy

The concept hierarchies may be organized as unbalanced concept trees. For example, the left branch of a tree may have fewer levels of leaves than the right branch. In these cases, synchronous tree ascension may reach the same level at different stages, which may result in an incorrect generalization at that level. A similar problem

Figure 8.1: An unbalanced concept tree
may occur when the primitive concepts reside at the different levels of a concept tree. These problems can be solved by checking whether one generalized concept may cover other concepts of the same attribute. If one generalized concept covers a concept several levels down the concept tree, the covered concept is then substituted for by the gencralized concept, that is, ascending the tree several levels at once.

Figure 8.1 shows an unbalanced concept tree. Based on the discussion above, as long as the attribute value "ellipsc" has been generalized to "oval", those attribute values, "small_circle", "large_circle" and "circle". can be substituted by "oval" at once.
'This iclea can be used for incremental learning as well. Relational databases are charactrrized by frequent updating. As new data become available, it will be more efficient to amend and reinforce what was learned from previous data than to restart the loarning process from scratch [HCC92]. Our algorithms are able to be extended to perform incremental learning. When new data are presented to a database, an efficient approach to characterization and classification of data is to first generalize the concopts of the new data up to the level of the rules which have been learned, then the learning algorithms can be used to merge the generalized concepts derived from the old data and the new data.

Figure 8.2: A concept tree with lattices

Generalization of Concepts in the Hierarchies with Lattices

In all of our previous examples, the concept hierarchies are trees, that is, cvery node has only one parent node. For any concept, therefore, there is only one dirertion to perform the generalization. In some cases, however, the concept hierarchy may be a lattice. Figure 8.2 illustrates this case.

As illustrated in Figure 8.2, the concept "two" can be generalized cither to "conple" or "few". iwth generalized concepts should be considered. Our mothod is to put all possible generalized concepts into intermediate generalized relations when a lattice is encountered, and then perform further generalization on all those tuples. In this example, after the tuple containing attribute value "two" is gemeralized, iwo new tuples, containing attribute values "couple" and "fow", respectively, should be generalized. For the concept "six", the same technique should be applied. As a consequence, the size of the generalized relation table may increase at some stage of the generalization process because of the effect of a lattice. However, since the genoralization is controlled by the specified value, the generalized relation will evemtually shrink in further genoralization.

8.5 Discovery of Knowledge by Conceptual Clustering

Most conceptual classification algorithms in the literature [MiS83, l"i87a] are tuple-oriented algorithms. A tuple-oriented algorithm examines data in the clatabitse
tuple by tuple and performs generalization and classification based on the comparison of tuple values with the intermediate generalization results. Since the number of possible tuple combinations is exponential to the number of tuples in the relevant data set, the worst case complexity of the generalization and classification process is exponential to the size of the relevant data sets. But our method uses a new method to classify the data set based on the common attribute values between different tuples. At each iteration, a matrix is constructed in $O\left(n^{2}\right)$ where n is the number of the tuples of the data set. According to the distribution of the values in the matrix, a suitable value is chosen which is a similarity measure for classification.

The advantages of our method include:
(1) Our algorithm can attomatically find a hierarchy table without assistance. The mumber of clusters and the levels of the hierarchy are determined by the algorithm; it is unlike the famous CLUSTSER/2 in which the user must specify the number of final clusters and the initial seeds in the beginning.
(2) Objects are not assigned to clusters absolutely.

Our method calculates the similarity between each pair of objects, providing a more intuitive classification than absolute partitioning techniques. Our method aggregates objects from bottom to top based on the similarity between them and if an object has the same number of common attribute value to two clusters, then the object is assigned to both clusters.
(3) The threshold value has a big influence on whether or not an instance is admilted to a class. We can vary the threshold, get different hierarchy tables so the algorithm caa generate different sets of rules to meet the needs of varied applications.

8.6 Reduction of Databases

In DBROUGH, the learning procedure is initiated by a learning request submitted from the user. 'The query condition determines what data should be retrieved from The DHMS. This is accomplished by specifying which tables need to be accessed, which fields should be returned, and which or how many records should be retrieved. Learning task are those tuples which satisfying the query conditions and the specified
fields, which greatly reduce the search space of the data. Using rough set theory, the minimal attribute set or reduct of the attribute in the databases can be compuled and each reduct can be used instead of the whole attribute set without losing any essential information. By removing those attributes which are not in the reduct. Whe generalize table can be further reduced.

8.7 Data Evolution Regularity

One of the big challenge facing KDD is that the content of data is constandy changing. There are a lot of algorithms developed to find rules from databases directily [FrP91, CeT93], but all these algorithms assume that the data and the data scheme: are stable and most of the algorithms focus on discovering the regularities about the current data in the databases. The re lity is that the contents of databases and database scheme may change over time and users are often interested in linding the: general trends of data evolution to predict the future. So it is important to discover data evolution regularities in a dynamic evolving database. Since the data for whe future is usually not available at the current time, we have to learn the data frend regularities for the future data based on the current data in the databases. Machine learning technology should be adopted to extract such regularitios in databases. In this section we use an example to illustrate how to expand the athibnte-oriented rough set approach to learn data evolution regularities.

One of the key issues to learn from data in a dynamic enviromment is how the relationships between the instance in different states are defined. In one mothorl, wo combine the concept hierarchy with the transition constraints to model the relation ship between the instances in different states.

We say that an entity which is an instance of one class (called the souree class) undergoes a transition when it becomes an instance of another class (called targel, class). There are two types of transition evolution and extension [Ha(i)O], baserl on whether or not the entity undergoing the transition is preserved as an instance of the source class or not. In other words, an evolution occurs when the transition entit.y ceases to be an instance of the source class. For example, when an entity pepresenting

lialtie	sen	bittiday	ermployer	\#alary	dependente
$5 \times \mathrm{m}$	\%	dee. 3, 1354	SMR	70k	2
Janct	F	Aug. 4, 190\%	13NJ	s3k	3
Maty	F	June 23, 134\%	NT*	cok	3
Tom	M	July 17, 1963	Gov.	30k	0
\because	\%			\because	$\ddot{\square}$
Jay	M	Oct, 21, 1070	MPE	10k	!
Matk	M	12n, 20, 1240	NGE	100k	2

Table 8.1: Adult relation
an applicant changes to reflect the acceptance of the applicant, it undergoes an evolution; that is, it ceases to be an instance of the applicant and becomes an instance of the student. An extension is a transition with the negative of the additional condition associated with evolution. In other words, an extension occurs when the entity remains an instance of the source class with the negation of the additional condition associated with evolution. For example, when an alumnus with a Master's degree applies to the $\mathrm{Ph} . \mathrm{D}$) program, the transition of the entity representing the alumnus into an instance subclass is an extension.

Note that some of the transition events are triggered solely by time whereas others are triggered by other events in the dynamic system. To make our explanation simple, we assume only evolution occurs in our dynamic environment model and all the transitions are triggered by time.

Consider a simple version of the social security database in some social benefit office in Canada as shown in Table $8.1,8.2$ (a), (b). Figure 8.3 is the concept hierarchies for attributes age, salary and pension. Figure 8.4 is the corresponding concept hierarchy and transition network. Citizen may start as a child. When children reach the age of 18, they become an instance of Adult. Later, at age 65, they retire (senior citizen) and eventually die. The transition from senior citizen to death is weak because some people may live older than 85 while some other may not. We use \nrightarrow to represent weak transition.
$\{0-4\}$: children; $\{4-14\}$: teenages; $\{14-20\}$: young
$\{20-29\}$: wenties; $\{30-39\}$: thirties; $\{40-49\}$: forties
\{50-64 $\}$: late_mid; \{ $65-\}$: old
\{children , tecnages\}: childage; \{young, twenties\}: young-age

name	sex	birthilay	Achool	guatdian
Jatie	F	UGt, 5, 1084	No, 1	Snm
Janet	F	June. 4, 1986	So. 1	Mary
Mary	F	June G, 1083	So. 2	Tont
Peter	M	July 17, 1070	Bran	Mark
John	M	F̈rb 24, 1980	M̈ns	Jay
Frank	M	Jath. 20. 1082	PCC	Jatiet

hable	Ma	Thithiny	1rmplul
Wabsje	F	Wrt $\mathrm{Sa}_{4} 1025$	17 k
J.asil	\%	July 14, 152:1	2,ik
Rome	F	J.ant 2A, 101.t	dibl
Corioha	M	A18, 21. 1910	10\%
C'latk	M	Frle. 23, 1911	16%

Table 8.2: (a) Child relation; (b) Senior citizen relation

SeniorCitizen.pension=Adult.salary when retired * 65% Child.name=Adult. Name=SeniorCitizen. name age=current date-birthday

Figure 8.4: The class hierarchy and transition network for people
\{thirties, forties, late_mid\}: mid_age; \{old\}: old_age \{child_age, youth_age, mid_age, old_age\}: Any(age) \{0-20k\}: low_income; \{20K-34k\}: low_middle_income; \{35k-4;k\}: mid_incomer \{46-65k\}: high_income; \{66k-\}:very_high_income; \{low_income, low_mid_income, mid_ucome, high_income, very _high_inconne\}: Any(incume)

Figure 8.3: The concept hierarchy for age, salary, pension
To discover data evolution regularities in the future, the evolving data should be identified first and be extracted from the database. l'or example, if the city adminis trator wants to know the general situation about the senior citizen y years later, the query may be submitted as below:

DBROUGH $1>$ learn data evolution regularities for senionciti:sen S DBROUGH 2> 5 years later
 DBROUGH 3> in relevant to S.name, S'sex, S.pension

matiom	sex	pentioll
Woape	F	17k
Jamotin	M	28k
Robr	${ }^{\prime}$	cok
Codaba	\%	
Clask	\cdots	10k

Table 8.3: Instance of senior citizen

The evolving data may have two kinds of attributes: stable attributes and evolving attributes. The stable attributes, in which the data values do not change over time, can be gencralized by attribute-oriented induction in the same way as those discussed in C'lapter 3. The evolving attributes. in which the data values change over time, can lor generalized according to a generalized time slots when appropriate. For example, adulle's salary keeps changing yearly and so we need to update the salary based on the lime valuc. Once we get the value for the salary, then we can still apply attributeorisuted induction. The data extraction procedure is performed in two steps (1) extract the target class entities based on the query; (2) examine the class hierarchy and transition network to check whether there are any source class entities which can trausform to the current learning class as time goes by. For example, for the above (puery, the first step is to extract all the citizens from the current senior citizen relation exrept those who are 80 years old (because we assume that a senior citizen dies at 85). 'Tlen we examine the concept hierarchy and transition network and find an Adult becomes a senior citizen when he reaches 6ij. Hence we have to look through the Adult relation and extract those adults who are older than 60 and derive the corresponding althibutes values. e.g. replace salary by pension. (We can assume that adult salary increases 4% each year, first compute the adult salary when he retires, and then apply the procedure: seniorciti\%en.pension=adult salary when retired * 65%). As a result, we get a sel of task-relevant instances objects as shown in Table 8.3. After we get the task-rolevamt data, the data generalization and data reduction procedure can be applied in the same way as discussed in previous chapters and interesting data trend regularities can be found [HCX94].

Chapter 9

Conclusion and Future Directions

9.1 Conclusion

The rapid growth of data in the world's data wases is one reason for the werem inter est in KDD. The vastuess of this data also creates one of Kil)'s greatest challeruges. Exhaustive, empirical analysis is all but impossible on the megalyte, gigalyenes or even terabytes of data in many real-world databases. In theses situations. a libl) sys tem must be able to focus its analysis on samples of data by solecting sperific firdls and/or subsets of records.

In this thesis, we proposed a framework for knowlerlge discovery in danalasess us; ing rough sets and attribute-oriented induction. Our system implenimulis a mumber of novel ideas. In our system, attribute-oriented induction is applied in the gromralizan tion process to remove undesirable attributes and to gempalize the primitive data to th. desirable level. In the data reduction process. rough set theory is userd to compulut. L.a. minimal attribute set, or reduct of the ateribute in the datalasess and werch refluet, can be used instead of the entire attribute set, withom losing any essembial infors mation. By removing those attributes which are not in the reduct. the gemeralizerl relation can be further reduced. The rules generated after data generalization and reduction are much more concise and efficacions.

Our method integrates a variety of knowledge discovery algorithmes such as I)3(Char
 Maxi for maximal generalized rules, DBMMk for multiple sets.s of knowledger rules and

DI3'Tremd for data trend regularities, which permit a ther to discover varions kinds of relationships and regularities in the data. This integration allows our method to exploit the strengltes of diverse discovery programs. Our systems inherit the advantages of the attribute-oriented induction model and rough set theory and make some combibution to the KDJ), such as handling large volume data (millions of tuples), redundancy data, uncertainty information. multiple sets of knowledge rules, discover raba trend regulanities and so on.

KiDI) systems face challenging problems from real-work databases which tend to br dynamic. incomplete, redundant, noisy and very large. Each of these problems has been addressed to some extent within machine learning. Dut fow. if any. systems address all of them. In this thesis, our system collectively handles these problems while producing useful knowledge rules efficiently and effectively. In our system, we use attribute-oriented induction rather than tuple-oriented induction, thus greatly improving the learning efficiency. By integrating rough set techniques into the learning procedure. the derived knowledge rules are particularly concise and pertinent, since only the rolevant and/or important attributes (factors) to the learning task are considered. In one system, the combination of transition network and concept hierarchy provides a nico mechanism to handle dynamic characteristic of data in the databases. For applications with noisy data. our system can generate multiple sets of knowledge rules throngh a decision matrix to improve the learning accuracy. The experiments using the NSPRC information system demonstrate the promise of our method.

9.2 Future Direction

'Ihe realization of a gemeral purpose, fully-automated knowledge discovery system is still far from reach. 'lhe attribute-oriented rough set approach represents a promising direction to follow in the development of efficient and effective learning strategy for knowledge discovery in databases. There are many issues which should be studied further. 'The following are some interesting topics for future research.

9.2.1 Applications of Knowledge Rules Discovered from Relational Databases

The knowledge rules learned from relational databases are wery useful in many applications, some of which are listed helow:
(1) Discovery of knowledge rules from knowledge-base s.ystoms and ixpern s.s.stems [ASCO5].

Since rules are derived from a huge mumber of data stored in a relational dalabase. they represent important knowledge about data in the databasis. Tlus our apmoint is an important method to obtain knowledge rules for knowlenlge-base spstions and expert systems
(2) Processing of queries which involve abstarel conerples

In general, relational databases can only answrer guriess which involvelluromerpts in the database. but they cannot hande queries like "What ate lhe major chatactoris tic of mammals?" and "How can we describe the major difleromers ber weron manmals and birds?". Such queries involve concepts which are at a higher level inam lue prinn

(3) Semantic guery optimization using the learoed pules,
 timization in domains where the user camot provide a compreblemine sel of intrepits const raints. Some queries can be answered more eficiemly ly the larmel knowledge mules without searching databases. loor examplo. the durery. "Is there any mammal who has feathers?", usually indicates that the relation must be seircholl. However, if the characteristic rule indicates that the is ne mammal who has freithers, this query can be answered immediately without any search. Learnol rulo, may sperel in or optimize database guery processing as previonsly sturlied in sembutio qumpy opli: mization. Notice that when there is a large mumber of loarmed rules. it is montrivial
 such semantic optimization versus searching the database dirertly.

9.2.2 Construction of An Interactive Learning System

As illustrated in our learning system, the database learning process is guided by experts or users. Experts and users must specify the learning task and define the threshold value. It is important to obtain such information by interaction with users and experts because:
(1) the system should have a user-friendly interface to facilitates users communication with the learning system. A more flexible database learning language should be developed for such an interface: and
(2) the entire learning process should be monitored and controlled by users. For example, at some stage of the learning process. users may terminate the generalization on some selected attributes but continue the process on other attributes. In order to obtain multiple rules. users may influence the learning process using different threshold values.

9.2.3 Integration of Multiple Types of Discovery Strategy

Most research in knowledge discovery in databases has been thus far primarily concerned with the development of single-strategy learning approaches. Such approaches include empirical induction from examples. explanation-based learning. learning by analogy, cased-based learning: and abductive learning. Single-strategy approach has specific reguirements as to the kind of input information from which they can learn, and the amount of background knowledge needed prior to learning. They also produce different kinds of knowledge. Consequently. they apply to relatively narrow classes of problems.

Real-world problems rarely satisfy all the requirements s : single-strategy learning mothods. However. they usually satisfy partially the requirements of several strategirs. In this context. there is a need for systems that can apply different strategies in an integrated fashion. The method is based on the idea of "understanding" the input through an explanation of system's background knowledge, and an employment of different inference type-deduction, analogy and induction.

A major advantage of the method is that it enables the system to learn in situations
in which single-strategy learning methods, or even previous integrated learning moth ods were insufficient. Therefore the proposed method reduces to a single-st rategy whenever the applicability conditions for such a method are satisfied. In this respect, the multiple strategy method may be regarded as a genemalization of these single-strategy methods.

References

[ASCO5] A. An, N. Shan, C. Chan, N. Cecone, W. Ziarko, (1995). Discovering Rules from Data for Water Demand Prediction. accepted in the IJCAI workshop on Machine Learning and Expert System, Montreal, Canada, Aug. 21-23, 1995.
[ArM86] B. Arbab and D. Michie, (1985). Generating Rules from Examples, Proc. Ninlh Int. Joint Conf. on Artificial Intelligence, 631-633
[BKM91] C.' Baral, S.Kraus, and J. Minker, (1991). Combining Multiple Knowledge Bases, IEEE Trans. on Knowledge and Data Engineering, Vol. 3, 208-220
[Hoo86] J. Boose, [1986], Rapid Acquisition and Combination of Knowledge from Multiple Experts In The Same Domain. Future Computing Systems. 1/2, 191 216
[BuM78] B.G. Buchanan and T. M. Mitchell, (1978). Model-Directed Learning of Production Rules, Pattern-Directed Inference System, Academic Press, Waterman et. al. (eds), 291-312.
[C'H91] Y. Cai, N. Cercone and J. Han, (1991). Attribute_Oriented Induction in Relational databases, in Kinowledge Discovery in Database, AAAI/MIT Press, G.Piatetsky-Shapiro and W.J. Frawley (eds), 213-228.
[Ce'T93] N. Cercone, M. Tsuchiya, (eds), (1993) Special Issue on Learning and Discovery in Ḱnowledge.Based Databases, IEEE Transaction on Knowledge and Data Engineering, Vol. 5(6).
[CHH95] N. Cercone. H. Horward, X. Hu and N. Shan, (1995) Data Mining Using Attribute-Oriented generalization and Information Reduction, ineited puper in the Rough Set Theory Workshop
[Cen87] J. Cendrowska, (1987). PRISM: An Algorithm for Inducing Modular Rules. Int. J. Man-Machine Studies, Vol. 27, 349-370
[CeB88] B. Cestnik, I. Bratko. (1988) Learning redundants rules in moisy domains, Proc. Europe Conf. on Artificial Intclligence, Munich. Italy 348-351
[Ces90] B. Cestnik, (1990). Estimating probabilitics: A Crucial Task in Machine Learning, Proc. Europe Conf. on Arlificial Intelligence.
[CIN89] P. Clark, T. Niblett, (1989). The CN2 Induction Algorithm. Machine Le:mrning Journal, 3(4): 261-283
[ClB91] P. Clark, R. Boswell, (1989) Rule Induction with (N 2 : Recomt Improvement, Proc. EWSL 91, Porto, 151-163
[ChF85] Y. Cheng, K.S. Fu, (1985). Conceptual Clustering in Knowledge Organization, IEEE Transaction on Pattern Analysis and Machine 'Intelliycnes, !(5) 592-598.
[CKS88] P. Chessman, J. Kelly, M. Self, J. Stut\%, W. Thylor, D). Freoman, (IS88). AutoClass: A bayesian Classification System, Proc. of the Piffh Inlermalionl Workshop on Machine Learning, Morgan Kaufmann, San Mateo, (BA, 230)-215).
[CoF83] P. Cohen and E. A. Feigenbaum, (1983). The Itandbook of Arlificinal Intelligence Vol. 3, Heuristic Press and William Kaufmam Inc.
[DiM81] T.G. Dietterich and R.S. Michalski, (1981). Inductive learning of Structural Descriptions: Evaluation Criteria and Comparative Review of Selected Methods, Artificial Intelligence, Vol. 16, 251-294.
[DiM83] T.G. Dietterich and R.S. Michalski, (1983) A Comparative Review of Selected Methods for Learning from Examples, Machine Learning: An Artificial Inlelligence Approach, Vol. 1, Morgan Kaufmann 41-82
[FAM86] B.C'. Falkenhainer and R.S. Michalski, (1986). Integrating Quantitative and Qualitiative Discovery: the ABACUS system, Machine Learning, Vol. 1, No.4, 367-401.
[Fa192] U. M. Fayyd, K. B. Irani, (1992). The Attribute Selection Problem in Decision Tree Generation, Proc. of 1992 AAAI Conf.. 104-110
[Fi87a] D. Fisher, (1987a). Improving Inference Through Conceptual Clustering. Proc. of 1987 AAAI Conf.. Seattle. Washington, 231-239.
[Hi 87 l]] D. Fisher, (1987b) A Computational Account of Basic Level and Typicality Effects, Proccedings of 1987 AAAI Conf., Seattle. Washington, 461-465.
[1PM9I] W. J. Frawley, G. Piatetsky and C.J. Matheus, (1991). Knowledge Discovery in Database : An Overview, Knowledge Discovery in Database, AAAI/MIT' Press, G.Piatetsky-Shapiro and W..J. Frawley (eds) 1-27.
[Gams9] M. Gams, (1989). New Measurements Highlight the Importance of Redundant Knowledge, Proc. 4 th Europe Working Session on Learning, Momtpellier 71-80
[GiiFSl] T. Garvey, J. Lowrance amd M. Fischler, (1981). An Inference Technique for Integrating Knowledge from Disparate Sources, Proc. Seventh Int. Joint. Conf. Artificial Intelligence, 1, 319-325.
[GeN87] M. Genesereth and N. Nilson, (1987). Logical Foundation of Artificial Intelligence, Morgan Kaufmann.
[GoS88] R.M. Goodman, P. Smyth. (1988). Decision Trees design fron A communication Theory Standpoint. IEEEE Trans. Infor. Theory. Vol. 34, 979-9994
[GrS87] B.J. Gragun and H.J. Studel, (1987). A Decision-Table Based Processor for Checking Completeness and Consistency in Rule-Based Expert-Systems. Int. J. Man-Machine Studies 26(5), 633-648
[Grz88] Grzymala-Busse, (1988). Knowledge Discovery l'uder l'nertainty A Rough Set Approach, J. Intell. Rob. Syystems. vol. 1. 3-16
[HCC92a] J. Han, Y.Cai, N. Cercone, (1992a). Kinowledge Discovery in Databases: An Attribute-Oriented Approach, Proceeding of the ISh VLIDB ('onferrine, Vancouver, B.C., Canada, 335-350.
[HCC92b] J. Han, Y.Cai, N. Cercone, (1992). Data_Driven Discovery of Quant iative Rules in Relational Databases, IEEF Trans. Kinowlrdge and Dala linginerring, $5(2)$.
[Hau86] D. Haussler, (1986). Quantifying the Inductive Bias in C'oncept L.carning, Proceedings of 1986 AAAI Conference, Philadelphia, PA, 48i-fis9.
[Hau87a] D. Haussler, (1987a). Bias, Version Spaces and Valient's Leaning Framework, Proc. 亿th Int. Workshop on Machine Learning Workshop, Irvine, ('A, 324-336.
[Hau87b] D. Haussler, (1987b) Learning Conjuctive Concepts in Structural Domains, Proceedings of 1987 AAAI Conference, Seattle. Washington, 466.470.
[HaM77] F. Hayes-Roth and J. McDermott, (1977). Knowledge Aequisition from Structural Descriptions, Proceedings of 5th International doint C'onference on Artificial Intelligence, Cambridge, MA,356-362.
[HoM91] J. Hong, C. Mao, (1991) Incremental Discovery of Rules and Structure by Hierarchical and Parallel Clustering, Linouledge Discovery in Database, AAAI/MIT Press, G.Piatetsky-Shapiro and W.J. Frawley (eds), 177-194.
[HCHIS3] X. Hu, N. Cercone, J. Han, (1993) Discovery of Kionwledge Associated With Conceptual Hierarchies in Databases, Proc. Third International Conference for Young Computer Scientists, Beijing, China. 2.106-2.109
[Hux94] X. Hu, (1994) Object Aggregration and Cluster Identification: A Knowledge Discovery Approach. Applied Math. Letter. 7(4), 29-34.
[HCHI94] X. Hu, N. Cercone, J. Han, (1993). A Rough Set Approach for Knowlrdge Discovery in Databases, Rough Sets, Fuzzy Sets and K'nowledge Discovery, Springer.Verlag Press. W. Ziarko(ed). 90-99
[Hu('94a] X. Hu. N. Cercone, (1994). Learning in Relational Databases: A Rough Set Approach. Computational Intelligence : An International Journal . special issue on rough set and knowledge discovery. (to appear)
[HuSS 94$]$ X. IUu, N. Shan. (1994) Multiple Knowledge bases and Rough Set. Proc. of the 7th Plorida Research Symposium on AI, 255-25S
[HC'S94] X. Hn. N. Cercone. N. Shan, (1994). A Rough Sct Approach to Compute All Maximal Generalized Rules, Proc. of the 6th International Conference on Compuling and Information, Peterborough, Ontario, Canada, May 26-28. 1078$108 \%$.
[HSC'\%94] X. Hu. N. Shan, N. Cerconc, W. Ziarko, (1994) DBROUGH: A Rough Set Based Knowledge Discovery System, Proc. of the 8th International Symposium on . Methodologies for Intelligent System, Lecture Notes in AI 869 (Methodologies for Intelligent Systems), Spring Verlag, 386-395
[HCH94b] X. Hu. N. Cercone. J. Han. (1994). A Concept-based linowledge Discovery Approach in Databases. Proc. of the loth ('anadian Artificial Intelligener Conference, 47-62. Banff. Alberta. Canada
[HCX94] X. Hu, N. Cercone. J. Xie. (1994). Learning Data Trend Regularities From Databases in A Dynamic Environment. Proc. of the AAA/ Knowledye Discorert! in Databases Workshop. 32:3-334
[HuC94d] X. Hu, N. Cercone, (1994). Discovery of Decision Rules from Dalabases: A Rough Set Approach. Proc. of the Third Intronalinal (onformer on linformation and Knowledge Management. (iaithersburg, Marylaurl, ㅅov. 1994. 392-400
'HuC95a] X. Hu, N. Cercone, (1995). Rough Sets Similarity-Based lanning From Databases, accepted in the tst Intemational C'onfrerner on linoulorly Discon:ery and Data Mining, Montreal. Canada. Aug. 2l-2:3, 1995)
[HuC95b] X. Hu, N. Cercone. (1995). Knowledge Discovery in I)atalases: A Rough Set Approach submitted to the I®h Intermational ('onf. on Dutalinuinurim!
[Kon89] I. Kononenko. (1989). ID3. Sequemtial Bayers. Naive Bayes and Bayesian Neural Networks. Europe Workshop on Learmin!. !1-98.
[Kon91] I. Kononenko, (1991). An Experiment in Machine learning of Reromblant

[KoK93] Igor Kononko, Matev\% Kovacie, (1993) Learning as Optimization: Stoman tic Generation of Multiple Knowledge, Procrediny of the $91 /$ Intcmalional Wonl:shop on Machine learning (ML,9.3), Aberden, Scothand, 259-262
[K:MK91] K.A. Kaufman, R.S. Michalski and L. Kerschberg; (1991). Mining for Knowledge in Databases: Goals and General Descriptions of the INLIN System,

K'nowledge Discovery in Database, AAAI/MI'T Press, G.Piatetsky-Shapiro and W.J. lirawley (eds). 449-462.
[Jan77] P.W. Langley, (1977) Rediscovery Phisics with BACON 3, Proceeding of the 5/h I/S'AI Cionference, Cambridge, MA, 505-507
[Lent7] 1.13. Lenat, (1977). On Automated Scientific Theory Formation: a Aase Study Using the AM program. Machine Intelligence 9, J. E. hayes, D. Michie and L. I. Mikulich (eds), Haalsted Press, 251-256.
[Lab89] D.J. Labinsky, (1989). Discovery from Database: A Review of AI and Statistical 'lechnigues. Procecdings of IJC'A-89 Worshop on K'nowledge Discovery in Databases. Detroit. Michigan, 204-218.
[MaK87] M.V. Manago and Y. Kodratoff, (1987). Noise and Knowledge Acquision. Proceedings of the 10th IJCAI Conference . Milan. Italy. 348-354.
[MC'P9:3] C..J. Matheus, P.K. Chan, and G. Piatetsky-Shapiro, (1993). Systems for Knowledge Discovery in Databases, IEEE transaction on C'nowledge and data fingincering, Vol 5(6) 903-91;
[Mcl)S:] J. Mcdermott. (1982). A Rule-based Configurer of Computer Systems, Arlifirial Intclligence, Jan. 1982
[Micso] R.S. Michalski and R.L. Chilansky, (1980). Learning by Being Told and Learning from Examples: An Experienmental Comparision of the Two Methods of Knowledge Acquisition in the Context of Developing an Expert System for Soybean Disease Diagnosis, International Journal of Policy Analysis and Information System . Vol. 4. 125-161.
[Mic83] R.S. Michalski. (198:3). A Theory and Methodology of Inductive Learning, Machine Leaming: An Artificial Intelligence Approach, vol. 1, Morgan Kaufmann, $8: 3-134$.
[MiS83] R, Michalski, and R. Stepp. (1983). Automated Construction of C'lassifiantions: Conceptual Clustering Versus Numerical Tasonomy. IEfil: 'Transurfion on Pattern Analysis and Machine Inteligerner, $\overline{5}(1) .3!(6-4() 9)$.
[MMHLS6] R. S. Michalski, L. Mozetic, J. Hong and N. Lavane, (I!s(i). The Mhlipurpose Incremental Leaming System AQ lis and lis 'lesting Application to Three Medical Domains, Procecdings of IISE AAAI ('onfrerente, Philadmphia. PA, 1041-1045.
[Mic87] R.S. Michalski, (1987). How to Learn Imprecise Concepts: A Method lior Employing a T'wo-tiered Knowledge Representation in Lamoning, I'rorredings of'

[Min89] J. Mingers, (1989). An Empirical Comparision of Solertion Monsures for Decision-Tree Induction, Machine Learmin! :3:, 31!)-342
[Mit77] T. M. Mitchell, (1977). Version Space: A Candidate Pilimination Apmoarli to Rule Learning. Procectings of the sth IJC'A/ C'onference. ('ambridge. MA, 305-310.
[Mit79] T.M. Mitchell, (1979) An Amalysis of Cemeralizalion as a Somrol Problem, Proceedings of the 6th IJC'A/ Comference, 'lokyo, Japan, 577-5se.
[NgB 92] O. K. Ngwenyama, N. Bryson, (1992). A Fomal Method For Analyaing and Integrating the Rule-Sets of Multiple lixperts, Informalion Sysfoms, Vol. 17. No. 1 1-16
[Nib87] T. Niblett, (1987). Constructing Decision 'Tress in Noisy Domains, Procuadin!! of the 2nd Europe Woking Session on Learning, (67-78.
[Out90] J.K. Ousterhout, (1990). TCL: An E'mbedded C'omamod Langnage, Prod, 1990 Winter USENIX Conference, Washington D.C., 1:33-146
[Paw82] Zdzislaw Pawlak. (1982). Rough Sets, International Journal of Information and Computer Science 11(5), 341-356
[Paw8i] Zalaislaw Pawlak, (1985). Rough Sets and Fuzzy Sets, Fuzzy Sets and Systems, 17, 99-102
[PW/88] \%. Pawlak, S.K.M Wong and W. Ziarko, (1988). Rough Set, Probabilistic versus Deterministic Approach, Internat. J. Man-Machine Stul., Vol. 29, 81-97
[Paw91] \%. Pawlak, (1991) Rough Sets: Theoretical Aspects of Reasoning About Data, Kluwer Academic Publishers.
[Paw92] Zdzislaw Pawlak, (1992) Anathomy of Conflicts, ICS'Research Report 11/92. Wawsaw University of Technology. Nowowiejska 15/19. 00-665, Warsaw. Poland
[Pia89] Piatetsky-Shapiro, (1989) Discovery of Strong Rules in Databases. Proceedinys of IJC'AI-89 Workshop on Kinowledye Discovery in Databases. Detroit, Michigan. USA. 264-274.
[Quis:3] J. R. Quinlan. (1983). Learning Efficient Classification Procedures and Their Appliccation to Chess End-Games, Machine Learning: An Artificial Intelligence Approuch. Vol. 1, Morgan Kaufmann, 463-482.
[Quis6] J.R. Quilian, (1986). The Effect of Noise on Concept Learning, Machine Le:urmin!!: An Arificial Intelligence Approach, Vol. 2, Morgan Kaufmann, 149166.
[Rei84] R. Reiter, Towards a Logical Reconstruction of Relational Database Theory, On Conceptual Modeling, Spring-Verlag, M. Brodie, J. Mylopoulos and J. Schmids (Eds). 191-233.
[Rens6] L. Rendell, (1986), A General Framework for Induction and a Study of Selective Induction, Machine Learning, Vol. 1, 1986
[Rus88] S. J. Russell. (1988). 'Trec-Structure Bias. Procredin!s of I9Ns AAA/ Conference. Minneapolis. Minnesota, 211-213.
[ScFS6] J.C. Schlimmer, D. Fisher. (1986). A Case Study ol lucromental ('oncrept Induction, Proc. of the Fifth National Conference on M/arhine I.curning. A!ti:01
[ShHOA] Ning Shan. X. Hu. (1994). A Decision Matris Appoach to (omstrumb Multiple Kinowledge Bases, Proc, of the Sth Intermalional ('omi. on Indushial
 1995. 517-524 (nominated for the best paper award)
[SHZC94] N. Shan, X. Hu, W. Ziatko, N. Cercone. A Cememalizel Rongh Sel Mordel, Proc. of the 'Third Pacific Rim Intermalional C'onfromer on Al, Brijing. ('hina, 1994. 437-443
[Sch91] J.C. Schlimmer, (1991). Learning Determinations and (horking Danabasess, K'noulalge Discovery in Database Workshop I!9).
[Sha48] C.E. Shannon, (1948). A Mathematical 'Theory of' Commmioation, Bell S'ystem T'cch, Journal, 4(2) 37(9-12:3
[ShW64] C.E. Shannon, W. Weaver (1964), The Mathematical 'Theory of (ommmi= cation, Urbana, Illinois: University of Illinois Press
[She91] W.M. Shen, (1991). Discivering Regularities from Knowledgr Bases, Kiumuledge Discovery in Database Workshop.
[SSU91] A. Silberschatz, M.Stonebraker and J.D.Ullman, (1991). Databinse Systems: Achievements and Opportunities, Comm. ACM, 3/(10), 94-109.
[SkROM] A. Skowrom, C. Rauszer, (1991). 'The Discernibility Matrices and Functions in Information Systems. ICS Research Report 1/9I. Wawsaw University of 'lechnology, Nowowiejska 15/19. 00-66i5. Warsaw, Poland
|S|o92| Slowinski, R (ed.) (1992). Intelligent Decision Support: Handbook of Applicalions and Advances of Rough Sels Theory.
[SoS(i3] R.R. Sokal and R.H. Sneath (1963). Principles of Numericcal Taxonomy; W.II. Fiverman
[Sim8id] R. Smith, (1984). On the Development of Commercial Expert Systems, Artificial Intelligence Mayazine, Fall 1984
[SmC! $1 \cdot 2$] P. Smyth and R.M. Goodman, (1992). An Information Approach to Rule Induction from Databases, IEEE Trans. on Kinowledge and Data Engincering, Vol. 4, 301-:316
[Stes7] R.E. Stepp, (1987). Concepts in Conceptual Clustering, Proceedings of the I $11 \mathrm{~h} / \mathrm{IJACI}$ Conference, Milan. Italy, 211-213.
[Sul'Si] D. Subramanian and J. Feigenbaum, (1986). Pactorization in Experiment Genemazation, Proc. 1986 AAAl Cionf., Philadelphia, PA. 512-522.
[Utg88] P. Utgodd, (1988). ID5: An Incremental ID3, Prof, of the Fifth Inter. Conf. on Marhine Learning, 107-120
[Ver"is] S.A. Vere, (1975) Induction of Concepts in the Predicate Calculus, Proceeding of the $\{$ th Internalional Joint Conference on Artificial Intelligence, Los Altos, $281-287$.
[Wal:S7] L. Watanabe and R. Elio, (1987). Guiding Constructive Induction for Incremental Learning from Examples. Proceedings of the 10th IJCAI Conference, Milan, Italy, 293-296.
[Winta] P. Winston, (1975). Leaming Structure Descriptions from Bxamples. The Psycholog!y of Computer Viasion. Winston. P. (eds). MeCiraw-Ilill. 157-20!).
[WiH84] P. Winston and 13.K.Horn. (1984). LISP. Roading.Mass.: Addison. Mioslo.:
[WoC'S7] B. Woolf. P. A. Cumingham, (1987). Multiple Kinowhedge Sontres in lntel. ligent. 'l'eaching Systems. IELEE EBMert 41-i.
[WoC'S8] A. K. C. Wong and K.C'.C. Chan. (198S) leaming lion Pixanples in tho Presence of Uncertainty. Procecdings of Intrmalional C'ompule S'citure ('onference' 88 , llong Kong. Derember. 360!-37(6.
[WZY86] S.K.M Wong, Wi. Ziarko, R.L. Ye, [19S6]. ('omparision of Rough Lal and statistical Methods in Inductive learning. Inter. J. Mun. V/arhinr Stuliss, 2.I. 53-72
[Zia91] Wojciech Ziatko, (1991). 'The Discovery, Amalysis. and Rapresionalion ol'
 Piatetsky-Shapiro and W. J. Frawlwy, (eds) Menlo P'ark, ('A: AAI/M1'l', 2l:3228
[ZiS93] Wojciech Ziarko, Ning Shan. (1993). A Rough Set-Based Mothorl for ('omputing All Minimal Deterministic Rules on Atribnto Value Sysurms. 'Jirlmirnd Report CSS-93-02 Dept. of Computer Science, University of Regina. ('anala
[Zia93a] Wojciech Ziarko, (1993) Variable Precision Rough Set Morlol, Jourmal of Computer 8 System Science, Vol. 46, No. 1, 3(9-i)!
[Zia93b] Wojciech Ziarko (1993) Analysis of Uncerkin Informalion in 'Thr l'rame.work of Variable Precision Rough Sets, Poundations of Computing and Decision Sciences, Vol. 18. No. 3-4, pp. 381-396.
[Kyt87] J. M. Zytkow, (1987). Combining M...ty Searches in the FAHRENHEIT Discovery System, Proccedings of the 4 th International Workshop on Machine learning, Irvine, CA. 281-287.
[Kyl391] J. M. Kytkow and J. Baker, (1991) Interactive Mining of Regularities in Databases, Knowledge Discovery in Database. AAAI/MIT' Press. G.PiatetskyShapiro and W.J. Frawley (eds). 31-54.

