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Abstract 

1Xlio\dedge Discovery in Databases (KI)1)) is an active research area with the

pioillise iui a high payoff in num\ business and scientific applications. The corporate. 

go% el ninental. and scientific communities are being o\ erwhelmed with an influx of 

data Ihat k rout inely stored in ohi_hine databases. Analyzing this dati., and extracting

meaningful patterns in a timel fashion is difficult wit bout computer assistance and 

powerful !kid tools. The gran(' challenge of hnomedge disco\ er.,, in databases is

to ant ()mat h ally pi ocess larg quantit les of raw data. ident If1 111(' most significant and 

meaningful patterns. and present this knowledge Ill an appropriate form for achie\ ing 

the user's goal. Knowledge discover systems face challenging problems from the 

real world databases v.hich tend to be \ ery large. redundant. !lois\ and dynamic. 

Ecu Ii of these problems has been addressed to 50010 exteut Wit 11h1 machine learning. 

but few. if and. systems address t,liein all. C'ollectively handling these problems while 

prodm ing tisefill knowledge efficiently and effect ivel is the main focus of the t hesis. 

In t his thesis. we develop an attribute-oriented rough set approach for knowledge 

disco\ er in databases. The method adopts the artificial intelligent "learning from 

examples- paradigm combined with rough set theory and database operations. The 

learning procedure consists of two phases: data generalization and data reduction. In 

Jai a menorah/at ion. ollir mot hod generalizes the data by performing attribute-oriented 

Colic'epl 1100 ilSeelis1011. t 1111.; SOMe 1111(10:411'aide attributes are removed and a set of 

tuples may be generalized to the same generalized tuple. The generalized relation 

( out ains 0111 small Ill1Mber of 1111)10x. ‘‘ 11.1C11 antially reduces the computational 

complexity of the learning process and. furthermore, it is feasible to apply the rough 

set techniques to eliminate the irrelevant or unimportant attributes and choose the 
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.lata generalizat ion. our method generalizes the data by perform ing a ttr ibu te -or ien ted  

concept tree ascension, tlms some undesirable a ttr ibu tes  are removed and a set o f  

tuples may be generalized to the same generalized tuple. The generalized relation 

( outains only a small number of t uples. which substant ia l ly  reduces the com puta tiona l 
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-best" minimal attribute set. The goal or data reduction to (hill a 111111hInd 

of interesting att ributes that have all the essential information of the genet ali/eil 
relat ion: thus the minimal subset of the at t ribute, ( an be used holly' I Ilan t he (quite 

attribute set of the generalized relation. 13y 1 `1110‘ .111E4 those al ibutes hit It ale not 

important all((/or essential . the ru les generated are mote concise and elli( ,n ions, 

Our method integrates a variety of knowledge (list over‘ algut it lints. "in Ii as 1 )11( 

for deriving characterist lc rules. 1)11('lass for classification I tiles. I )1 3 De( i fin de( kioli

rules. DliMaxi for maximal generalized rnles. 1)1 INIkbs for multiple sets Or know I 

edge rules and D13'1'1111(1 for data trend regularities. ‘vhich perMil a Ilse! I o dis( t)\ el 

.11.1,1..various kinds of relationships and regularit ies t (1,11,1, integtal m11 i I it 
t he advantages of t he ai l ribute_oriented indin l ion model „nd ;ono, set I I",ol‘ (

methorl mal<es some contribution to the I I)1). .\ generalized rough wt model is 

formally definer! wit h the to handle stat 'sin al informat iou {Mil also 

tint'.S  l)the importance of attributes and ()bjects in the (la:abases. ()in met 11(041

identify I he essential subset of nonredundant al t ribut es (facto, that bel l i Illine tie

discovery task, and call learn different kinds of knob ledge rule. ( Ili( lent hint! la lg.(' 

databases \\id) noisy data and in a dynamic environment and deal ‘111h databases 

wil l, incomplete informal ion. A protot.% to, systelu 1)13U()Mii %%as ( 1.11)S1 1 11( 1111(IVI 

a Unix/C/Sybase environment. Our system implements a number or noel idcns. lu 

our system. we use at 1 ribute-oriented indui tion rat her I Ilan i itple.ot kilted 'milli, 1 ion. 

thus greatly improving the learning efficiency. Ify Iliteglat lug tough set tei 

into the learning procedure. the derived knowledge rides are part idat «a ( lid 

pertinent. since only the relevant and/or imPort ant al I 111)10es (fa* tut I ht ' I( '(0 nniP, 

task are considered. Iii our system. the combinal moll or rcuisit iuli 11(1%1,01 k and rpt 

hierarchy provides a nice mechanism to handle dynamic (h.IIa(' trukt lt of data in tiW 

databases. For applications with noisy data. onr en) I an general(' Mall 

Of knowledge rules through a decision mat rix to improve 1 be learning at t ui at ‘. 1 he 

experiments using the NSEIW information system illustrate the promise of t i Halle 

oriented rough set learning for knowledge discovery for dat abtries. 

II 
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pertinen t, since only the relevant and /o r  im portant at I l ibu tes  (fa< lo i s) to  t he |e,n ning 

task are considered. In our system, the combination o f  trans it ion  netwoik ami < mu opt 
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o f  knowledge rules through a decision m a tr ix  to improve the learning <u< uia< s. I he 
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oriented rough set learning for knowledge discovery for databases.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements 

This thesis has been researched and Ivrittell Under the slipportive attcl helpful di-
le, I ion ofu►t stir, visor Dr. Nick (.ercon,.. To w, horn I owe a debt of Brat it wk, for the
(.11( um agement 0 1/4 en in th e widerlaking or his work. I thank Nick Cercone for mak-

ing those se‘elal ears as his student enjo.\able and challenging. and for his excellent 

guidance and financial support . uund for the tnalt contetsatiolis which brunght the 
benefit of ilk %%C all 11 of knowledge in art irk ial ligence and litioN% ledge disco\ ery 

in databaws nly chosen research area. 

I would like to thank all the members of my committee for their feedback and 

.11.4111 loadings of I he t hesis. which lead to inan impro\ einem s in t he presentation: 

Thanks Christine Chan. Paitoon 11,arr.% Saxton and Wojciech 

Ziarko. I really appreciate your academic help and friendship. Thanks also to 1)r. 

Randy Goebel as my external examiner. 

! would like to thank NIr. Ning Shan for his friendship. valuable and fruitful 

discussions and very good corporation in our joint research work. 
It should be mentioned that my study at the University of Regina was not only 

beneficial. butt also very enjoyable. Special t hanks go to Ms. .1ijun An who took care 

or ittails While I was working in ()I tawa. :\ sincere thanks to the many friendly 
And helpful people including DE. Brien NIaguire. 1)1.. \Vong. Dr. Xiang Yang. 

Nlarg,aret Cooper. niwei Wang. Lida Yang. 

I ant grateful to III wife. NlichelleShuet-yue Tsang who during the writing of this 
\\ ink helped. encouraged and supported me when times were tough. Without her 
10\ e and , hpport. I would not have had t he ability to continue when t hings appeared 
to stop. 

iii 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 

Acknowledgements

'I 'l lis thesis lias U r n  researched and w ritten  under the supportive and helpful d i- 

te< I iun o f m \ siipeivisoi Dr. Xicl< Cercoue. To whom I owe a debt o f  g ra t i tude  for the 

en< ouingement g iw n  in the undertaking o f this work. I thank Nick Cercone for m ak

ing these se w ia l w a rs  as his student enjo\able and challenging, and for his excellent 

guidance and financial support, and for the m am  conw isatiohs which brought the 

benelit o f  his wealth of knowledge in art if ic ia l intelligence and knowledge discovery 

in database's to my chosen research area.

I would like to thank all the members o f my committee for the ir  feedback and 

careful leadings of the thesis, which lead to m am  im pro \em eiits  in the’ presentation: 

Thanks Chris t ine Chan. Paitoon Tont iw achw uth iku l.  b a rn  Saxton and Wojciech 

Xiarko. I really appreciate your academic help and friendship. Thanks also to  Dr. 

Ifandy (loebel as my external examiner.

! would like to thank Mr. X ing Shan for his friendship, valuable and f ru i t fu l  

discussions and very good corporation in our jo in t research work.

It should be mentioned that my study at the Cuivers ity  o f  Regina was not only 

beneficial, but also very enjoyable. Special I hanks go to Ms. A i j t in  An  who took care 

o f 111\ mails while I was working in Ottawa. A sincere thanks to the many fr iend ly  

and helpful people including Dr. Hrien Maguire. Dr. S .K .M . Wong. Dr. X iang  Vang. 

Margaret Cooper. Xkiwei Wang, bida Yang.

I <un grateful to m \ wife. Michelle Slmet-yue Tsang who dur ing  tlu* w r i t in g  o f  this 

work helped, encouraged and supported me when limes were tough. W i th o u t  her 

lo w  and support. I would not have* had the a b i l i ty  to continue when th ings appeared 

to stop.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘

VI SI T

10 1 

1()1* 

110114111 001111110111 S  ill proorreading the ‘vorli, 

1:ittaticial support for the research in this I hesis %vas gratelidl , recci‘rd from the 

Natural Science and 1:,ngineeri11g liesearch Council. I ( . .anada. Nvt‘‘orlo. uf Centro, 

of Excellence of the (;overinn(qit Uf Cana(la. Sas1;at chervan ()pen Scholdp,iiip. Facult‘ 

of Gradual(' silyiie:4 of [Diversity of I he iivrieriwre, voilmv,hir Foundmiull, 
There ;try hy() suproludy imuouraide pool& III I Ills %wild. fip Whom all lit\ IV III int!, 

has always been dedicate(I: to my parents. \Is. \Ir. Zhiloot 

this tv(gl: is l()r you. 

iv 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 

I wish lo  thank Jesus Cordoba lor helpful comments in proofreading ll ie  work. 

Financial support for the research in this thesis was i>ralofuM\ receixed from the 

Natural Science and Knginoerinj> Research Council o f Canada. No: . of Centres

of Kxeellenee o f the (lovernment of Canada. Saskatchewan Open Schnlaisii ip. Facultx 

of Graduate Studies o f CDiversity o f Retina, the lleiyerberu, Fellowship Foundation, 

There are two supremely honourable people in t his world, to 1 all im  writ ini* 

has always been dedicated: to my parents. Ms. Clmaiihui W.mj;. Mr. /.Ii ikun l lu .  

this work is for von.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^

92



Contents 

A hstract 

Acknowledgements iii 

Table of Contents 

List of Pignres ix 

Chapter I INTRODUCTION 1 

Chapter 2 Overview: Knowledge Discovery in Databases 6 

2. 1 Concepts or Learning From Examples: :1n AI Approach  

2. 1. 1 Baste Components in Learning from Examples  6 

9.1.9 Cieneralized Utiles 

2.1.3 Types or littowledge Rules   10 

2. 1. 1 ('ontrol Strategies in Learning from Examples   10 

9.9 ,Some Learning Front Examples Nlodels  

2.2. 1 The Candidate Elimination Algorithm   1 1 

9.9.2 :1Q1 1 and A IS Systems   14 

9.2.3 11)3. IDA. 11)5   IS 

2.3 ('olle(pts of Learning From I)atahasos   17 

2.3, 1 Data Relevant tot he 1)iscovery Process   17 

9,3,2 liackground l itowledge   IS 

2.3.3 Representation of Learning Results   19 

2.3. 1 Types of Rules   19 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 

Contents

A b s t r a c t

A c k n o w le d g e m e n ts  

T a b le  o f  C o n te n ts  

L is t  o f  F ig u re s

C h a p te r  1 I N T R O D U C T I O N

C h a p te r  2 O v e r v ie w :  K n o w le d g e  D is c o v e ry  in  D a ta b a s e s

2.1 Concepts o f Learning From Kxamples: An A I  Approach . . .

2.1.1 Basie Components in Learning from Kxamples , . . .

2 . 1.2 Ceneralized H a le s ...................................................................

2.1.0 Types o f Knowledge U n le s ..................................................

2.1.1 ( 'on iro l  Strategies in Learning from Kxamples . . . .

2.2 Some I,earning From Kxamples M o d e ls .......................................

2.2.1 The Candidate Kli mi nation A l g o r i t h m .........................

2.2.2 AQ11 and A Q 15 Systems ..................................................

2.2.:! ID T  11)1. I D o ..........................................................................

2.:! Concepts of Learning From Databases .......................................

2..'!,I Data Helevant to the Discovery P rocess.........................

2..1.2 Background K now ledge .........................................................

2..$.:! Representation o f Learning R e s u l t s ................................

2.:!. I Types o f Rules .......................................................................

v

i

i i i

v

ix

1

6

fi

(j

7

10

10

II

I I

14

15

17

17

IS

19

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1<nowledge Discovery in Largo Dal aba,e, 2(1 

9.1.1 1\l.EN System  

2.1.2 l<DW System   23 

2. 1.3 The 1TRI'LE .\Igoril 11111 •, 

Chapter 3 Extending DBLEARN 
3.1 Discovery of Kno‘viedge Associated wi t h (.oncein

:3.2 An Example   .1t1 

:3.3 lino‘yledge 1)iscoyerY by Cone( 'Anal Cltisiering III 

:5.3. 1 Rvview 01 the Related \Vorl:   12 

3.3.2 An .Approach to Concept Clustering, 12 

Chapter 4 Rough Sets and A Generalized Hough Set. Model 48 

.1.1 Principal Concepts. 01 Rough Set 

1. 1 .1 Information System  

1.1.2 Approximation Space   51 

.1. 1 .3 ('ore and Ueduris of At I ribinvh   :13 
• • 4.2 A Generalized Hough Sets Nlodel   4.1 

1.2.1 Cncert ain [n101.111;0 ion Systems (I "IS) 

1,2.2 \oise Tolerance in l'neertain Information SyN14.1ns   7)7 

:7►11: 

1 

1,2.3 Set Approximation in the CHS•Nlodej 

.2.1 The Degree of :\Il riboe Dependelieie, I he (:HS \ hold . 
4.2.5 Attribute Rednet in the GlIS-Model  

Chapter 5 Rough Set Based Data Reduction ()5 

5.1 Reduction of I he Cleneralized (;7 
5.1.1 significant value of A t I riinne,   (07 

5.1.2 Criteria For the 130st Redur1   67 

5.1.3 Core and 1)iseernibility N1airix 

5.2 An Attribute-Oriented Rough Set Approach to pis, 0\ er kion link,. 71 

5.3 Computing Maximal Generalized Hides 71; 

5.3.1 links in information System   71) 

vi 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 

2.1 Knowledge Discovery in barge Database

2.1.1 1XI.KX System . . . . . . . . .

2 . 1.2 K D W  S y s t e m .................................

2.1.3 The I T R l ’ LK A lgor i l  Inn . , . .

)

C h a p te r  3 E x t e n d in g  D B L E A R N  2(5

3.1 Discovery o f  Knowledge Associaied w ith  ( ‘oneept H ie ra rch ie s ................. 2V

3.2 An K x a m p le ..........................................................................................................  .!(>

3.3 Knowledge Discover'' bv Concc p lnal Clustering ................................  Ill

3.3.1 Review o f I lie Related W o r k ................................................................... 12

3.3.2 An Approach to  Concept C lustering ................................................. 13

C h a p te r  4 R o u g h  Sets a n d  A  G e n e ra l iz e d  R o u g h  Set. M o d e l  -IS

•I.I P rinc ipal Concepts o f Rough Set .................    I‘)

•1.1.1 In fo rm ation  S y s te m ....................................................................................  I!)

•1.1.2 A pp rox im a tion  S p a c e ................................................................................. 31

•1.1.3 Coro and Redacts o f A t t r i b u t e s ...........................................................  33

■1.2 A Generalized Rough Sets M o d e l .................................................................... 33

•1.2.1 Cncertain In form ation  Systems {I I S ) .............................................  30

•1.2.2 Noise Tolerance in I 'n ce i l iu n  Info rm ation  S y s te m s .......................  37

4.2.3 Set A pp rox im a tion  in the GRS-Model ............................................. 3!)

-1.2.4 The  Degree o f A t t r ib u te  Dependencies in the GRS Model . . . (il

4.2.3 A t t r ib u te  Redact in the GRS-Model ................................................  (13

C h a p t e r  5 R o u g h  S e t  B ased  D a ta  R e d u c t io n  03

3.1 Reduction o f I he Generalized Relal ion .........................................................  07

3.1.1 Significant Value o f A t t r i b u t e s ............................................................... G7

3.1.2 C ri te r ia  for the Rest R e d a c t ..................................................................  07

3.1.3 ( ‘ore and D isce rn ib i l i ly  M a t r i x ............................................................... 0!)

3.2 An A t tr ibu te -O r ie n te d  Rough Set Approach to Dis«o\er Dei isiou Rule , 71

3.3 C om pu t in g  M ax im a l Generalized R u le s .........................................................  70

3.3.1 Rules in Info rm ation  S y s te m ................................................................... 70

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3./ Nlaximal Generalized links   77 

5.3.1 .111 Algorithm to Compute the Nlaximal Generalized Rules 7S 

5.3. 1 Complexity of Nlaximal Generalized Rules   8:1 

Chapter 6 Multiple Sets of Knowledge Rules and Rough Sets 85 

6,1 N11111'10. Sets or Knowledge Rules   87 

6.2 ;\ De( "'shut Nlat rix Approach for Const ruct ing Multiple Sets of 

edge Rules   88 

6.3 Combinat ion or iple Sets of 1<nowledge Rules  

Chapter 7 Implementation and Experiments 

7.1 Architect tire  

7.2 Experimental Results of Some Algorit Inns  

96 

06 

7,2.1 NSER(' Grants Information System  IOU 

7.2.2 Some Test Results  102 

Chapter 8 Discussion 110 
8. 1 (.,„„1„„.is(„ 1 wi t h ()Iher Im„ Hrwg Niel hod, 1 10 

Search Spare  I I I 

8.:1 1. 1 ilizing Database Varilit ies  1 12 

5.1 Dealing with l)ilferent I<inds of Concept Hierarchies 119 

8.5 Discovery of I ttowledge by Concept nal Clustering  1 1.1 

5.6 Reduction of hatabases I IT.

5.7 Dal a Kvolitt ion Regu,arity  1 16 

Chapter 9 Conclusion and Future Directions 120 

9. I Conclusion  

9.2 hu tiro Direct ion  

120 

121 

9.2, 1 Applications of Knowledge Rules Discovered from Relational 

Dal abases  122 

9.2.2 ('oust met ion of An lin (Tartly(' Learning Systemit  123 

9,2,3 Int egrat ion of lull iple Types of Discovery St rategy  123 

vii 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 

2 M;ixim;i) (leneralized HuIcs .................................................................  77

i An A lgo r ithm  to ( 'om pnie  i I k* M ax im a l ( leneralized Rules . . 7-S

D.-l. I Com plex ity  o f  M ;ix im ;i l (leneralized R u l e s ..................................... S.'}

C h a p te r  0 M u l t i p l e  Sets o f  K n o w le d g e  R u le s  and  R o u g h  Sets  85

(i,I M u lt ip le  S r i*  of Knowledge R u le s ...................................................................  «S7

(i.2 A DeriMon M a tr ix  Approach for Constructing M u lt ip le  Sets o f Know l

edge H id e s .................................................................................................................  SS

(!..'{ Comhinntion o f M u lt ip le  Sets o f  Knowledge R u le s ...................................  !)•!

C h a p te r  7 Im p le m e n ta t io n  a nd  E x p e r im e n ts  96

7.1 Architect l i r e ............................................................................................................. 9(i

7.2 Experimental Results o f Some A l g o r i l I n n s .................................................  99

7.2.1 NhSERC (Iran is  Information S y s te m ...................................................  109

7.2.2 Some ’lest R e s u l t s ...................................................................................  102

C h a p t e r s  D iscu ss io n  110

5.1 A Comparison w ith  O ther hearning M e th o d s .............................................  l i t )

5.2 Search Space .........................................................................................................  I l l

■S.d IT d ix ing  Database f a c i l i t i e s .............................................................................  112

S. I Dealing w ith  Dill'erenl Kinds o f Concept H ie ra rch ies ...............................  112

5.0 Discovery o f Knowledge hv Conceptual C ln s l ( * r in g ...................................  I l  l

S.ti Reduct ion o f Dal aliases........................................................................................  115

S.7 Data Evolution K r g u . a r i l y .................................................................................  110

C h a p te r  9 C o n c lu s io n  and  F u tu r e  D i r e c t io n s  120

9 .1 ( o i ic h is io i i .............................    120

9.2 h i t  tire Direction ..................................   121

9.2.1 Applications o f  Knowledge Rules Discovered from Relational

Dal a l ia s e s ...................................................................................................  122

9.2.2 Construction o f An Interactive hearning S y s te m ..........................  12:1

9.2.M Integration o f M u lt ip le  Types o f  Discovery S t r a te g y ...................  12:1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



References 

viii 

I 25 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 

References

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures 

2.1 The version spaces for the positive example -red A circle- 14 

2.° The architecture of 1\1 22 

3. 1 The architecture of 1)I31  FAH 26 

3.9 Conceptual hierarchy of the animal world  :30 

3.3 Concept nal hierarchy  1.1 

3, 1 Concept hierarchy  -16 

3,5 /f of common attribute value  46 

3.6 Conceptual hierarchy after 3rd iteration  46 

-1. 1 The diagram of rough set model  59

5.1 Concept hierarchy tree for make_model  73 

6. I St runt me Of Inuit iple sets of knowledge rules  87 

6.9 Decision matrices for Table 6. 1 91 

7. 1 The architect me of D131101'011  97 

8.1 An unbalanced concept tree  1 13 

8.2 A concept tree with lattices  1 14 

ix 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 

List of Figures

2.) The  version spaces for the positive example "red A circ le" ................  1-1

2.2 The  architect tire oi I N L K N ....................................................................................  22

2.1 The a rch itecture  o f  D H b E A R X .........................................................................  2(5

2.2 Conceptual hierarchy o f the animal w o r l d .......................................................  20

2.2 Conceptual h ie r a r c h y ............................................................................................... 1!

2.1 Concept hierarchy ..................................................................................................  -10

2.0 #  o f common a t t r ib u te  value .............................................................................  -10

2.0 Conceptual hierarchy after 2rd ite ra tion  .......................................................  -16

-I. I The  d iagram o f rough set m o d e l .........................................................................  52

5.1 Concept hierarchy tree for make . m o d e l ...........................................................  72

(i.l St met ure o f m u lt ip le  sets o f knowledge r u l e s ................................................  87

0.2 Decision matrices for Table 0.1   91

7.1 The a rch itecture  o f  D B R O I 'C I M .........................................................................  97

5.1 An unbalanced concept t r e e ................................................................................  112

5.2 A concept tree w ith  l a t t i c e s ................................................................................  11-1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables 

:3.1 An animal world.  

:3.2 The prime relation table 

:3.3 A generalized relation.  

:3.4 The feature table for the attribute animal.   33 

:3.5 A temporary relation after the substitution   :is 

3.6 A temporary relation for mammal  'is 

:3.7 A temporary relation for bird  

3.8 A temporary relation for carnivorous mammal  

3.0 A temporary relation for ungulate   10 

3.10 A temporary relation for non-flying bird   III 

3.11 A temporary relation for flying bird. 

:3.12 The animal world   IS 

:3.13 Number of common attribute values after 1st it era) ion IS 

:3.14 (a)Ilierarchical knowledge rides; (1)3Egnivalence rules .   17 

3.15 Inheritance knowledge rules   17 

:3. 16 Names list   17 

:3.17 A set. of meaningful rules after substitution   17 

4. 1 A generalized car relation   53 

4.2 .,111 uncertain information system  

5.1 Discernibility matrix for the generalized car relai lout. (►!) 

5.2 Car relation.   72 

5.3 Reduced table with best reduct.  

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 

List o f Tables

3.1 A m an im al w o r ld .........................................................................................................

3.2 The p r im o  relation tab le ..........................................................................................

3.3 A generalized re la t ion ...............................................................................................

3.1 The  feature tab le  for the a ttr ibu te ' a n im a l.......................................................

3.5 A tem pora ry  re lation afte*r the s u b s t i t u t io n ...................................................

3.6 A tem pora ry  re lation for m a m m a l .....................................................................

3.7 A tem pora ry  re lation for b i r d ............................................................................

3.8 A tem po ra ry  re lation for e-ami venous m a m m a l ............................................

3.!) A tem pora ry  re lation for u n g u la te .....................................................................

3.10 A  tem pora ry  re lation for non-liv ing  b ird  ......................................................

3.11 A tem po ra ry  re lation for f ly ing b ird ...................................................................

3.12 The an im al w e r r ld .....................................................................................................

3.13 N um ber o f  common attr ibute 'value 's after 1st i te ra tion  .........................

3.1-1 (a )I I ie ra rch ica l knowledge rules; (b)Kquivale'ne-e r u l e ' s .............................

3.15 Inheritance knowledge r u l e ' s ................................................................................

3.16 Names l i s t ....................................................................................................................

3.17 A set. o f  meaningful rule's afte>r s u b s t i t u t io n ...................................................

■1.1 A gene>ralized car re lation ...................................................................................

■1.2 An uncerta in in fo rm ation  s y s t e m .....................................................................

5.1 D isce rn ib i l i ty  m a t r ix  fe>r the genera lize'd car relatieni...................................

5.2 Car re la t io n ...................................................................................................................

5.3 Reduced table w ith  best red net.............................................................................

2 !)

30

32

33

3S

3S

3!)

30

10

10

10

15

15

17

17

17

17

53

57

60

72

7>\

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



.1.1 Ne(bired table ‘villi user minimal attributes subset 74 

5.5 Reduced table after combination  75 

5.6 A simple generalized car relation  79 

5.7 Numerical represent at ion of Table 5.5 79 

5.8 Decision matrix for the class mileage= 11.',1)1 1 ' NI  $0 

G. i .\ knowledge representation system 91 

7. 1 Tlw final generalized relation 105 

7.'2 The final generalized relation 106 

7.3 Decision matrix for the class mileage=111(111 10$ 

8.1 Adult relation 1 17 

8.2 (a ) Child relit ion: (b) Senior citizen relation 1 18 

N.3 Instance of senior citizen  1 19 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 

•VI Reduced table w i l l i  user m in im al at tr ibu tes su b s e t ....................................

•To Reduced table after e om b in a t io n .......................................................................

o.(i A simple generalized ear relat ion ....................................................................

b.7 Xnmerieal representation o f Table T o  .........................................................

TN Decision m a tr ix  for tlieelass m i le a g e = .M K I ) l l 'M ........................................

(i. I A knowledge' representation system ...................................................................

7.1 T lie  final generalized relat ion ...........................................................................

7.2 T lie  final generalized relation ...........................................................................

7.2 Decision m a tr ix  for t l ie  class m i le a g e = l l l ( ! I I  ...........................................

s.I A d u l t  relation .......................................................................................................

<S.2 (a) C h i ld  re1 ‘ ‘ : (h) S e n io r  c i t i z e n  r e l a t i o n ........................................

<S.2 Instance o f s e n io r  c i t i z e n ..................................................................................

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69



Chapter 1 

INTRODUCTION 

Knowledge discovery is the process Of mining a data sour«e for information that 

one is unaware of pilot to the discovery. 'Phis sp,ms the entire spectrnin from dis 

covering information of which one hasabsolntel~ knowli.dg, , I  .'.bete • • 
I I ICI 

con fi rms a %vett k nown fact.

k nowledge Discovery i n Da t a bases (KI)I)) is an act e research area ‘‘ it h moutise 

for high payoffs in many business and scientific applicat ions. I hr 1mi c• Pm\ 
ernmental. and scientific communities are being (Aril\ helloed tt it h an influx of data 

that is routinely stored in on-line databases. Altiti 'Zittp, Ihis data and extra( ting 

meaningful patterns in a timely fashion is intractable without «onputei assistant ,. 

and powerful analytical tools. Standard computer based statistical and anal\ Vico! 

packages alone. however. are of limited benefit without the wild(' n«. of I idincd stalk 

iicians to apply them correctly and the domain experts to hi ller and bite' met the 

results (NIC1'931. Data mining has been rani ..e)I as one of the most picouising topiy. 

for research for I he I 990s by but h dat abase and mac hire lea! ning I esea c het s [S51 .9 I ). 

Frawley and his colleague (F1)\1911 give a definit ion ()I' knowledge as 

follows: 

"Given a set of facts (data) a language L. and sonic' measure of certainly 

C'. a pat f in is defined as a statement S in I. t hal describes telat Mushily, among a 

subset. Ft, or with a certainty c. such that S is simpler (in some sense) than the 

enumeration of all facts in b's. A pattern that is hilerest ing, ( a ccor di ng, to a ivi(•r 

imposed interest measure) and certain enough (again ac«nding to uset ( I it cr 
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C hapter 1

IN TR O D U C T IO N

Knowledge discovery is t l ie  process o f m in ing  a dn li i source lor in fo rm a tion  tli. it 

one is unaware o f p rio i to  the discovery. Th is  spans tin* entire  spectrum  from dis 

covering in fo rm ation  o f  which one has absolutely no knowledge to  who le  one m e ieh  

confirms a well known fact.

Knowledge Discovery in Databases ( K I ) D )  is an a c t i \e  research aiea w ith  p iom ise 

for high payoffs in many business and scientific applications. I lie (o ip o ia le .  go\ 

e rnm enla l.  and scientific com m unit ies are being o \c n \  helmed u it h an in f lux  o f  dal a 

that is rou tine ly  stored in on-line databases. Ana lyz ing  this data and c \ i r a i l i n g  

meaningfu l patterns in a t im e ly  fashion is in tractab le  w ithout <om puie i assist am e 

and powerful ana ly tica l tools. Standard computer based s la l is i i t . i l  ami .m.d\ti< .d 

packages alone, however, are o f l im ited  benelil w ithout the guidance o f  t i .  lined s la lis  

tic ians to apply them correctly  and the domain experts to l i l le i  and in le ip ie l  the 

results [MC.'P!):}]. Data m in ing  has been ranked as one o f the most pm m is ing  topics 

for research for I he 1 !)!)()s by bot It dat abase ami mat li ine leai niiig lesean liei s [SS I '!) IJ.

W i l l ia m  Krawley and his colleague’ [K IW I!)I ]  give a defin it ion  o f  knowledge as 

follows:

"G iven a set o f  facts (data) /•’. a language /,. and some measure o f  ce r ta in ly  

C'. a pa t te rn  is defined as a statement S in L that describes ie la l io t ish ips  among a 

subset o f  F  w ith  a ce rta in ty  r.  such that S is s im pler (in some sensej than the 

enumeration o f  all facts in /•[,. A pattern  that is in teresting (accord ing to a usei 

imposed interest measure) and certain enough (again ac cm cling to  the user’ -, c i l ic r i . i j
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is called know/«/11(

This definition about the language. the certainty, and the simplicity and interest-

11(.5
5  locasiac are 

('lit 
ionally vagitv to cover a %vide variety of approaches. collee_ 

I lot Ills ell( II)Sid/le our view of t he fundamental c haracteristics of discovery 

in dal a bases. 

Mem.% liil(hiiie Icai thing algorit Inns are readily applicable for I<D1). .111 important 

ma( him. learning paradigm. hurning jr our (.raniph that is. learning generaliz-

ing specific facts or observat ions [CoF83. Di 18:31. has been adopted in many existing 

indm I lull kat ning algorit Ions. chat abases present additional considerations 

due to I he nal lire oft 116r COW ents which tend to be large. incomplete. dynamic. nois 

and redun(Iant . Each of these considerations have been addressed. to some extent. 

within machine learning. but few. if any. systems address all of them. Collectively 

handling I hose problems While producing useful knowledge is the challenge of 1<1)1). 

One of the major reasons that the machine learning systems do not integrate ‘vell 

wit Ii Eclat 4)1111 dat abase sleuth is because of the inefficiency of current learning algo-

rithms %%11(.11 applied to large databases. Most existing algorit huts for harning from 

(.raniph.., apply a tnple-oriented approach. all approach that examines one tuple at a 

t ime. In order to discover the most specific concept that is satisfied by all the train-

ing examples. the t nplc-oriented approach mast test the concept coverage after each 

generalization oil a single alt tibiae value of a training example Pi1I83.N11c83]. Since 

I here are rl large number of possible combinations in such testing. the tuple-oriented 

approach is quite inefficient Mien performing learning from large databases. More-

over. most existing algorithms do not make use of the features and implementation 

techniques pro\ ided database stems. To make learning algorithms applicable 

to database systems. highly efficient algorithms should be designed and explored in 
depth. 

lo many practical applications. during the data collection procedure. it is often 

difficult to know exactly which features are relevant and/or important for the learning 

task, and how they should be represented. So all features believed to be useful are 

collected into the database. Hence databases usually contain some attributes that 

are undesirable. or unimportant to a given discovery task, focussing on a 

2 
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is ( illled k i io t rh  (!(/<

This defin it ion almut the language, t l ie  certa in ly, and the  s im p l ic i ty  and in terest- 

ncss measure are in ten tiona lly  vague to cover a wide variety o f  approaches. C’ollec- 

l i \ e l \ .  I hese tei ms eiu apsiilate our view o f  the fundamental ( haract eristics o f discovery 

in databases.

M am  mat hine-leai ning algorit hms are readily applicable for K D I) .  An  important, 

l inn l i iue learning paradigm, h  an i i i t c j  f  rum < .vuniph s. tha t is. learning b\ generaliz

ing specific fads  or obscnations [CoFS-'i. Di.MS.'f]. has boon adopted in many ex is t ing  

indiK t io i i  leal ning a lgorithms. Real-world databases present add it iona l considerations 

due to 1 he nat lire o f  t heir contents which tend to be large, incomplete, dynam ic . nois\ 

and redundant. Kach o f these considerations have been addressed, to some extent, 

w ith in  machine learning, but few. i f  any. systems address all o f  them. C o llect ive ly  

handling these problems while  producing useful knowledge is the challenge o f  K D D .

O ik * o f I lie m a jo r reasons that the machine learning systems do not in tegrate  w*ell 

wit h relat ional database s\ stems is because o f  the inefficiency o f current learning algo- 

ri t tin is when applied to large databases. Most existing a lgorithm s for I c a n i i i u j  j ' r u m  

t .nui i j fh  apply a tuple-oriented approach, an approach that examines one tup le  at a 

l im e. In order to discover the most specific concept that is satisfied by all the t ra in 

ing examples, the tuple-oriented approach must test the concept coverage after each 

generalization on a single a t t r ib u te  value o f a tra in ing  example [Di.M<S.'h.Mic8d]. Since 

then* are a large number o f  possible combinations in such testing, the tup le-oriented 

approach is quite  inefficient when perform ing learning from large databases. M ore

over. most exis ting a lgorithm s do not make use o f the features and im p lem enta tion  

techniques p ro \ided  b\ database systems. ' Id  make learning a lgorithm s applicable 

to database systems, h igh ly  efficient a lgorithms should be designed and explored in 

dept h.

In many practical applications, dur ing  the data collection procedure, i t  is often 

d i l l icu lt  to know exactly which features are relevant a n d /o r  im po rtan t for the learning 

task, and how they should be represented. So all features believed to be useful are 

collected in to  the database. Hence databases usually conta in some a tt r ibu tes  tha t  

are undesirable, irrelevant, or un im portan t to a given discovery task, focussing on a
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subset of attributes is now common practice. Identif ing relevant fields is the most 

common focussing technique. 

In previous studies in RICII9 I. I 1M92. 1 I('1193. I). an attribute oriented 

induction met hod has been d"veloped for knowledge disco\ I elm 1010 ‘1,11,111,1,,e,. 

The met hod integrates a machine learning paradigm. especiall h cm /lulu xi/ tuph

techniques. Milt database operations. 'rile general idea of IMSIt at ilibule uciented 
induction is performed attribute by ittribute using attribute renio‘al and «w«.10 

ascension. As a result. undesirable attributes may be remowd and dillemo tnple, 

may be generalized to identical ones. and the final generalized 101(16011 111.11 «)11Ski 

Of only a small number of distinct tuples. Then the method transforms the filial 

genoralize(I relation into logical rules. In the final generalized relation. 4111 at 1 1 '11)10es 

are treated as equally important . 13u1 this is not true in act The generalized 
relat ion normally Will still contain some irrelevant . or nnimpowou amilmt es rut a 

given discovery task. For example. to determine the mileage of a car. I lle 11right and 

pOWer Of the car are much more important attributes Mille the numbei of (lout~ of 

the car is not needed for consideration. So the important considet al ions ale 111'1 15d11 

to delenilille the 1110S1 relevant attributes and eliminate the bide\ ant oi unimpoi 

tant attributes according to the learning task wit hunt losing essential info' !nation 

about the original data in the database(s), These previons studies 1( VII!) I 

191] did not analyze the data dependency relation among the at I t ihmes, meali 

ingful information about the data. such as data dependency among, the at I tibutes. 

are not explicitly analyzed by rule-generation algorithms: I hus the Idles geneiaied 

in this way are not particularly' concise and pertinent but iontain some iedundani 

information or unnecessary constraints in them. 

Thus a technique is needed to perform a more comprehensike anal sk of plow.' I It's 

of data and identify relevant, attributes prior to the generat ion of mks. Rough set 

techniques introduced by Pawlak [Paw82] ploy ide the necessary tool, to analNze the 

set of attributes globally. It is not feasible to apply rough set Iv( hniques llile( I lti to 

large database because of the computational complexity. which is NP haled l%it9I .

.1Ithough these two approaches are apparent ly diffetent . in both method., 

objects are assumed to be characterized by att !dunes and at tribute ‘alue,,. Uin 5I udy 
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objects are assumed to  be characterized by att i ibutes and at t r ib u te  values. O u i si udy

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



shows t hat t het e is a close connect ion bet ween at t ribute-oriented indu( I ion and i he 

rough set all)1 oi" h. So a nat urai aPluoaeh "'old(' combine the advantages of t hese 
two lee liniques. Rased on this consideration. we present an attribute-oriented tough 

set based knowledge discovery system for large databases. 

In this thesis. a framework foe knowledge discovery in databases using rough 

set theory and attribute-oriented induction is proposed. Furthermore. the results 

from previous studies [CCI-191. IICC92] arc developed in two aspects. First our work 

( 11( .1193] expands the function of the previous system [CCI191. IICC92] and overcomes 

t he "oAelgenera1iiat lull problem oft he previous studio . Tlw previous 1)1(1110(1 is fur-

t het de\ eloped to find knowledge rules associated wit It different levelsof the concepts 

in the concept hierarchy [I1('1191]. If the concept hierarchy is unavailable. our Method 

Caul construct a concept hierarchy automatically from the data and infer some knowl-

edge rules based simply on the «Attainment relationship between different clusters in 

the constructed concept hierarchy. This n.et hod combines our concept nal clustering 

technique [1111x91] with machine learning techniques. 

The rough set technique is incorporated into the learning procedure. l'sing rough 

set t heory. our met hod can analyze the attributes globally and identify t he most 

relevant at tributes to the learning task. It can handle databases wit h incomplete 

informal ion. 

The learning procedure consists of two phases: data generalization and data re-

duction. In data generalization. our met hod generalizes the data by performing 
at  concept tree ascension to obtain a prime relation. The general-

ized prime relation only contains a small number of tuples and it is feasible to apply 
rough set techniques to eliminate the irrelevant or unimportant attributes and choose 

the best minimal attribute set. In the data reduction phase. our method finds a 

minimal subset of interesting at tributes that have all the essential information of the 
generalized relation. t bus t he minimal subset of t he at tributes can be used instead of 
the Whole attribute set of the generalized relation. Finally the tuples in the reduced 

'vial ion are transformed into different knowledge rules based on different knowledge 

disco\ (Ty algorit Inns. Some new knowledge discovery algorithms such as learning de-
cision rules, maximal generalized rules, multiple sets of knowledge rules are designed 
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by integrating attribute-oriented induction and rough set theory El'aw821. 

We NH her propose a generalized rough set 11 11)(1('1  expand applical ion seope 

for rough set theory. The generalized rough set model can he applied to databases 

with noisy data. Nloreover. the decision mat Fix nu ;hod ISkR9 I I is C011116 !It'd 'MI oll r 

met hod. The decision nult rix approach has an III( n411(90,11 capability, h 

is essential for a large dynamic environment . Our system implements a tamther 

of novel ideas. It integrates a variety of knowledge discover\ algorithms such as 

DIIC'har for characteristic rules. 1)13('lass for classification roll's. 1)1 31)e( i l it decision 

rules. D13 Nlaxi for maximal generalized rules. DI 3Trend for data head regalarities 

and DI 3:\Ikr for multiple sc Is of knowledge rides. which permit a user to disco‘ei 

relationships and regularities in the data. 'rlds integration allows II to exploit the 

strengths of diverse discovery programs. 

The thesis contains nine chapters organized as follows; 

An overview oft lie current knowledge discovery systems ire discussed in ( 'ha er 2 

and several typical systems such as 11)3. the .\Q family. the k DW workbench. I N 

and [THULE are briefly discussed. We describe in Chapter 3 an akat Ill Ie.oliented 

induction system (1)13 LEARN) and our extension to Ihis system. In Chaplet I. I lie 

general concept of a rough set is introduced and a general rough set 111011C1 is pi ()posed 

to handle uncertainty and vague information in databases. Chapter :5 is de\ oted to 

rough set based data reduct ion. along wit h some illust rat ivy examples, iple set s 

knowledge rules and a proposed decision mat Fix a pproa( to «nisi 111( molt plc sets 

of knowledge rules are the topic of Chapter 6. In Chapter 7 the expel inienI al iesulls 

of our system using the NSER(' information system (Nat I .ence and Engjneeling 

Research Council of ('anada) are presented and demonstrated amid d (UM IISS1011 

methods is given in Chapter 8. Some concluding remarks arc presented in Chaplet 9 

with a summary of the major thesis findings and with suggest ions about I lie dire( I ions 

for future progress. 
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Chapter 2 

Overview: Knowledge Discovery in 

Databases 

We survey some theoretical issues related to learning from examples. and some re 

cent progress in knowledge disco\ el.% ill database *stems and ki.ow ledge base s)st ems 

whieh adopt 1 he h arning .from (.ramplc.q paradigm. 

2.1 Concepts of Learning From Examples: An AI Approach 

As it basic met hod in empirical learning. learning from examples has been studied 

extensively DiNI83. IlaN177. GeN87j. We review the basic components and 

the goneral6a1 iuu Mies of learning from exampieb. the types of knowledge rules which 

can be learned. and the control strategies of the leartiing process. 

2.1.1 Basic Components in Learning from Examples 

L«trning from (.rampIrs can be characterised by a tuple ( P.N.C. A ), where P is 

a set of positive examples of a concept. N is a set of negative examples of a concept. 

( 1 is I he conceptual bias which consists of a set of concepts to be used in defining 

learning rules and results, and A is the logical bias which captures particular logic 

forms [GeN87j. 

In most learning systems, the training examples are classified in advance by the 

tutor into two disjoint sets, the positive examples set and the negative examples set 
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[Nlic831. The t raining examples represent low lei el, specific informal ion. l'he Irnt ning 

task is to general;se II„tem' low-level concepts to general rules. 

There could lw numerous inductive conclusions derived from a set of iaining 

exam p.1es. ('01W with this multiplicit or possibilities. it Is use sumo 

addit lotto! i form., t ion. probh backgrouml !motel( dip . to coils' I .611 I he spat e of im,ssi 
He inducti ve conchn,ions and locate Illy must I One(S) 1(1( .11S71. I he toll( (p111.11 

bias and the logical bias pro\ ide the desired concepts and i he logit fin ins w hit h set 

as this kind of background knowledge. These biases rest tic t the candidates lir ful 

Ini llaS with a particular vocabulary and logic Rwins• Oulu °los('  4'" 11". 1)I " hit  h  " h i 

be mitten in terms of this fixed vocabular\ and logic forms are «insidetet1 in the 

learning process. 

Usually. the examples presented to the learning s,' dent consist of vr a I ‘,1

tributes. Depending on the structure of the at tribute domains. we an dist inpotish 

among three basic types of at  [Nlic83]: 

(1) nominal attributes: the value set or such all rikules copsisis of independent 

symbols or names. 

(2) numerical attributes: the value set of such at tributes is a Iol ally ordered so, 

(3) structured attributes: the value set of such attributes has a tree st nu titre 

which forms a generalisation hierarchy. .\ parent. node in such a st rut I mi. 101/1 e:10111.,

a more general concept than the concepts represented by its 1111(11(.11 11101cS. Thy 

domain of structured at t ributes is defined by the problym bat ligionifil know letlgc, 

2.1.2 Generalized Rules 

',turning from (.ramplrs can be viewed as a reasoning process Flom spot Hit in 

stances to general concepts. The following generalization titles are pat tic gill► Iti uschil 

in learning systems [CoF83. Nlic83). 

(1) Turning constants into variables 

If the concept F(v) holds for rl when 1, is a constant a. and a constant b. and so 

on, then these concepts can be generalized into a statement that He) holds lot e% ), 
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%aim. of I.. This k t he tide used most often methods of induct Re inference emplo-

ing pledi( ate (aIculns. As a logic formula. this can be expressed as (2.1). where the 

notation "V' stands fin. -can be generalized to-

P(a) A P(b)A...k P(r). 

(2) Dropping conditions 

(2.1) 

A11 conjmn l ion can be generalized by dropping one of its conjuncts. A conjunc-

t i‘e «ifidition can be t lowed as a constraint on t he set Of possible instances that 

5)111(1 sat I he concept . Hy dropping a condition. one condition is removed and the 

concept is generalized. For example. the class of -red apple- can be generalized to 

the class of all "apples- of any colour by dropping the -red- condition. This call lie 

writ ton as: 

d(t. ) A apph(t.) 1< apph(r) 

(3) Adding options 

(2.2) 

I3.‘ adding more Condit ions. the concept can be generalized because more instances 

Ino sat t his concept. An especially useful form of I his rule is %viten the alternative 

is added by extracting the scope of permissible values of one specific conccpt. For 

example. suppose that a concept is generalized by allowing objects to be not only NA 

but also Mu( . This can be expressed as follows: 

/.«/( t.) /•«/(r) V hirt( (1.) (2.3) 

(.1) 'hinting conjunction into disjunction 

A concept can be generalized by replacing the conjunction by the disjunction op-

erator. This process is analogous to the adding-option generalization rule. This rule 

S 
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can be writ ten as follows: 

r«/ A cirri( 1< r«I v cirri( 

(5) Climbing a generalization tree 

(2..I ) 

131 ascending 1 11(' generalizat ion I rev. I he lo‘N el level ( on( ept is subst it used 1,\ I he 

higher level concept. This generalization ride is appli, otil to the «m«.pt %%hose 

domain is a struct tire value set. (that is. concepts al different le‘els of genet.dit 

Formally. this rule call be ('N pressed as: 

L(tr)E(1 

L(v) E I) 

V(.1')L(.1 ) C ••• (2.r) 

L(z) E i 

where I, is a structitre attribute: a. b  and i are the value of 40" 

attribute I,. respectively: and s represents t in. IcAvest parent node %% hose 

include nodes a. l).... and i. 

(6) closing interval 

L = < 
(2.6) 

;Mel / I he 

III 'SI Ili I fill! 

The two premises are assumed to be connected 1) I he logic al ( onjtun tit'''. 'I his 

rule states that if IWO descriptions of the same class (tile pl('ndses or the ri le ) ditret 
in the values of only one linear descriptor. t ln'n the des( rip, ions ( an be told'', 

single description in which the referen«.uf the descripiol is the ilttelt.tl linking Ihe,e 

two values. 

9 
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can bo written as follows:

red A circle \<  re el V cire-le C M )

(">) C l im b ing  a generalization tree*

B \ ascending t In* gener<di/.<it ion I lee. I lie lower level < him epl is subsl it n led b\ I he 

higher level concept. Th is  gcnera li/a tion  ru le is applic able onk  in  the < niu epl whose 

domain is a s truc ture  value set. (that is. concepts at dill'erem |e\o|s o f  gene i.d i l \  ). 

Formally, th is rule can be expressed as:

(M)

/ - (»)  €  <i

/.(*') £ l>
.. € ••

.. € ..

U = ) e i

where L is a s truc tu re  a tt r ibu te :  a. b and i are the value o f  u . \ .... and /  in the

a tt r ib u te  b. respectively: and s represents the lowest parent node whose dostc iidan l'.  

include nodes a. Ii.... and i.

(6 ) closing in terval

I  =  et\ <  A*

I  =  b\ <  K

The two premises are assumed to  be connected by the logical con junction. ’ 1 hi.-> 

rule states that i f  two descriptions o f  llu* same* c lass (the  ptemises o f  the rule) dlll'ei 

in the values o f  only one linear descriptor, then the descriptions c an be replaced by a 

single description in which the reference o f the desc rip tor is the in lc iva l l in k ing  th e ir  

two values.

i)
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2.1.3 Types of Knowledge Rules 

('yen a learning-Irons-examples problem characterized as ( P.S.('. .1 ). several 

diffetent In can be ext rd( led. The learned concept is a (harac111.191( rut( if and ottl 

if it is sioislied by all of the positive examples. The learned concept is a disc/inn/,art/ 

11/( if and only if it is not satisfied by any of the negative examples. The learned 

ion( opt is an admissible nile if and only if it is both charm teristic and discriminant 
110183.(1eNsl. 

Most learning algorithms are designed for learning admissible rules (1)i.1183.:\lic8:31. 

.1 few algorithms. such as INDITE 1.2 (l)i.N181) and SI)10)1*TER illaN1771. are (le-

signed fm. learning characteristic rules. 1)131?()I.cii [11u('9,1a. 1111('9.11). 11S(79.1. 

11(1191. IICS911 can discover characterist it rules. discriminant rules and some of her 

knowledge rules, 

2.1.4 Control Strategies in Learning from Examples 

hiducrion mei hods can be, di vided i nto dat a.,drive" but unt.,u p modeH ri voi

(top down). and mixed methods depending On the strate* entplo ed timing the

search for generalized concepts [1)iN183]. All of those tnet hods maintain a set. 

of the currently most plausible rules. These methods differ primaril) in how t hey 

reline t he set // so that it eventually includes t lie desired concepts. 

t he data driven methods. the presentation of the training examples drives t he 

sear( h. These met hods process the input examples one at a I1111('. gradually general-

iiing the l'alT0111 SO Or C011eepis 1111111 it 111;ki1 Cc/101111011e gela.raliZal IOU 11 VOIllpated. 

rho typical examples of such control strategy include the candidate-elimination algo-

rithm N 1'077. Nlit 79]. the approach adopted in [11oN177.Wal.:87). the 11)3 techniques 
of Quinlan (Qui801 and the Bacon learning system (1.an771. 

In the model driven methods. an a priori model is used to constrain the search. 
l'IuNe methods search a set of possible generalisations III an attempt to find a few 
-best" hypotIn”ies that satisfy certain remtirements. Typical examples of systems 
‘vhiell adopt this rategy are ANI [Lenin. DENDRAL and Nleta-1) EN DUAL [1311 118]. 
and the approach used in the INDITE system 1DiN181). 
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2.1.3 Typos of Knowledge Rules

( l iven  a learning-from-examplcs problem characterized ah { R.X.C. A ). several 

dilfe ient 1111< s can be ('M rar ted. The learned concept is a ( l iarof It r i*l i< n ih  ifanr l only 

i l ' i l  is s,iiisljed by all o f  the positive examples. The learned concept i.s a ( l iscvini intni l  

tu l i  i f  and only i l ' i l  is mn satisfied by any o f  the negative examples. The learned 

i on< ept is an admissible rnle i f  and only i f  it is both ehara< teristic and d iscrim inant

|l)iMs:{.(;<..\\s7|.

Most learning a lgorithms are designed for learning admissible rules [l) iMS3.M ic83]. 

A few algorithms, such as I N D l ’ CK 1.2 [l)i.\LSl] and S P R O l 'T K R  [Ha.MTT]. are de

signed Ibr learning characteristic rules. D B R O I 'd l l  [ I luC RIa . I lu ( ' f ) l l ) .  IISCZSM. 

I IC I ID I.  IK 'SDI] can discover characteristic rules, d iscrim inant rules and some other

knowledge rules.

2.1.4 Control Strategies in Learning from Examples

I ltd net ion methods can be divided in to  data-driven (bot tom -up). model-driven 

( lop  down), and mixed methods depending on the strategy employed during the 

search for generalized concepts [I)i.\ lS3j. A l l  o f  these methods m ain ta in  a set. I I .  

o f the currently  most plausible rules. These methods differ p rim ari ly  in how they 

reline I lie set I I  so that it eventually includes the desired concepts.

In the data driven methods, the presentation o f  the tra in ing  examples drives the 

search. These methods process the input examples one at a t im e. gradua lly  general

iz ing the current set o f  concepts un t i l  a final conjunctive generalization is computed. 

The typical example's o f such control strategy include the candidate-e lim ination algo

r i thm  [ M i l77. Mil?!)], the approach adopted in [1 loM77.\\ 'aR87]. the 11)3 techniques 

o f Quin lan [QuiSO] and the Bacon learning system [ban??].

In the model driven methods, an a priori model is used to constrain the search. 

These methods search a set o f  possible generalisations in an a ttem pt to  find a few 

"best" hypotheses that satisfy certain requirements. Typ ica l examples o f  systems 

which adopt this strategy are A M  [ben??]. D E X D R A b a n d  M e ta -D E X D R A b  [BnM78], 

and the approach used in the lX D l 'C ’E system [l)i.M81].

10
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1)at a-driven techniques generally have the uI1i1I11.I,L'•e tll suppoil lug inerelitv111.11 

learning. The learning process can start not only from t he speeih( tr,,i„i„g

)

tru

t 

 c':tlis)(i: I tr11: 1(1)11. is

 the rules lvhi(•I1 'ave aheatl~' been 

 .11;(.1":).1. 1:1.1\1v:tits:I )141.e: 111:i 

contrast. the model-driven methods. 1%111(11 IVSI and role( I h‘ pot 1,.1,0.1 on .111 
examinat ion of t he ".h, ) body of data. are alien!t to use In ; rentent.11 learning 

sit nal ions. %Viten new 1111111'111g l',X11111111('S 1)( 1110(' a‘1111/11)1(% 1110( lel 1161(.0 11101 him I.. 

11111SI ('1111(9' 'Meld ()I' I'VSI III(' learning proves?, from he beginning. be, ails,. 

III(' criteria by 11.1tich Itypol liwses wore originally tested (or schema.. instantiated 11,11e 

been changed El)i:\183]. On the other hand. an ad‘ani dge of model di i‘ met Ill HIS 

is I hat t hey tend to have good noise immunity. \Viten a .*(.1 of hypo! //. i% 

tested against noisy training examples. the It ;to(.e.-(.r.‘ en method., need uot reject di 

Itypot hesis On t he basis ()I one or IWO ('011111(11'SiIIIII)1('S. SIllet. I II(' 111101(' 'eel ail I I 

examples IS available. t he program can use slat isl leaf measures of lite-1 .1 11111114 144'd I 

111'1)0111(NiS M .1'0111115 for I Ile data. In the data-driven met hunt. the so of hypo Iiinsos. 

is revised earl, I1111e (Hi I lie basis of the current !ranting example. Conseiptentl‘, 

a single errcnwous example can cause a large pert tirrpation in I/ ( (loin whit it it ntav 

never recover) 11)iN183]. 

2.2 Some Learning From Examples Models 

Since the I 960.s. many algorithms and experimental s\ stems of It ,a),/o// rim, 

r,.r a ni pi r have lwen developed [Mil 77]. demolisi 1%0,41 t , min bine logn.n 

ing in science. industry awl business applications I lansi.lionsid. III I III. •so, t ‘‘, 

present several successful modeIs ‘v.1 i.o.I 1 . 1 ale related to our research. 

2.2.1 The Candidate Elimination Algorithm 

Nlitehell developed an elegant framework. - 141..siort Amur ... Pa des( Iihing systems 

that use a data-driven approach to concept learning iNli182]. This fiatnewot au be 

described as follows. Assume we are trying to learn some tinknown tat f1,41 I (nit (pi 

defined on t 1w instance space. We are giVVII ii '10(111011w of positive ;Ind 11,1),71Iive 

I I 
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Data-drivem 1 cellni<jii(,s generally have (lie advantage of supporting incremental 

learning. The learning process can slari uoi only from lIn* spec'ili< tra in ing examples, 

but also from I lie rules which have already heen discovered. Ihe  learning svsiems 

art* capable of updating the existing hypotheses to account lor eat li new e\nmple, In 

contrast, the model-driven methods, which lest and rejet l hvpoiheses based on an 

examination o f  the whole body of data, are dillic nil to use m incremental learning 

situations. When new tra in ing examples become available, model driven method*, 

must either backtrack or restart Ihe learning process from theve iv  beginning, bemuse 

the criteria by which hypol lieses were orig inally tested (or schemas iiisl ant iatetl I have 

been changed (DiM.S:)]. On the other hand, an advantage of mot lei driven methods 

is that they lend to have good noise immunity. When a set of hypotheses. / / .  is 

tested against noisy tra in ing examples, the model-driven methods need not rejec t ,i 

hypothesis on the basis of one or two counterexamples. Since I lie vv hole set of 11 anting 

examples is available, t he program can use slat isl ical measures o f how well a proposed 

hypothesis accounts for the data. In I he data-driven mol hod. I lie set o f hypol lieses. 

/ / .  is revised each time on the basis o f  the current tra in ing example, t'oiisecineiitlv. 

a single erroneous example* can cause a large perturbation in I I  ( l io m  which it iiiav 

never recover) [DiMS.’f).

2.2 Some Learning From Examples Models

Since* the l!)(i()‘s. many algorithms and experimental svsiems o \ h  u n n n i f  [ n u n  

<-.vainplf.s have beeni developed [ M i l77]. which demons! rated aspects o f mm liine learn 

ing in science, industry and business applications fllanN7.Weii.StiJ. In this sec lion, we 

present se*veral successful models which are related to our research.

2.2.1 The Candidate Elimination Algorithm

M itchell developed an elegant frame*vvork. "mr.sion .s//«e<T Ibr dose rib ing svsiems 

that use a data-driven approach to concept learning jM itN ’Jj. This fjamevvoik can be* 

described as follows. Assume we* are try ing  tec le*nrn some unknown imgei concept 

defined on the instance space. We* are given a se*e|itencc* o f positive* ami n<*gative

i l
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examples w hie Ii are 4 idled samples of the target concept. The task is to produce a 

concept that is consistent with the samples. The set. of all hypothesis. II. that are 

«ntsistent w it h t he sample is called t he version space of the samples. The version 

spa«e is enipt s in t he case t hat no hypot hesis is consistent with the samples. 

proposed an algorithm. called the candidate-elimination algorithm. to 

sore this learning task. The algorithm maintains two subsets of the version space: 

I he set .' of I he most specific hypothesis in the version space and the set 6' of the most, 

general hypot lieses. These sets are updated with each new example. The positive 

examples fot the program to generalise the set. and the negative examples force 

the program to specialize the G set. The learning process terminates when = S 

.\ good feature of this method is that the incremental learning can be performed 

he learning program. The sets and (7 can easily be modified to account for new 

I raining examples wit hoot any re-computat ion. 

Ilowe er. as with all data-driven algorithms. the candidate elimination algorithm 

has diflicult with noi* training examples. Since this algorithm seeks to find a con-

e ,.pt that is consistent wit h all of the training examples. any single bad example (that 
is. a rake posit ive or ralse negative example) can have a profound er ect when the

leas ning s.‘st cm is gig en a false positive example. for instance. the concept set becomes 

erl generalised. Sintilarl . a false negative example causes the concept set to be-

come overly specialised. PA ent noisy 
training examples can lead to a situation 

in which theme are no concepts that are consistent with all of the training examples. 

The second and most important weakness of t his algorithm is its inabili ty to discover

dis.jund ive ColleOpt 5. Many concepts have a disjunctive form. but if disjunct ions of 

al bit ar length are permitted in the representation language. the data-driven algo-

rithm demi ibed bo tie% or generalises. Unlimited disjunct ion allows the partially 

ordered ride space to become infinitely "branchy". 

There are two computational problems associated with this method. The first one 
is t hat in order to update the sets S and G we must have an efficient procedure for 

testing whet her or not one hypothesis is more general than another. Unfort unately, 
this testing problem is NP-complete if we allow orbit rarity many examples and arbi-

raril many at t ributes in the I* pothesis 11861. The second computational problem 
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examples which arc (ailed .samples o f t I k * target concept. The task is to produce a 

concept that is consistent w ith  the samples. The set o f  all hypothesis. / / .  tha t are 

consist cut u i l l i  the sample is called the version space o f  the samples. The version 

space is empt.v in the case that no hypothesis is consistent w ith  the  samples.

M itche ll pioposed an a lgorithm , called the cand idate-e lim ination  a lgo r i thm , to 

solve th is learning task. I he a lgorithm  mainta ins two subsets o f the version space: 

I lie set .S' of t lie most specific hypothesis in the version space and the set G  o f  the most 

general hyp<dlieses. These sets are updated w ith  each new example. The positive 

examples Ibic e the p iogram to generalise* the $  sot. and the negative examples force 

the program to specialize the G  set. The learning process term inates when G =  S  

.\ good feature o f this method is that the incremental learning can be performed 

In ihe  learning program. The sets .s' and G  can easily be modified to  account for new 

t ra in ing  examples w ithout any re-computation.

IIowe\o r. as w ith  all da ta -d r i\cn  a lgorithms, the candidate e l im ina t ion  a lgo r i thm  

has d if l icu ltv  w ith  noisv tra in ing  examples. Since th is  a lgor i thm  seeks to  find a con

cept tha l is ( (insistent w ith  all o f  the tra in ing  examples, any single bad exam ple (that 

is. a false positive* or false negative example) can have a profound effect. When the 

learning s.vslem is g i\  en a false positive example, for instance, the concept set becomes 

overlv generalized. S im iia rh .  a false negative example causes the concept set to  be

come overly specialised. Kventua lh . noisy tra in ing  examples can lead to  a s itua tion  

in which the ie  are no concepts that are consistent w ith  all o f  the t ra in in g  examples. 

The  second and most im portan t weakness o f  th is a lgor ithm  is its in a b i l i ty  to  discover 

d is junctive  concepts. Many concepts have a d is junctive  form, but i f  d is junctions o f 

a ib i l ia iv  length arc- perm it ted  in the representation language, the data-driven algo

r i th m  desciibed above never generalises. I ’ n lim itc 'd  d is junction  allows the pa r t ia l ly  

ordered rule* space* to become* in f in ite ly  "b ranchy” .

There arc* two com puta tiona l problems associated w ith  th is m ethod. The  first one 

is that in order to  update the sets S and G  we must have an efficient procedure for 

testing whether or not one hypothesis is more general than another. I ’ n fo rtunate ly , 

this testing problem i.s .\P -com ple to  i f  we allow a rb i t ra r i ly  many examples and arb i- 

lra r i lv  many attr ibute 's in the hv pothesis [llau8(>]. The second com puta t iona l problem

1 '2
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is that the size of the sets ti and G can become (ageably large. It has been 

shorn that. if the number of at tributes is large. the sizes of set S and set (1 (an grow 

exponentially in the number of examples [I lau861. 

lb improve computational efficiency. Haussler proposed a one sit  it  it lint in 

contrast to the two-sided approach of the candidate elititination Ago! inn. rile one 

sided algorithm computes only the set S using the posit i‘e examples and then t he( Ls 

to see if any negative examples are contained in the set If the tole in the set S 

not satisfied by any negative examples.  the rule is \ alid. Otherwise. t hew is no rule 

which can be discovered Plau86.11an87]. 

In some learning situations, it is possible for the user to select training examples 

and to acquire information about their classification. In t his case. a common st tateg 

to maximise the learning performance is to select an example that numbet 

of candidate formulas. that is. one that satisfies one-half of the candidates and does 

not satisfy the other half. The advantage of this strategy is Ihat . by get l ing the (las 

sification of such an example. we can eliminate one-half of the remaining ( andi(ldt es. 

However. the main problem with the halving strategy is e01111)111(111011(11 

the worst case. we need to compare each example wit It eat h «)11e0111 to detelmine 

whether or not the example satisfies the concept. If there arc' Ili ('X,11111)lvs and It 

candidates. then in the worst, case we need inn steps to seleci 111(. 1,0,4 example. This 

is time consuming when either 111 or n is very large. 

Subramanian and Feigenbaum proposed a met hod. (Jill fir llr ral mu. Iu 

this problem [Su F861. They proposed to part it ion an inst an( e into sc% (.1,11 Icp(.11(1(.1,1 

sub-instances and to factor the entire version space into mitlt iplr sepatate small(q 

version spaces. The I eS1 procedure for selecting the best t !Hitting ins1 an( call be lit st 

performed in each factored version space. and 1 11(.11 the resniting "sub hist (MC (an

be combined into a single instance to be tested. The comput a1 zonal adVall. ages of 

factoring are striking. Suppose that a version space can be factored into I fachns. 

with p nodes each. Whenever this is I he case. t he size of t he tin-fat torcd version SPel«.

must be ph'. If we can factor the version space. I hen we can -factor- ea( II install( e 

into k parts. one for each factor of t he version space. If there are q possibilit les fog 

each part. then t here must be qk instances. The total (.051 for selecting a Iraining 

13 
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is that the size o f the sots S and ( i  can become num. tameable large. It lia.s born 

shovn tha t, i f  the num ber o f a ttr ibu tes  is large, the si/.es o f set S and set ( !  can grow 

exponentia lly  in the number o f example’s [llauSti].

To improve com puta tiona l efficiency. Ilaussler proposed a onesided  a lg o i i lh m  in 

contrast to t he two-sided approach o f  t he candidate r l im in a t  ion algoi it Inn. 1 lie one 

sided a lgor i thm  computes only the sot .S' using the p os it i \e  examples ami then < hoc ks 

to  see i f  any negative example’s are contained in the sot S. I f  the  i n l r  in the set is 

not satisfied by any negative examples, the* ride is \a l id .  Otherwise, there is no rule 

which can be discovered [Ilau8G.llau87].

In some k ’arn ing situations, it is possible for the user to select t ra in in g  examples 

and to acquire in fo rm ation  about the ir  classification. In th is case, a common s ila legv 

to  maximise the learning performance is to select an example that halves tlie nunibei 

o f  candidate formulas, that i.s. one that satisfies one-half o f  the candidates and does 

not satisfy the other half. The advantage o f  this strategy is tha t ,  by g e l l in g  the clas 

sification o f  such an example, we can e lim inate  one-half o f  t lie rem ain ing  < andidales. 

However, the main problem w ith  the halving stralegv is com puta tiona l expense. In 

the worst case, we need to compare each example w ith  each (o iiccp l to  de te im ine  

whether or not the example satisfies the concept. I f  there are in examples and n 

candidates, then in the  worst case we need ///// steps to select the besl example. I Ids 

is t im e  consuming when e ither in or n is very large.

Subramanian and Feigenbaum proposed a method. < .r/n r i im  n l  t/t nt n i l inn.  to.solve 

th is  problem (SuF86). They proposed to p a r t i t ion  an instance in loseve ia l independent 

sub-instances and to  factor the entire  version space in to  m u lt ip le  sepal ale smallei 

version spaces. The test procedure for selecting the best (m in in g  instance can be fhsl 

performed in each factored version space’, and then l lie* resulting "sub instance* can 

be combined in to  a single instance to  be- tested. The com puta tiona l advantages o f 

factoring are s tr ik ing . Suppose’ that a version space can be- faetened in to  /. I’ac lens, 

w ith  p nodes each. Whenever th is is t lie case, t he size- o f I lie- un-fae lore d versieni spue e* 

must be / / ’ . I f  we can factor the* version spae-e. them we> can "fuel o r"  e-aeh instance* 

in to  lx parts, one for each factor of the ve-rsion space. I f  llie-re- are <y possibil it ies Ibi 

each part,  then there must be qk instances. The* to ta l cost for se*|e*eling a t ra in ing
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Figure 2.1: The version spaces for the positive example -red A circle.

instance wit bout factoring is pk e . whereas the total cost with factoring is just km. 

a substantial saving when p or ci is large. Figure ?.1 S.11 0M, the entire version space 

and I he factored version spaces in which the training example -red A circle- is the 

sole positive example. While the entire version space contains 9 nodes. the factored 

version spaces consists of only 6 nodes. 

2.2.2 AQ11 and AQ15 Systems 

Nlichalski and his colleagues have developed a series of AQ learning systems. The 

AQ I I system (MiC801 is designed to find the most general rule in t he rule space 

that discriminates training examples in a class from all training examples in all other 

classes. Michalski et al. call these types of rules discriminate descriptions or dis-

criminant Nilo shim their purpose is to discriminate one class from a predetermined 
set of other classes. 

The language used by Michalski to represent discriminant rules is VIA, an ex-

tension of the propositional calculus. VIA is a fairly rich language that includes 

1 4 
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Figure 2.1: The version spaces for ihe positive example "red A circ le"

inslance w ithout factoring is / /> / ' .  whereas the tota l cost w ith  factoring  is ju s t  kpq. 

a substantial saving when p o r q is large. Figure 2.1 shows the entire  version space 

and the factored version spaces in which the tra in ing  example "red A circ le" is the 

sole positive example. W h ile  the entire version space contains 9 nodes, the factored 

version spaces consists o f  only (i nodes.

2.2.2 AQ11 and AQ15 Systems

Michalski and his colleagues have developed a series o f  A Q  learning systems. The 

AQ I1  system [ \ l i ( '8 0 ]  is designed to find the most general ru le in the  rule space 

that d iscrim inates tra in ing  examples in a class from all t ra in ing  examples in all other 

classes. M ichalski et al. call these types of rules discr iminate descr ipt ions  or dis

cr im inan t  r u h s since the ir purpose is to d iscr im inate  one class from a predetermined 

set o f  other classes.

The  language' used by M ichalsk i to represent d isc r im inan t rules is VL1, an ex

tension o f  the propositional calculus. VL1 is a fa ir ly  rich language that includes
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conjunction. disjunction. and the set -membership operators. Consequent t ink 

space of all possible \'1.1 discriminant rules is quite large. 'bo search this rule space. 

AQ1 1 uses the AQ algorithm, which is nearly equivalent to the repealed d1)1)liedIiull

of the candidate-elimination algorithm. :\Q1 I converts the problem of learning dis-

criminant rules into a series of single-concept learning problems. To find a rule for 

class .1. it considers all of the known examples in class . t as posit ire eNamples dud all 

other training examples in all of the remaining classes as e examples. Ile .\Q 

algorithm is then applied to find a concept that covers all of the positive examples 

without covering any of t he negative examples. AQ1 I seeks t he most general stn 

concept. which corresponds to a necessary condition for Class 

After developing the AQ I I system. Michalski et al. proposed another induct he 

learning system AQ15 in 1986 [N1M 111,861. This system is an extended version of the 

.'1Q 1 I system. which iy able to incrementally learn disjunct ire con( epis Bola noisy and 

overlapping examples. and can perform coast ructive loll ill lIct% ((Alt vpls 

are introduced in the formation of the inductive conclusions. 

2.2.3 ID3, ID4, ID5 

11)3 was developed by Quinlan [Qiii83]. 11)3 can &CO\ el' classification [ Ilk's ill I

form of a decision tree for a collection of instances. 11)3 uses an information theoreih 

approach aimed at minimizing the expected number of tests to ( objet 

The attribute selection part of 11)3 is based on I he plausible assumption that the 

complexity of the decision tree is strongly related on I he amount of inlomnat c on 

veyed by this message. It, build:, a decision tree by choosing a good test t tibiae that 

partitions 1 he instance into smaller sets for which decisioa subt ryes dry (ifis1,111( led 

recursively. To determine which at tribute should be the lest at I ribnie for d 11( 1e, 

the algorithm applies an information-theoretic measule gait!. An at t ribute with the 

maximal gain is selected as the lest attribute. 

The ability of 11)3 to construct decision trees I hat, are efficient, classifier and that 

generalizes well is attractive. For learning problems in which I he collect ion of in 

stances is available and is not likely to change, 11)3 is a good choice for building 
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are in troduced in  the  fo rm ation  o f the induc t ive  conclusions.

2.2.3 ID3, ID4, ID5

ID 8  was developed by Quin lan [Qui88]. 11)8 can discover < Inssifie at,ion Miles in the 

form of a decision tree for a collection o f  instances. 11)8 uses an in fo rm a tion  theoretic 

approach aimed al m in im iz in g  the expected num ber o f  tests to  < lassil'v the objee Is. 

The  a t t r ib u te  selection part o f  11)8 is based on the plausible assumption that the 

com p lex ity  o f  the decision tree is s trongly related on the amount o f  infoi mat ion ton  

voved by th is  message. I t  builds a decision tree by choosing a good test, a l t i ib u le  that 

pa r t i t ions  the instance in to  smaller sets for which dec ision subtrees arc* <ons t i in  l.ed 

recursively, To dete rm ine  which a t t r ib u te  should be* the test a t t r ib u te  for a node, 

the a lgo r i thm  applies an in formation-theoretic  measiue f jn in.  An a l t i i b u le  w ith  the 

m ax im a l gain is selected as the test a tt r ibu te .

The  a b i l i ty  o f  ID3 to  construct decision trees that, are efficient classifier and that 

generalizes well is a ttrac t ive . For learning problems in which the collection o f in 

stances is available and is not l ike ly  to change1, 11)8 is a good choice1 for bu i ld ing
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classification rules. llowever for problems in which new instances are expected to be-

( onu• available• on a regular basis. it would be far more preferable to accept instances 

in( rementally, without needing to built a new decision tree from scratch each time. 

Schlimmer and Fisher constructed 11)4 [ScF86]. which incrementally builds a de-

cision tree similar to t hat which 11)3 would build. Instead of building a decision 

tree From a batch of instances. 11)1 updates a decision tree based on each individual 

instance. This algorithm offers an approach to incremental learning of 11)3-type deci-

sion trees. A potential drawback of the algorithm is that all or part of a decision tree 

will be discarded whenever it is determined that the test attribute should be replaced 

with a bet ter attribute. To overcome this shortcoming, Utgoff [Utg88] developed the 

11)5 algorithm. 11)5 builds on the idea of 11)1 that one can maintain positive and neg-

at ive instance counts of every attribute that could be a test attribute for the decision 

rye or subt ree. 11)5 differs from 11)4 in its method for replacing the test attribute. 

Instead of discarding the subtree oelow the old test attribute, 11)5 reshapes the tree 

by pulling the test attribute up from below. The advantage is that the positive and 

negative instance counts can be recalculated during the tree manipulations, without 

reprocessing the instances. 

The algorithms 11)3 and so on have been widely used for ride induction. How-

ever, such decision trees are essentially sequential decision algorithms which are quite 

different in nat tire from the data driven nature of expert systems or knowledge base 

systems. Rule bases are data driven in the sense that any set of input data can po-

tentially be used to begin the inference. Decision trees must always begin with the 

attribute associated with the root node. In addition, rule bases can accommodate 

missing attribute information, whereas decision trees are not, designed to do so. De-

cision t roes can also 1w difficult to understand for the user [ArNIS5], a problem which 
should not be underestimated in light of t he overall advantages of explicit knowledge 

representation inherent to "If then- rule. This is not to say that decision trees 

are not useful in problems areas, such as classification where a predetermined "hard-

wired" solution is sufficient [GoS88]. However, by their very definition. knowledge 
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reprocessing the instances.
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different in nature from the data driven nature o f  expert systems or knowledge base 
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ten t ia l ly  be used to  begin the inference. Decision trees must always begin w ith  the 

a ttr ibu te ' associated w ith  the root node. In add it ion , ru le bases can accommodate 

missing a ttr ibu te ' in fo rm ation , whereas decision trees are not designed to  do so. De

cision trevs can also be d iff icu lt to  understand for the user [A rM So], a problem which 

sluiuld iie)t be> underestimated in light o f  the overall advantages o f e xp l ic i t  knowledge 

representation inherent to “ I f  ... then" rule. Th is  is not to say tha t  decision trees 

are> not useful in problems areas, such as classification where a predeterm ined "ha rd 

w ired" solution is sufficient [CioSSS]. However, by the ir  very defin it ion , knowledge
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bases tend to be used for problems where variable inputs can be handled (incom 

plete. uncertain. or dynamic data). variable outputs (different goals) be sped 

lied. and there is a need for an explicit representation of the stem's knowledge for 

user interaction. 

2.3 Concepts of Learning From Databases 

Learning from databases can be characterized by a triple ( D.('. .\ ) where I) 

represents the set of data in the database relevant to a specific learning task. C rep_ 

resents a set of -concept biases" (generalization, hierarchies. etc.) useful lin defining 

particular concepts, and A is a language used to phrase definitions. 

Three primitives should be provided for the specification of a learning task: /ask-

rekcant data, background knowl«Igr, and ih«.rp«1«1 upuscithelions l«ateiely re-

sults. For illustrative purposes, we only examine relational databases. howe\ er, the 

results can be generalized to other kinds of databases. 

2.3.1 Data Relevant to the Discovery Process 

A database usually stores a large amount of data. of which only a purl ion may 

be relevant to a specific learning task. For example. to characterize t he features of 

mammal in animal. only the data relevant, to 111(11111M11 in at/i/llai AFC app10111 mate 

in the learning process. Relevant data 'nay extend over several !clinic/11s. A gin-Iy 

can be used to collect, task-relevant data from the database. Task relekani data can 

be viewed as examples for learning processes. Undoubtedly. harning-fmm-r.romph., 

should he an important strategy for knowledge discovery in databases. Must h rn Mg-

from-c.ramplcs algorithms partition the set of examples into pasilirr and !paint 

sets and perform generalization using the positive data and .sp(ciali,-.alion nsifig the 

negative ones [UiNI83]. Unfortunately, a relational database does not, expli( illy store 

negative data (even though the negative data can he derived based on t he closed 

world assumption [Rei8.11), and thus no explicitly specified negative examples (an 

be used for specialization. Therefore. a database induction process relies plainly On 

generalization, which should he performed cautiously to avoid (Act. generalizat ion, 
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can be used to  collect task-relevant data from Ihe database. Task relevant data can 
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generalization, which should be performed cautiously to avoid over generalization.
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Ilw data relevant to the learning task can usually be classified into several classes 

based On the values of a specific attribute. For example. the data about animal may 

be classified into mammal and bird based on the value of the attribute "type''. We 

introduce new concepts target class and contrasting class 

Definition 2.1 A largrt class is a class in which the data arc triples in the database 

consistent with the learning concepts. 

Definition 2.2 .1 contrwsling class is a class in which the data do not belong to the 

Ia►ty(t class. 

For hest mice. to dist inguish mammal from bird. the class of mammal is the target 

class, and the class of' bird is the contrasting class. 

2.3.2 Background Knowledge 

The quality (or lack of ) and vast ness of the data in real-world databases represent, 

t he core problems for KDD. 01 ercoming the quality problem requires external domain 

knowledge to clean-up, refine. or fill in the data. The vastness of the dat a forces the use 

of techniqttes for focussing On specific portions of the data, which requires additional 

domain knowledge if it is to 1w done intelligently. A I<DD system. therefore. must be 

able to represent and appropriately use domain knowledge in conjunction with the 

application of empirical discovery algorit Inns. 

Concept hierarchies represent the necessary background knowledge which controls 

he Aeneralizat ion process. Different levels of concepts are often organized into a 

taxonoin of concepts. The concept taxonomy can be partially ordered according 
to a general to-specific ordering. The most general concept is the null description 

(described by a reserved word "any"), and the most specific concepts correspond to 

t he specific values oft 1w attributes in the database [CCII9I,Nlit77]. Using a concept 

hierarch. t he rules learned can he represented in terms of generalized -oncepts and 

stated in a simple and explicit form. which is desirable to most users. 

Coin ept hierarchies can be provided by knowledge engineers or domain experts. 

This is reasonable for even large databases since a concept tree registers only the 

Is 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 

The (hi I a relevant to t he learning task can usually be classified int o several classes 

based on the values o f a specific a tt r ibu te .  I*'or example, the data about an im al may 

be classified in to  m ammal and b ird  based on the value o f  the a t t r ib u te  " ty p e " .  We 

in troduce new concepts I a rye I class and contrasting class

D e f in i t i o n  2.1 ,1 large I class is a class in which the data arc tuples in the database 

consistent with the learning concepts.

D e f in i t i o n  2 .2  .1 contrasting class is a class in which the data do not belong to the, 

target class.

l o r  instance, to distinguish m a m m a l  from bird,  the class o f  m a m m a l  is the targe t 

class, and the class o f  b ird  is the contrasting class.

2.3.2 Background Knowledge

Tlx* q ua li ty  (or lack o f  ) and vast ness o f the data in real-world databases represent 

the core problems for K I )D .  O \e rcom ing  the q ua li ty  problem requires externa l domain 

knowledge (oclean-up, refine, or f i l l  in the data. The  vastness o f  the data forces the use 

o f  techniques for focussing on specific portions o f  the data, which requires add it iona l 

dom ain  knowledge i f  it is to be done in te l l igently . A  K D D  system, therefore, m ust be 

able to  represent and appropria te ly use domain knowledge in con junction  w ith  the 

app lication o f em pirica l discovery a lgorithms.

Concept hierarchies represent the necessary background knowledge which controls 

the generalization process, Different levels o f concepts are often organized in to  a 

laxono im  o f  concepts. The concept taxonom y can be p a r t ia l ly  ordered according 

to a general to-specific ordering. The most general concept is the nu l l  description 

(described by a reserved word “ a ny ") ,  and the  most specific concepts correspond to 

the specific values o f the a ttr ibu tes  in the database [C 'CH91,Mit77]. Using a concept 

hierarchs, the rules learned can be represented in terms o f  generalized concepts and 

stated in a simple and explic it form, which is desirable to most users.

Concept hierarchies can be provided by knowledge engineers or dom ain  experts. 

Th is  is reasonable for even large databases since a concept tree registers on ly  the
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distinct discrete attribute values or ranges of nunwrical rot cell 41111 -1111111e N1111( II 

are, in general. not very large and can be input by a domain expert. lint II the 

concept hierarchies are not available, in some case. it is possible to constinct them 

based on the data in databases. This problem will be addressvd in Chapter 3. 

2.3.3 Representation of Learning Results 

From a logical point of view. each triple in a relation is a logh. formula in conjmn 

tive normal form. and a data relation is characterized by a large set of disjnia lions 

of such conjunctive forms. Thus, both the data for learning and the rules disco‘eled 

can be represented in either relational form or first -order predicate calculus. 

The complexity of t he rule can be controlled 1).' the generalizat ills I lir,•shold. A 

moderately large threshold may lead to a rc latively complex rule wit disjinn Is 

and the results may not be ftniy generalized. .\ small threshold value leads to is 

simple rule with few disjuncts. Ilowc".'er, small threshold values may result in an 

overly generalized rule and some valuable information may get lust . A betty! method 

is to adjust the threshold values within a reasonable range hih ractier Iy alai to select 

the best. generalized rules by dolflain experts and/or nsers. 

2.3.4 Types of Rules 

There are several types or rules. including charn, teristic einssiik at loll rides 

and decision rules which can be easily learned from ivlat bona! databases. 

Definition 2.3 A charachri.stic rul( is an ass( (lion tr.t. ;c.1 c.mrach lb( cowl pl., 

satisfied by all of the data stored in th( databaw. 

For example. t he symptoms of a specific disease can be summarised as a ( 11.11 ea tel .'s! i‘ 

rule. 

Definition 2.4 A classification rule i., an ass( Ir.ion which discriminalt lb/ (Pile( pl., 

of one class from other classes. 
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concept hierarchies are not available, in some case, it is possible to  const met them 

based 011 the data in database's. Th is  problem w il l be addressed in Chapter

2.3.3 Representation of Learning Results

From a logical point o f  view, each tup le  in a relation is a logic formula in con jinn 

t ive  norma! form , and a data re lation is characterized by a la rue set o f  d is junctions 

o f  such conjunctive  forms. Thus, both the data for learning and the rules disc oveied 

can be represented in e ither re lational form or f irst-order predicate calculus.

The com p lex ity  o f the ru le can be contro lled by the generalization th re s h o ld .  A 

m oderate ly large threshold may lead to a re latively complex rule* w ith  m an\ d is jum Is 

and the results may not be fm iy  generalized. A small threshold value leads to a 

s imple ru le w ith  few d is junct*. However, small threshold values may result in an 

overly generalized ru le and some valuable* in fo rm ation  may get lost. A bet le i method 

is to  adjust the threshold values w ith in  a reasonable range inl< rut I i n  /;/ ami to select 

the best generalized rules by domain experts a n d /o r  users.

2.3.4 Types of Rules

There arc several types o f  rules, inc lud ing  cliarac (eristic rules, classification rules 

and decision rules which can be easily learned from relational databases.

D e f i n i t i o n  2 .3  A charade r is l i c  rule is an asse r l i on  which eharade 1 i:.e s lh< eana pis 

satisfied by al l  o f  the data stored in Ihe database.

For example, t he sym ptom s o f a specific disease c an be summarised as a c hai ac tei isl ic 

rule.

D e f i n i t i o n  2 .4  A classif icat ion rule is an assertion which discr iminate s the concepts 

of  one cleiss f ro m  other chesses.
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Vol example. to distinguish one disease from others a classification rule should sum-

marise the symptoms that, discriminate this disease from others. 

Definition 2.5 decision raft is an assertion which deirrmincs flu cause-effect 

alationship lw«,n condllions and decision factors. 

Characteristic rules, classification rules and decision rules are useful in many ap-

plicat ions. A characterist is rule pros ides generalized concepts about a property which 

can help people recognise the common features of the data in a class. The classifi-

cation rule gives a discrimination criterion which can be used to predict the class 

membership of new data and the decision rules help people in decision making pro-

cedure. 

In learning a characteristic rule. relevant data are collected into one class. the 

target class. for generalization. In learning a discrimination rule. it is necessary to 

collect data into two classes, the target class and the contrasting class(es). The 

data in the contrasting class(es) imply that such data cannot be used to distinguish 

the target class from the contrasting one(s), that is. they are used to exclude the 

properties shared by both classes. In learning decision rules. we need to organise the 

data into different group based on the value of the decision factors. 

2.4 Knowledge Discovery in Large Databases 

Currently. the steady growth in the number and size of large databases in many 

areas, inc•liuling medicine. business and industry has created both a need and an 

opportunity for extracting knowledge from databases. Some recent, results have been 

reported which extract different Idnds of knowledge from databases.

Knowledge discovery in databases poses challenging problems. especially Nvlion 

databases are large. Such databases are usually accompanied by substantial domain 

knowledge to facilitate discovery. Access to large databases is expensive. hence it is 

necessary to apple the techniques for sampling and other statistical methods. Fur-

thermore. knowledge discovery in databases can benefit from many available tools and 

techniques in different fields. such as. expert systems, machine learning. intelligent 

databases. knowledge acquisition. and statistics (CC1191.HCC92a. IICC92b], 
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2.4.1 INLEN System 

The INLEN system was developed by l atifinatt el al in I9S9 IKNIK911. The 
system combines some database. knowledge-base. and machine learning to( hnignes 

to provide a user with an integrated system of tools for concept tialb zing data 

and searching for interesting relationships and regularities among data. It merges 

several existing learning systems ancl provides d control stein to facilitate access. 

Figure 2.2 illustrates the general design of the syst 

The INLEN system consists of a relational databases for storing known facts 

about a domain and a knowledge base for storing rules. constraints. Iiierar( hies. de 

cision trees, equations accompanied with preconditions and enabling ( ondit lulls lot 

performing various actions on the database or knowledge base. The hiiu ledge base 

not only can contain knowledge about the contents of the (latdbasv I,IIt also meta 

knowledge for the dynamic upkeep of the knowledge base itself. 

The motivating goal of the INLEN system is to integrate three basic technologies; 

databases, expert systems and machine learning and inierence IlJ plovide a INN wit II 

a powerful tool for manipulating both data and knowledge and extracting ne‘k or 

better knowledge from these data and knowledge. It is espe( laity approm late to 

apply to data systems that are constantly changing or growing; among, tin' 

system's capabilities are the abilities to detect. changes ot en time and explore the 

ramifications of the changes. 

INLEN employs three sets Or operators: data managemein operators (1)N10s). 

knowledge management. operators (KNI0s). and knowledge general ion ()pet mot s (k(;04 

The DNIOs are standard operators for accessing. retrieving and n n all er 

ing the information in the database. The 1010s are used to create. manipulate and 

modify INI.EN's knowledge base. hereb,‘,. allowing the knowledge base to be handled 

in a manner analogous to handling a database. The N(IOs take input flour both 

the database and knowledge base, and invoke various machine teaming plogidnis 

perform learning tasks. For example, the operator ( 11,1 'SITU creates 1 hir 

clustering algorithm developed in [Nli( 180). The operator 1)111' determines the dis 

elimination rules, which can be executed in the AQ program [NliC80]. The operator 

CLEAR discovers characteristic rules, which is also implemented in an ,\Q plow am 
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The  D M O s are standard operators for accessing, re tr iev ing  and m anually  a lter 

ing the in fo rm a tion  in the database. The  K M O s are used to  create, m an ipu la te  and 

m od ify  IN L E N 's  knowledge base, thereby a llow ing the* knowledge base* to In* handled 

in a manner analogous to  handling a database. The1 K ( l ( ) s  lake* input f io m  both 

the  database and knowledge base, and invoke various mac hine learning p iog iam s to 

perform  learning tasks. For example, the operator ( ' L I S T E R  creates the* conceptual 

c lustering a lgo r i thm  developed in [Mi('8()J. T he  operator D I I T  determines the dis 

c r im in a t io n  rules, which can be executed in the A Q  program [MK'NO], The  operato i 

C H A R  discovers characteris t ic  rules, which is also implemented in an A Q  p iog iam
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[MiCSO]. The operator YARSEL selects llu* most relevant attributes and tlie* operator 

ESEL determines the most representative examples. The operator DISEQ dis«'o\ers 

equations governing numerieal variahles. which is ha.sod on the ABACI'S-'.) system 

for integrated (ptalitative and quantitative discovers [KaMSti]. ABACI'S 'J is related 

to programs such as BACON [LLBSM] and EAIIBENIIEIT |ZytS7|. Most of these 

machine learning programs invoked In KGOs are existing learning algoiitlmis with li 

have been well implemented.

As in the case of many machine learning systems, the major challenge to the 

INLEN system is computational ineflh iency. Mam learning algorithms intituled in 

t liis system adopt the t it pie-oriented approac h vv hit h examines I he 11 ainiug examples 

tuple by tuple. In the learning process, these algorithms usually have a huge seanh 

space and costly time complexity because they are not designed for laige databases. 

Although this system integrates databases, know ledge based and mat lime learning 

techniques, the database operations are applied only for lelrieving data and slotiug 

knowledge rules. The algorithms in this system do not lake advantage of database 

implementation techniques in the learning process.

2.4.2 KDW System

Like INLEN. the Knowledge* Discovery Workbench (KDW) is a collodion of tools 

for the interactive analysis of large databases [MCRfKlj. Its components have evolved 

through three versions (KDW. KDW II. and KDW -H-). all of which provide* a 

graphical user interface to a suite of tools Ibr accessing database tables, e teaiing new 

fields, defining a focus, plotting data and results, applying discoveiy algoiitlmis and 

handling domain knowledge. The current version of the system is embedded with 

an extensible command interpreter based on hi [Ous!)0]. which enables the iisim to 

interactively control the discovery process or call up intelligent sciipls to automate 

discovery tasks. The following extraction algorithms have been imoipoiaied into 

one or more versions of the* KDW: clunh riny for identifying simple* lineailv idaled 

classes: i la^i/iculioit for finding rules using a decision ticc algoiithm. sttnntnu 

for characterizing classes or records: <h ninlion dilution foi identifying significant
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difl'erem cs between (lasses of records: d<puuUnry analy*!* for finding and displacing 

probabilisl ic dependencies.

The KDW lias direct access to a DBMS through its SQL-based query interface. 

Its knowledge base contains information specific to a database regarding important 

field group, record group, functional dependencies, and SQL-cpiery statement. Most, 

of I he* domain knowledge is used to provide focus by guiding the access of information 

from I lie database. Control in the KDW is provided exclusively by the user, who may 

define scripts to automate frequently repeated operations.

The KDW itself is intended to be versatile and domain independent. As such, it 

requires considerable guidance front the user who must decide what data to access, 

how to focus the analysis, which discovery algorithms to apply, and how to evaluate 

ami interpret the results. The •‘workbench" design is ideal for exploratory analysis 

by a user knowledgeable in both data and the operation of the discovery tools.

2.4.3 The ITRULE Algorithm

ITRl'LK is a database learning program based on information theory [SyCiTi]. 

Like 11)8 (QuiSJ). C.\2 [CIN8!)] and PRISM (CenST). it searches for classification 

rules directly using a measure of rule goodness. J-measure. ITRl'LR lakes sample 

data in the form of discrete at tribute vectors and generate a set of K rules, where K is 

a user delined parameter. The set of generated rules are the K most inlbrmati\e rules 

from tin* data as defined by the J-measure. The probabilities required for calculating 

Ihe J measures are estimated directly from the data using standard statistical point 

estimation techniques [Sy(!92j.

The algorithm proceeds by first finding K rules, calculating their J-measures. and 

then placing these K rules in an ordered list. The smallest .J-measure. that of the 

Kill element of the list, is then defined as the running minimum Prom that

point onwards, new rules which are candidates for inclusion in the rule set have their 

J-measure compared with Jmiu. If greater than they are inserted in the list, the 

Kill rule is deleted, and i.s updated with the value of the J-measure of whatever 

rule is now Kill on the list. The critical part of the algorithm is the specialization
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criterion since it determines how much of the exponent large 11 pothesis spin 

actually heedS to he explored by the algorit 

The number of possible rides is exponential in the nmnbei ()I' at Iribin es and the 
carcumidity of their event space. 1„r n in- ft ry di I umnhei of Inks 

in the data is R where 

11 wn((2111 4- I )" --1 - I) 

since for each of the urn possible right-hand sides. the other o I at i iiInne have 

2/n + I possible states. namely. a Irlllh statement and its !legal ion for ea( II of I he n) 

propositions and a "do not Care-  Si at e for I he at  (Is it 11 hole or 1 111• ( asv of

binary at  rrl = I because the negation ()I' a proposition is also a basie III opus; 

lion). From a practical point of view, we do tiol have I he c41111 pill 411 o11,t1 l esullt a es I t, 

manage them. Ilence in order to define a tractable algorithm we Hill need to "in tole 

he set of possible rule candidate considerably. The I'I'I{ I' prod'', es M l of ht 

rlikti rather than /Ks/ sti of rub's, i.e., no attempt is made to e‘alnate I he ( olio( 

live properties of the rides. It is conjectured I hat this problem is «nninnatii mall% 

intractable to solve optimally for arbitrary K. 
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Chapter 3 

Extending DBLEARN 

1)131,EAliN is a database learning system developed by ('ai. Cercone and flan 

I('Cl 19 1. 1 1CC92a. 1 ICC92b1. It implement ,' both (for Learning Characteristic 

Rules) and L('1.1( (for Learning Classification 1(ttles) algorithms. The language of 

DULL\ RN ( be \ iewrd as an extension to the relational langm;e SQL fin knowl-

edge dim o‘er in databases. The architecture of 1)131.L\ RN is presented in Figure 

3. 1 

U131,1;.\ I(\ (CCM!) was implemented in an rnix/('/Syl)ase environment. It ran 

generate ntatt interesting patterns. howeN cr. it sometimes tends to disco\ er "O‘er-

genet alized- patty! its. .\ ntoderatel large threshold may lead to a relati‘el complex 

lilt' with ittatt disjuncts and I he results tita not be Nib generalized. .1 small thresh-

old %attic leads to a simple ride frith fief disjuncts. ile‘ve,,,,c.r. small thre,,liold values 

I in an o‘erly generalized rule and some valuable information mo get lost. 

I 'so- Learning 
Request Result 

DBLEARN-Interface 

LDatabase 
Data 

Generalization Program 

Aitribute-Oriented 
Induction

 j 

Concept 
Hierarchies 

Figure 3. 1 : Tlw architecture of 1)I3LEARN 
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Chapter 3

Extending D BLEA R N

D B L K A R X  is a <!aialja>c» learning system developed by Cai. Cercone and Han 

[ ( V I  l!) I . l l (V ! )2 a .  11 ( ’( '!)‘2b]. It im pIcMiicut s bot li I .C IIR  (for Learning Charaeterist ic 

Rules) and IV I .R  (for Learning Classification Rules) a lgorithm s. The language o f  

D B L K A R X  < an be viewed as an extension to the relational language SQL foi know l

edge d is<o\cr\ in databases. The arch itecture o f  D B L K A R X  is presented in Figure 

:b l .

D B L K A R X  [C ( ' l l f ) l ]  was implemented in an I ’ n ix / f  '/Sybase env ironm en t. It can 

generate m a in  interesting patterns. howe\cr. it sometimes tends to  d isco\er "over- 

gene ia li/ed" patterns. A moderatelv large threshold may lead to a relativelv c 1 *x 

n ile  w ith  m ain  d isjum Is and t lie  results mav not be fullv generalized. A small t liresh- 

oli! value leads to a simple rule w ith  few d isjimcts. However, small threshold values 

mav lesiil l in an overly generali/ed rule and some valuable in fo rm ation  mav get lost.

I s ir Learning

Database
Data

Concept
Hierarchic'

DBt.KARN-Intcrface

Generalization Program

igure :i . I : I'l ie architect ure o f D B L K A R X  

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68



Furthermore. 1)1 1,E.1 N cannot deri‘e the patterns that ha ‘e a cornp.trisou in I 'Wit 

1)0(liCS. 

To overcome the -overgeneralization- problem. we introduced a IIONV 1110110(1. 

which first generalizes the primitive data into a prime relation. The prime tela 

lion contains the essential information of the original s\ stem. Then \te genvi I ht. 

prime table associated with different ievek, of 1hr concept hietat( 11). 'fir at t t Haile 

olivine(' approach is further de\ eloped for learning diffetent Lind, of ! tiles. in, biding 

characteristic rules. classification rules. hierarch) rules. domain know ledg, . \low 

over. learning can also be performed N‘ it h dal aba:,e, in mane t a‘..e N‘ hilt . I ht. t oh, r ia 

hierarchies are not available. 

3.1 Discovery of Knowledge Associated with Concept Hier-

archies 

In  I  his sect ion We propose a new met hod to o\erconar 1lie mo,, el genet

problem of 1)1.3 LEARN. Our method is performed in I steps. First. a set of obit.! !Vie 

\Ant to the learning task is Colic( led a database (Itter.‘. Set owl. I her lle( Icd 

is then generalized b) removal of nondesirable al t 'but es and b) pet rot ming ( ontept 

tree ascension (replacing lower-le‘el at t ribute tallies in a !vial lull using the «nu rill 

hierarchy) oil each generalizable at t ribute 1111111 the attribute be( uptes 

containing onl) a small number of dist iuc t values). 'I he ident it al genetalized I tilde 

in the relation are merged into one with a special int (Thal I Id. . irrIl I'd t o
register how many original nide, are ge••••• , .• 

to this I ( 'sldlrtlit 1 111, 10 . ' I IW 

alized relation Gbtained at this stage is called the prim( it !Wiwi and ,,.tied lob hitch 

use. Third. we further simplify the generalized !elation and map it into the hat 

table. then analyze the feature table and infer different kinds of tides. Mall's. we 

examine the prime relation once more and infer the lithe' It ante t itles asmg sated It It It 

the concept hierarchies. 

A prim( rdation 1?1, for a set Of data l? stored in I he relat ional table is all in 

terniediate relation generalized from relation If lento\ ing nolidesit able at 1 1 111111,-, 

and generalizing each attribute to a (1(..,irabh hot Let a (h...,iiyibiliill //,“,,bold be 

27 
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Furthermore*. D B L K A R X  cannot d o m e  the pattern*' that h a \e a  comparison in thoil 

bodies.

To overcome the "overgeiieralization" , : 1 1 *m. wo in troduced a now method, 

which first generalizes tlit* p r im i t iv e  data in to a pr im e re la tion. The prim e tola 

t ion  contains the essential in fo rm ation  o f  the orig inal svslem. Then we geue i.d i/e  the 

p rim e table associated w ith  different levels o f t l ie  concept h ic ia i th v .  The a t t t ib u le  

o iiented approach is fu r the r developed for learning d ilfe ient Kinds o f  inles. iiit h id ing  

characteristic rules, classification rules, hiernrehv rules, dom ain  knowledge. Mon* 

over, learning can also la* performed w ith  databases in some i ase while  the lo m e p t  

hierarchies are not available.

3.1 Discovery of Knowledge Associated with Concept Hier
archies

In this section we propose a new method to overcome the "o ve igene ia l i /a t ion "  

problem o f  D B L K A R X .  O ur method is performed in 1 steps. F irs t, a set o f  data io|e 

vant to  the learning task is eollec ted In a database (pierv. Se< ond. t lie ( ol|e< led data 

is then generalized In removal o f  noiidesiiable at t l ibu les  and In pel fo m iin g  < om ept 

tree ascension (replacing lower-level a t t r ib u te  values in a te la t io i i  using the lo m e p t  

h ierarchy) on each genera li/ab le  att r ibu te  un t i l  the a ll t ib u le  Lee omes desiiable (i.e.. 

conta in ing  onlv a small num ber of d ist inct values). I lie identica l gene ia li/ed  tup le ,  

in the re lation are merged in to  one w ith  a special in terna l a t l i ib n te .  m l i . c iealed to 

register how many orig inal tuples are generalized to this les ii l tau t tuple. I lie genet 

alized re lation obta ined at this stage is called the p r im t  i l l a t i o n  and saved loi la in  

use. T h ird ,  we fu r the r s im p li fy  the generalized te la t io i i  and map it in to  the fcviluie 

table, then analyze the feature table and infer different kinds o f  titles. I inallv. we 

exam ine the p rim e relation once more and infer I In* in bet it am e t ules assoc iatecl w ith  

the  concept hierarchies.

A pr ime relat ion //,, for a set o f  data /t* stored in I lie* re lational table* is an in 

term ediate  re lation generalized from re lation 11 In icm o v ing  noiidesi)able a l l i i b i i l o ,  

and generalizing each attribute* to a desirable le n t .  Let a ih . ' . in ib i l i l // l l i i i f thnh l  be
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available for each attribute. %did' could be set by default or specified the user 

01 an expel  based On the semantics of t lw attributes and/or the expected forms 

gyiwiaii,,Ni i  .\ prime relation maintains the relationship among generalized 

data in diffet cult attributes for a frequentl inquired-of data set. It can be used for 

ext I act ion of various kinds of generalized rules. The following algorithm extracts the 

prime relation Bp from a set of data I? stored in relational table. 

Algorithm 3.1 Extraclion of Ihr prim( relation from a set of data 1? 

Input: (i) set of task-relevant data I? (obtained by a relation query and stored in 

a relation table). a relation of arity n with a set of attributes A, ( I < i < n): (ii) 

a set of concept hierarchies. //,. where //, is a hierarchy on the generalized at t ribut 

.1,. if available: and (iii) a set of desirability thresholds T, for each attribute .-1, 

Output. 'I'lw prime relation /?1, 

Method 

I. /?, := 11: I - /?, is a temporary relation. -/ 

2. for each attribute ( I < i < n) of RI do { 

if is nondesirable then remove .-1,: 

if .1, is not desirable but generalizable then generalize .1, to 
desirable 'eye]: 

/' Generalization is implemented as follows. Collect the distinct values in the 

relation and compute I  l ie  lowest desirable level L on ‘0,1411 I he number of 
values will be no more than T, by synchronously ascending the concept 

hierarchy from these values. Generalize the attribute to this level L by substi-
tuting for each value Ais with its corresponding concept II at level L. I 

/' Identical triples in the generalized relation /?, are merged 

with the number of identical tuples registered in twit . 

3. Hp := /?, 
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available foi each ill I i i  hut c. which could be so I by f Iff'aii 11 or specified b\ tl io user 

01 an expe it .  based on tIk* somantics o f  the a ttr ibu tes  and /o r  t l io  expected forms 

o f gene ia li/ed  Miles. A prim e relation maintains t l ie  re lationship among generalised 

data in diffeient a tt r i lm te s  for a frequent 1\ inqu ired-o f data sot. It can bo used for 

ex t inc t ion  o f various kinds o f generalized rules. The fo l low ing a lgor i thm  extracts  the 

prim e relation li,, from a set o f data /? stored in re lational table.

A l g o r i t h m  3.1 l:\rt r t i r l  ion o f  the p r im t  relat ion f ro m  a * f t  o f  (lain l i

I n p u t :  ( i)  A set o f  task-relevant data 11 (obtained by a relation query and stored in 

a relation table), a re lation o f  a r i tv  n w ith  a set o f a t t r ibu te s  A, ( 1 <  / <  n):  ( i i )  

a sc * t o f  concept hierarchies. I I ,.  where 11, i.s a hierarchy on t he generalized a t t r ib u te  

A,, i f  available: and ( i i i )  a set o f des irab il ity  thresholds T, for each a t t r ib u te  A, 

O u t p u t .  The prim e relation l l p 

M e t h o d

I. II, : — II:  / '  Hi  is a tem porary  relation. " /

'J. f o r  each attribute- A, ( I <  / <  //) o f  I I , d o  { 

i f  A, is nondesirable th e n  remove A,:

i f  A, is not desirable but generalizable t h e n  generalize A , to 

desirable level:

/ ‘ (Jenerali/a tion is implemented as follows. Collect the d istinct values in the* 

relation and com pute  the lowest desirable level /, on which the num ber o f  dis

t inc t values wil l be no more* than by synchronously ascending the concept 

hierarchy from these values. Cieneralize the a t t r ib u te  to  this level L by substi

tu t in g  for each value A , ‘s w ith  its corresponding concept I f  at level L.  " /

}

/ ‘ Identical tuple’s in the generalized re lation I f  are merged 

w ith  the number o f  identical tuple's registered in vote “ /  .

T  II,, :=  II,

28
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Label Animal flair Teeth Eye Feather Feet kat Milk 
T11 tiger 1" pointed forward N 1 claw meat N.
11A1 cheetah 1. pointed forward N claw meat N. \ 
F1':3 giraffe 1. blunted side X hoof grass 1. \ 
11.18 zebra 1. blunted side N hoot gra:-:-. Y \ 
0911 ostrich N N side Y claw grain N \ 
K.12 penguin N N side 1. web fish N \ 
01,2 albatross N N side 1" claw grain N 1 
LP1 eagle N N forward 1. claw meat N 1 
rr I viper N pointed forward N N meat N 

Table :3.1: .\n animal world. 

I Swim 

N 

Observation 3.1: Algorithm 3.1 correctly ON. rants le prime relation Ii,, from 

data relation R. 

Rationale: An attribute-value pair represents a conjunct in the logical ludo ()I' 

a t uple. The removal of a conjunct eliminates a coast raint and thus genchdiies I he 

rule, which corresponds to the generalization rule dropping tondilion, in /«limlig 

from r.ramphs. Thus if an attribute is nondesiral 1 1 • • •10 rvittoval genehdi/es the le 

lat ion. Moreover. if an at t Mume is not at Illy desirable level but genet:di/able. the 

substitution of an attribute value by its higher level cnncevl «,\ Jinn(' ( ,e-Ne:-, 

the original I ttple and tints generalizes Ihe uplv. This pt uevss «)1TcsImiltIN t() I he 

rneralizat ion rule. eliinbing ftgm t.rnmph,. Since all 

of the generalizable at t ributes are at the desired le‘el. the genetalized 'elat ion k the 

prime relation. 

For example. suppose we have an animal relation for some zoo as drioi( h d to "1 able 

:3.1 and the concept hierarchy for the an ribute -Animal- as depi( led in Figure 3.2: 

In the initial relation. the first al tribute "Label- is t he key lo I be relat icnl. the 

key value is distinct, for each tuple in the relat ion . t here k no higher level «m( opt 

provided for such an attribute in the concept tree. t he value 101 the at I r i hut e ( annot be 

99 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 

babel Animal Hair Teet h Fee beat her Feel Fat Milk Fix Swim
T i l tiger Y pointed forward X claw meat Y \ Y
11AI cheetah Y pointed Ibrwa rd X claw meat Y \
FT3 giraffe Y blunted side X hoof grass Y \ Y
11.18 zebra Y blunted side X hoot grass Y \ Y
0911 ostrich X X side Y daw grain X \ X
KJ2 penguin X X side Y web lish X \ X
0L2 albatross X X side Y claw grain X Y X
LP1 eagle X X forward Y claw meal X N X
TT1 viper X pointed forwa rd X X meat X \ X

Table 3.1: An anim al world.

Observation 3.1 : A lg o r i th m  3.1 correctly  extracts tin* p r im e re lation /i’,, from <i 
data re lation /?.

Rationale: An a ttr ibu te -va lue  pair represents a conjunct in the logi< al I’o im  o f  

a tup le . rrh e  removal o f  a conjunct e lim inates a constraint and l lm s gcuei.d i/es the 

rule, which corresponds to  the generalization rule rlroppinej lo n i l t l i n n *  in l i a i i n i i f i  

f r o m  fxamphs.  Thus i f  an a t t r ib u te  is nondesirable. the removal goneinli/.cs the i<‘ 

la tion. Moreover, i f  an a t t r ib u te  i.s not at I he desirable level but g e u e ia l i /a b le .  the 

subs t i tu t ion  o f  an attr ibute* value by its higher level coneepi <o\eis m o i r  cases l l i .m  

the orig ina l tup le  and thus generalizes the tuple*. This piocess (orrespoiids to tin 

generalization rule*, cl imbi tuj  tjr n t ra l izn l ion I r a .*> in It a n  f rom  t.rnmph».  Since .ill 

o f  the generalizable a ttr ibu te ’s are* at the* desired le \e l .  the genei.d i/ed le la l io i i  is tIm■ 

prim e re lation.

For example, suppose we have* an animal re lation for some zoo as depi< led in I able 

3.1 and the concept hie*rarchv for the a t t r ib u te  "A n im a l"  as depie led in I igm e 3.2:

In the in i t ia l  re lation, the first attribute* "babe l"  is the* key to the re lation. Ilu- 

key value is distinct, for each tuple* in the* re*lalion . I f  there is no highei |e*\e| eomept 

provided for such an a t t r ib u te  in the concept t re*e. t he value for I he alt i ibu le  < annot be
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Animal 

mammal bird 

carnivous_mammal 

tiger cheetah 

ungulate flying_bird 

giraffe zebra albatross eagle 

nonflying_bird 

ostrich 

Figure :3.2: Conceptual hierarchy of the animal world 

penguin 

Level 

1 

2 

3 

4 

A 'timid j I lair Teeth Eye Feat her Feet Eat Mill; Fly Swim Vote 
(-mammal N. pointed forward N claw meat Y N Y 2 

ungulate 1' blunted side N hoof grass V N V 2 

loudly') N N side V claw grain N N N 1 
nonllyb N N side N. web fish N N N 1 
flying N N side "V claw grain N V N I 
living N N forward N. claw meat N Nr N 1 
viper N pointed forward N N meat N N N I 

Table 3.2: The prime relation table. 

generalized and it should be removed in the generalization process. Ot her candidate 

key at tributes or nonkey at tributes can be eliminated under a similar condition. 'rhe 

next attribute -Animal-. has 9 distinct values. which is greater than the threshold 
va l we ror our desirable level (assume the desirability threshold is (i). the concept -tree 

ascension technique is applied: the attribute Li generalized to the desirable level (level 

:).) {co i rorotts_ma mmal un gulal lying_bird. turn flying_bird} in the conceptual 

hierarchy. We examine then the other at tributes and since all of them are already at 

t he desirable level. the prime relation is obtained as shown in Table :3.2. 

The derivation and storage of prime relations for frequently inquired-of data sets 

may facilitate the extraction of different kinds of generalized rules from the prime 

30 
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Animal

mammal bird

ungulatecarnivou.s_mammal

cheetahtiger

nonflying_bird

albatross eagle ostrich penguin

Figure .‘1.2: Conceptual hierarchy o f  the animal world

Level
1

Animal Hair Teeth Eye Feather Feet Fat Milk Fly Swim Vote
cmammal Y pointed forward X claw meat Y X Y 2
ungulate Y blunted side X hoof grass Y X Y 2
nonllvl) N N side Y claw grain X X X 1
nonflvl) X X side Y web fish X X X 1
living X X side Y claw grain X Y X 1
flying X X forward Y claw moat X Y X 1
viper X pointed forward X X meat X X X 1

'Fable .’1.2: The prim e relation table.

generalized and it should be removed in the generalization process. O the r  candidate 

key a ttr ibu tes  or nonkey a ttr ibu tes  can be e lim inated under a s im i la r  cond it ion . The 

next a t t r ib u te  "A n im a l" ,  has 9 d istinct values, which is greater than the  threshold 

value lor our desirable level (assume the desirab il ity  threshold is fi). the concept-tree 

ascension technique is applied: the a t t r ib u te  is generalized to the  desirable level (level 

2) {( ( t r n i r o r o u s - m a in n ia l . tm f ju la l t .  f l y i n y j r i r d .  n o n f l y i n y . b i r d }  in the  conceptual 

hierarchy. We examine then the other a ttr ibu tes  and since all o f  them are already at 

the desirable level, the prim e re lation is obtained as shown in 'Fable 3.2.

'Flu' derivation and storage of p r im e relations for frequently  inqu ired -o f data sets 

may fac i l ita te  t in 1 extraction  o f different kinds o f  generalized rules from  the prim e
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relation. Further generalization can be performed on prinns relations to derke hat 

acterist.ic or inheritance rules if I here are st ill nian uples ill the pi init. 'elm ion. lidscd 

upon different interests. a generalized relation can be (lite( mapped into different 

feature I abler. NVe have tlw follow lug algorithm for t he extra( lion of a real in table 

from a generalized relation. 

Algorithm 3.2 !''(entree ixtraction far an .1 from On tit 

I?'. 

Input: A generalized relation R' consists ()I' (I) au attribute .\ with 

a 1  o„,. m is the number of distinct values for .\ j other attributes 

is the number of attributes in the relation except .\ (suppose dill'etent !dant-, 

have unique distinct values). and (iii) a special at tribute. rot . 

Output. The feature table TA

Method. 

1. The feature table T4 consists of in + I rows and / + 1 columns. where 1 is the 

total number of distinct values in all the attributes. Each ent of the Idble is 

initialized to O. 

2. Each slot in TA (except the last row) is filled by the followiag procedure. 

for each row r in /?' do { 

for each attribute 13, in /?' do 

TA [r..-1.r./3j} := 7'A[r..4. r. /1,1 
Tet tr.A. /;1 r•.:1. not + 1%1,01 

3. The last row p in 71.1 is filled by the following procedure: 

for each column .s in TA do 

for each row / ( except the last row p) in do 

TA [p..s] := TA [p..$) + 

31 
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re la tion. Further generalization ran be performed on prim e relation.' to de r i \e  v li.it 

ac teris tic  or inheritance rules i f  I here are s t i l l  m an\ tuple?, in the p i im e ie la t io n .  Mused 

upon different interests, a generalized re lation can be d i t e i t k  mapped in to  dill 'eient 

feature tables. We have the fo l low ing a lgor ithm  for the e \ i  n a t io n  o f  a feat m e table 

from a generalized relation.

A l g o r i t h m  3 .2  Prat t in  tabl i  T.\ i . v l rad ion  f o r  an a l l n b a h  .1 f r o m  l ln  //< in rah , u l  

rr la I ion IV.

I n p u t :  A generalized relation R" consists o f  ( i)  an a t t r ib u te  A w ith  d is t im i  \ a lues

d \  a,„. m i.s the num ber o f d is tinct values for A ( i i )  j  o ther a tt r ibu te s  I f  I f ,  j

is the num ber o f  a ttr ibu tes  in the re lation R'  e.\cept A (su p po se  dilfe ien t a l l i i b i i t e s  

have unique d istinct values), and ( i i i )  a special a t t r ib u te ,  r o l t .

O u t p u t .  'I 'l ie feature table TA 

M e t h o d .

1. Tho  feature table 7’.t consists o f  in +  I tows and I -I 1 columns, where I is the

to ta l num ber o f  d is tinct values in all the a l l i ib i i te s .  Each entry of  the table is

in it ia l ized  to 0.

2. Each slot in  T,\ (except the Iasi row) is filled by (lie fo l low ing procedure.

f o r  each row r  in l i '  do  { 

f o r  each a t t r ib u te  /7; in I I 1 d o

T,\ [ r .A .  r . l i j ] :=  T,\ [ r .A.  r .H,)  H- r . r o h  :

7 ’,i[/*..d. voir)  : =  l \. \ [r .A. r o l l ]  +  r . r o h  : }

3. T he  last row p in T,\ is filled by tin* fo l low ing procedure:

f o r  each column s in T,\ do  

f o r  each row I ( except the last row />} in T,\ d o  

Ta [i>..s] :=  7 ’/,[/i..s] +  7
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Anima 

maim 
maintri 
bird 
bird 
bird 
bird 
1/i 11(1 

1 1 lair TePt 11 EP' Feat her Feet Eat Nlilk Fly Swim Vote 

al Y pointed forward N claw meat V N V 2 
al Nt blunted side N hoof grass 1. N N. 2 

N N side N. claw grain N N N I 
N N side N. web fish N N N I 
N N side 1' claw grain N l' N 1 
N N forward 'Y claw meat N N. N 1 
N point NI forward N N meat N N N 1 

Table 3.3: A generalized relation. 

Observation 3.2: A lgorit lint 3.2 correctly registers the number of occurrences of 

each general feature in the generalized relation 11'. 

Rationale: Following the algorithm. each t uple in the generalized relation is 

examined on«r wit e\ cry feature registered in the corresponding slot in the Feature 

sable. Their column-wise summation is registered in the last row. 

In our example. hi order to obtain t he feature table. the prime relation is Furl her 
wnerarit,d substituting the concept at level 3 b-, those at level 2. resulting in the 

generalized relation as shown in Table 3.3. 

l'he feature table is then extracted From the generalized relation by using al-

gorithm 3.2 based on the attribute -Animal- and the result is shown in Table 3.-I 

(since we are interested in learning for Animal). Different feature tables can be ex-

tracted from the generalized relation based On the interest in different attributes. The 
racied rca I  

re I ablc is useful for derivation of the relationships between the clas-

sificat ion at t rilane and of her at t ribut es at a high le\ el. For example. t he generalized 

rule .111 animal.,  wilh hair ar( manona1.4 can he extracted from Table :3. 1 based upon 

the 

fact 

the class nanntllal takes all the votes with Hair count. 

We present two algorit Inns for discovering different kinds of Niles. characteristic 

and egnality. and inheritance rules iroin a database system. 

Algorithm 3.3 lit uttribuir-ori(nt«1 induction for di...(otY ring charnel( rip,lic and 

(nudity rah,- az:sociated with flu concept himirchy. 

39 
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Animal Hair 'feet Ii lyve Feat her Feet Hat Milk Fly Swim Vote
mammal Y pointed forxva rd X claw meat Y X Y 2
mammal Y blunted side X hoof grass Y X Y 2
bird X X side Y claw grain X X X 1
bird X X side Y web fish X X X 1
bird X X side Y claw grain X Y X 1
bi rd X X forward Y claw meat X Y X 1
ot her X pointed forward X X meat X X X 1

Table 3.3: A generalized relation.

O b s e rv a t io n  3 .2 : A lgo r ithm  3.2 correctly registers the num ber o f  occurrences o f  

each general feature in the generalized relation R'.

R a t io n a le :  Following the a lgorithm , each tup le  in the generalized relation is 

examined om e  w ith  e \e ry  feature registered in the corresponding slot in the feature 

table. T h e ir  column-wise summation is registered in the last row.

In our example, in order to obtain the feature table, the prim e re lation is fu r the r 

generalized In substitu t ing  the concept at lex el 3 by those at level 2. resulting in the 

generalized relation as shown in Table 3.3.

The feature table is then extracted from the generalized relation by using a l

go r ithm  3.2 based on the a t t r ib u te  "A n im a l ’" and the result is shown in Table 3.-I 

(since we are interested in learning for A n im a l) .  Different feature tables can be ex

tracted from the generalized relation based on the interest in different a ttr ibu tes . The 

extracted feature table is useful for derivation o f the relationships between the clas

sification a t t r ib u te  and other a ttr ibu tes  at a high lex el. For example, t he generalized 

rule M l  (mimeds with ha i r  are mammals can be extracted from Table 3.1 based upon 

the fact the class m a m m a l  takes all the votes w ith  H a i r  count.

We present two a lgorithms for discovering different kinds o f rules, characteristic  

and equality, and inheritance rules from a database system.

A l g o r i t h m  3 .3  I n att r ibute-or iented induct ion f o r  discovering characterist ic and  

(( juahlj i  rules associated with the concept hierarchy.
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Animal Hair Tooth .. 1:0 11 11O1' .. 

V II 1)01111(41 ' 1)111I110(1 II .. y II .. 

.. 
. 
.. 

IIlaIllIllal -1 0 9 " - 0 .. 0 I

0 bird 0 •I 0 0 I .. I 
of hors 0 I I 0 0 .. 0 I 
total .I 5 : 9 I .. 

Tal)le 3..1: The feature table for t he   at tribute

s‘\ 1111 

1 II 

0 

3 

1440 

9 

Input: (i) 1 he prime relat ion obtained by .\ lgorit hin 3. I ( ) ,t on«tpt hiet t 11‘ I al de. 

(iii) a threshold \ for the total number of tuples in the final generaliied 'elation 

Output: .•1 set of characteristic rules and ('quality rules. 

Method. 

I. Generalize t he i)rinie relation flirt her perfuming an am it ot tented t tat 

('01)1 itsc('nsic)11 technique until the number of I Ile tiipits is 0(111(11 I 'bill 1 1ue 

Itreslic)1(1 value

2. t *sing the feat tire-table extraction algorit (.\ lgorit lim :1.2). r tat t feat me 

taltle T.% front t he prime relation based upon a cell ;tin ail ribute 1. 

3. Assume t hat there are in total .1 classes. i.e.. Hier(' ill'e ./ (114,1111(i 1,1illes 1$ n 

at t ribute .11. . . .. .1./. Also. assume t hat t here are / al I ribut 

the data in the feature table. \Ve use h", to (101100 hi' 11111111re! id ills! hit I 

values lot' at t rilmte J,. According to the feat lire (able. 111 ) pH ics. 

b,.1,k and c,„3,.. are associated with t he /..-t Ii value (I,. I   /%, r of I he j I II 

allribute (j = I   I) in I lie i-t It class (, = I  /). Not ice I hell I he toutthet 

of t uples associated ‘wit he /;-tIi value of the j -t h at!ril)nle in the / Ih 

denoted by 

= 

C = /COI( , 

where /,,,,k represents I he probability or (1,,,3 hi the po ire d;,1 ;,1,;",e ;in(' e, , 
denotes the probability of the i-t h class. 

33 
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Animal Hair Teet Ii .. heal her .. Swim \ 0 I1

y 11 pointed blunted 11 y n V 11
mammal •1 0 ■> 0 0 1 1 (I 1
bird 0 -1 () 0 1 1 0 1 3 1
ot liers 0 1 1 0 0 .. 0 1 0 1 1
total •I 5 3 2 1 .. 1 A 1 •I

'Table* 3.1: The feature table for the at I r ibu le  animal.

I n p u t :  ( i)  the prime relation obtained by A lgor it  Inn 3 .1 ( i i ) .1 < mu epi liiei an l i \  lable, 

( i i i )  a threshold X for the to ta l number o f tuples in the final generali/ed le la tion 

O u t p u t :  A set o f charaeleristie rules and equality  rules.

M e t h o d .

1. Generalize t lie p r im e  relat ion fur l her l>\ perfoi n i ing  <m at 11 ib i i te  01 ienied 1 on 

r<>pt ascension techni(|iie unt il I he number o f I lie l uples is equal 01 less than the 

threshold value X

2. I ’sing the feat tire-table extraction  a lgor ithm  (A lgo l il Inn 3.2). ex t im  1 .1 feat me 

tab le  T.\ from the prim e relation based upon a certain a t t r ib u te  1.

3. Assume that I here are in to ta l ./ classes, i.e.. there are .! d istinct \alues loi

a 11 r ib u le  . 1. . 1|.............1.;. Also, assume t hat I here are / a 11 r ihu l es: ( \ ......... ( 't .

for the data in t Ik* feature table. We use j \  t | () deno'e the 111 r u 11><-i ol d is i im  1 

values for a t t r ib u te  According to the feature table, two p robab ili lv  value-,.

b,,hk and e , « i ’e associated w ith  the /.’- i l l  value (/.• I  /\ ,/  of the / lb

at t r ibu te  (./ =  I  / )  in I ho /-t h class ( i -  I  / ) .  .Notice that ih e m u n b e i

o f  tuples associated w ith  the //-th value o f the j -\I i a t t r ib u te  in the / 1I1 r las, i - 

denoted by

~  «,.jJ I •'<>!< ■

where represents the p robab il i ty  o f in the entire  database and c, 

denotes the p robab il i ty  o f  in the / - ( h class.
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1. 1.",xtra( t china( teristic rules and equality rules based On the probability for each 

dist hal value of every al I riblite 

performed as follows. 

for each class do 

in each class in the feature table This is 

if = = I 

then the following rule is inferred, 

= 

if = 1 and < 

then the following rude is inferred. 

Id 44 CiaS.• = 

= j. = (',. 

if b1.1.A. < l and = 

then include .ij = j. kJ as a component for the corresponding character-

istic rule fhr the i-th class. 

if b,.,A # I tind 7A 1 an d < r „, 

then ignore this value 

else include the value as one oft he eharacterisi is values for the at

/' Since data in a database may l) distributed along the full spectrum of the 

possible values. it is impossible to obtain a meaningful rule for such kinds of 

data t hou t using possible quantitative information. Various techniques can 

be developed for rule extraction using quantitatke information. Our method 

treats data which occur rarely in the database as exceptional or noise data and 

lilt yrs it using where a small indicates that the data occurs 
wit h, a very lo«• frequency ratio. v 

5. Simplify the learned rules. 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 

I. KxIi.m I ( haia< I eristic rules and equality rules based on I lie p robab il i ty  for each 

d istinct value o f every a tt r ibu te  in each class in the feature table Th is  is 

performed as follows.

f o r  each class d o  {

i f  k.j.h •- =  I

th e n  the following rule i.s inferred.

A l — 7’,i[/.././.’] f *  ( ' l a s .s =

bi.j.k — I 011(1 ('i.i.k <  I

t h e n  the following rule is inferred.

.•l( =  I j[/'A’j —'r ( las* =  ( ,.

i f  <  I and =  I

th e n  include .1  ̂ =  T , \ [ i . j . k \  as a component for the corresponding character

istic rule for the /- t l i  class.

i f  7* • on d  r- 1 on d  b'.j.k'* r , .hk <  ' ' jr.

t h e n  ignore this value

else include the value as one o f the characteristie values for the a t t r ibu te .

{ / *  Since data in a database may be d is tr ibu ted  along the full spectrum o f  the 

possible values, il is impossible to obta in  a meaningful rule for such kinds o f 

data w ithout using possible quan ti ta t ive  in form ation . Various techniques can 

be developed for rule extraction using q u a n t i ta t i \e  in form ation . O u r  method 

treats data which occur rarely in the database as exceptional or noise data and 

li lters it using r „ , !r  when1 a small indicates that the data occurs

w ith  a very low frequency ratio. ’ /  }.

a. S im p lify  the learned rules.

:M
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If the distinct data vallic set of an at  covers I 110 entitc set ()I' ‘allics IN I he 

attribute. remove this attribute and its assn( iated aloes front the rule. ()Hug 
wise. compare t he number or I he values, „ peali ng 11,. ‘ ,111„,, 

ror I he at t ril)ute wit h thetotal number of (list Met able:, lot I he am dune. If t he 

difference is larger than some pre-set number. the *not operatot 1s hit 10(111( ed 

to the rules to simplify it. 

(i. Discover equality rules for different ;dummy, based oil I lie r,„11 lire

For each class (.1• for auv Iwo attributes .it and .is thal relale the kt III \.1111(' in 

Ile i t -th at t ril)ttle an I I value I  .11 the • a.I t.r..tute. if (1„, (,,, , 

rot( . infer the following rule. 

..1,, = kJ] .I,. 

The next highest concept is the concept one level below the most I.i,e11e1ali/..(1 

concept -any-. I I 

Algorithm 3.4 .111ribuh-orholtd algorithm for dim ore flog !oh, I,luurr 1 oh, o,s,s0. 

(-iota with cone( ph: f i,r dijim I( yr Ls in I11«wour /111 "Irby, 

Input (i) the prime relation obtained by .1Igorithm 3.1. d Oil the lout (.1)1 

tables. (iii) the at ribut .\ NA NI E (we intend to learn I Ides jal(•d %\ II II III.. 

concept amity for al tribute A NA NW) 

Output A set of inheritance rides associated with ( (,n( opts irdui level', in I he 

concept hierarchy of at  A N A NI 

Method. 

I. Attach one clay; all ribute to t lie prime !vial 1011 (called I', at tribute. I', Moans 

extra). 

Extract the concei t 
. Iherarcily II for the 

at 
ributo A NA NI from the ( )11,11)1 

hierarchy tables 

:3. (Iterative Step) descend one level starting front the next highest genet tlized 

concept in the concept hierarchy II until rein bits; I he desired level ()I' t «Al( opt 

hierarchy. At each descent do the following; 

:35 
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I f  I lie d is t inct data value set o f an at t r i lm te  covers t he en ti le  set o f  values lot the 

a t t r ib u te ,  remove'this a tt r ibu te  and its associated values from the rule. O thei 

wise, compare the number o f  the values appearing as the e hniac lerisli< values 

for the attribute* wit h t lie* to ta l num ber o f (list incl values Ibi I lie at 11 ihu le . I f  I lie 

differe'iice is larger than some1 pre-set numher. the 'n o t '  opcra lo i is iu l io d m e d  

to  the rule's to  s im p li fy  it.

(i. Discover equa lity  rules for different a ttr ibu tes  based on the feature table.

For each class lor any two attr ibute's j \  and j> that relate tin* l : t t l i  value- in 

the* , / i - t l i  a t t r ib u te  anel /.-•»-< h value* in the'./., i l l  attribute*, i f  «/, (l ( f,

c o l t . in fer the* fo llowing rule'.

=  I  \[i  • .ii'l<'i] I / .  -  I  v I / • /_«- I -

* The next highest e’once'pt is I lie' concept one level b<*|ovv llie* most ge i ie ia l i /ed  

cone-epl "any " . I I

A l g o r i t h m  3 .4  A l l r i b u l t - o r i t  n l t t l  t i lyo i i l l i in  f o r  dist nvt n n y  ml i i  i l im i t  t n t h *  </.*o«>- 

c ia l f d  ir i th conn  pis f o r  t l i j j t  r< nl  It n  I* in I lit conn pi hit rtircliy.

Input ( i)  the pr im e relation obtaineel by A lgor it  Inn 3 .1. atul ( i i ) t lie * e om <*pt h ie ian  hv 

table's, ( i i i )  1 lie at t ribule' name' A N A M F . ( we* inie*nel to learn t ule*s assoe iate-d w ith  I h<* 

e-oncept hierarchy for a t t r ib u te  A N A M K )

O utput A se*t o f  inheritance rules associated w ith  eotiee-pts at dilfeie*ul |e*ve|s in tin* 

e'one'e'pt hierarchy o f attr ilm t(> A N AM F..

Method.

1. A t tach  one class a t t r ib u te  to  the prime* relation (e ailed F, attribute*. F i ik m iis  

ext ra).

2. E xtrac t the conce*pt hierarchy II for the* at I ribule- A N A M F , (Venn the* cemeept 

h ierarchy table's

3. ( I te ra t ive  Step) descend one level s ta r t ing  I’remi the* next higlu-st ge*ue*iali/.ed 

concept in the concept hierarchy II un t i l  re*ae l i ing  the* de*sire*e| |eve*| o f t he* e one e*pl 

hierarchy. At each descent do the following:

35
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(a) Fill the F, at tribute with the higher concept value and the corresponding 

attribute (all ribwr ANA NI ) with the concept value one level down of 

the E-at I ribut r value in the concept hierarchy II. 

(b) Extract the related data. and store them in the temporary relation. 

(( ) I'ruj et I all' I Ile c orrespoliditig at t ribuies which have t he same values for all 

the low Intel concepts within the saute higher concept from the temporary 

relat 

(d) Find the inheritance rules: for each temporary relation. those remaining 

at tributes which have different values for different lower level concepts but 

1‘.it bin the saute higher concept category will be chosen as the component 

to form the corresponding inheritance rule. 0 

3.2 An Example 

In t his sect ion. we a data set from [mils to demonstrate algori t hm 3.3 

and a' lgorithm 3. 1. Given the animal world relation shown in Table 3.1 and the 

«incept hierarchy For the all ribute -.Animal- depicted in Figure 3.2. .1Igorit but 3.3 is 

demonstrated as follows: 

First step: Applying algorithm 3.1 t o Table 3.1. result s in t he prime relat ion of 

Table 3.2. Next. further generalize Table 3.2 to the generalized relation as shown in 

Table 3.3. 

Second step: Extract the feature table based on the attribute ":\nitnal- depicted 

in Fable 

Mini step: Examine the values in the feature t able: there are three classes for 

animal category mammal. bird and ot her. For C/a:4.s = mammal and //air = 

we haVe at.t.t = I. bLi = = I because Chrs.s = mammal appears four times. 

and the total tuplos for ('hr.,., = 111111111»al is font'. However flair = !The; appears only 

four 1 lutes in the entire t able. so a rule can be inferred as follows: 

//air <-4 = mammal. 

similarly ‘ve obtain: 

3(i 
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( . i j  F il l I lie F. <il I r ibu le  w ith  the higher concept vfilne and the corresponding 

a t t r ib u te  (a t t r ib u te  A X A M H  ) w ith  the concept value one level flown o f 

the K -a t l r ib u le  value in the concept hierarchy II.

(I>) F.xtract the related rlata. and store them in the tem porary  relation.

(i j Project oil' I lie < or'responding <il I l ibu les  which have I he same values for all 

the low level concepts w ith in  the same higher concept from the tem porary 

re-liit ion.

(d) Find the inheritance rules: for each temporary re lation, those remain ing 

a ttr ibu tes  which have different values for different lower level concepts but 

w ith in  the same higher concept category w il l he chosen its the component 

to form the corresponding inheritance rule. □

3.2 An Example

In this section, we use a data set from [W i l lS l ]  to  demonstra te  a lgorithm  d.d 

and a lgorithm  3.1. ( l iven  tin- animal world relation shown in Table d.l and the 

concept hierarchy for the attr ibute ' "A n im a l"  depicted in Figure.’1.2. A lg o r i th m  .’I.if is 

demons)rated as follows:

First step: A pp ly in g  a lgorithm  d.l to Table 3.1. results in the prime relation o f 

Table d.2. Next, fu r ther generalize Table 3.2 to  the generalized relation as shown in 

Table

Second step: Kxtrael the feature table based on the a t t r ib u te  “ A n im a l"  depicted 

in Tabled. I.

Third step: F.xamine the values in the feature table; there are three classes for 

animal category mammal, bird and other. For ( ' la .s.s =  m a m m a l  and l l a i r  =  y i s. 

we have a u  | = I. | =  c u .| =  I because ( ' la .s.s =  m a m m a l  appears four times, 

and the' to ta l tuple's for C la * *  =  m a m m a l  is four. However H a i r  =  tj( s appears only 

lour limes in the entire* table, so a rule* can be inferred as follows:

H a i r  -  / / f .s  <-> (V u .s .s  =  ma m m a l .

s im ila r ly  we obtain:

:|(i
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(Milk = ll(S) 4-4 = Itnini111(11) 

(( Va,s = mammal) > (Fr r = chin. V hoof) A ( - Cur at \ 

for Class=bird: 

( athi r = 1l(.,) 44 (( = bird) 

= bird) -4 (Fr r I = elrltr V trr b) A Eta.% .--- rlir 

Fowl li sup: simpliry Ili(' alio\ v cowl( of AM's appc.11 hip as 

Charaeleritil VithiCS fOr I be attribute and compare !Item ‘‘itit I 11(' total attutilwl 4 Or 

diStinri ‘ ' ithies for the at tribute. If the difference is larger I ban some 1 111 c'• 1 it do I I rut 

example. 2) then the -not - operator is 11111 )(11111A to I111' 1111Cs 111 '41111)13k 1 Ito1111s 

of the discovered rides. 

Tal:e the following ride as an example. 

= bird) =s ( /..(// = (law V ire to A ( ( I 1 grain V ft.sh V /or ). 

Sine(' 111(91' are lour distinct values: arra/. fints.... grim, ;111,1 1i:di f, thi. .111 1.110iilc-. 

Eras an(' Eats Ittles three values out of four in the above rule. we I an Ilse Vats / 

gra.ss) instead of (raLs = grain V f i.,11 V tor al) as a component lot this rule. I Inis 

the ride is simplified as 

(C/a,,.+ = bird) (Fr r I 0 hoof) A ( Eats 71 gra....,). 

similarly. the rude: 

(C/a.ss = maw mat ) ( / = claw V boa ) A - tut / grri.s,$) 

Call he simplified as 

(Cla.ss = mammal) (F« I 0 n'( b) A ( Eat:, 7r.. to( a/ I gro.s,$) 

The last step is to analyze the data between differem at tribunes and find the wla 

t ionship between them to infer equality rides: for example. foi t l.Iir ,ses. bet no. 

(Hair = Ilcs) r = No) 
(flair = yt,,) 44 (Milk = .$) 

(Feathers = 44 = .Vo) 
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(M i l l , '  =  t / is )  *-> (C/f/.s.s =  m a m m a l )

(Cla.ss =  m a m m a l )  —> ( I ' d  I =  r /d i i '  V  h u o j )  A ( H a l *  m t a l  \  i /ra*.-)

for ( ' lass=bird :

( /•'* <itlu r  =  i/( .s) <-> ((  '/o.s.s =  bird)

( ( ’/ri.s.s =  bi rd)  —>(/•'<</ =  r l  a i r  V i n  />) A j /•,’o/.» •- t / ram \  f i * h \  m t a l )

Fourth step: S im p li fy  tin* abo\e  rules: count the 11it11ilm>r o f  \ . i lu rs  appeaiinv as 

characterist ic values for the a t t r ib u te  and compare them wit 11 the to ta l uumhei o f 

d is t inct values for the a tt r ibu te .  I f  the d i l l ’ereiiec is larger than some llne-d iohl (lot 

example. 2) then the "n o t"  opera tor is in troduced to  the mles to s im p l i f \  the fo i i i ts  

o f t I k *  discovered rules.

Take the fo l low ing rule as an example,

(Cla.ss =  bi rd)  —? ( F d l  — r l a i r y  i n  b) A (H a t *  -- t / ra in  V J' i*h V m t a l ) ,

Since then* are four d is t inct values: mta l .  f/rass. t /ram and Ji*h loi l lie at11ibules 

Eats and Hal .*>■ takes three values out o f Iditr in the above t ide, we <au use | F a d  /  

yra.s.s) instead o f  ( t a t s  =  i / ra in  V  J i * b  V  a n a l )  as a component Ibi th is  in le. I hits 

the ru le is s implif ied as

( ( ' l a .ss =  bi rd )  —> ( !•'( < I -£■ h o o f )  A ( l u l l * y r a s.s),

s im ilarly , t l ie  rule:

(C l ass  =  m a m m a l )  —> ( / 'V  r I =  claw  V  houf )  A ( da  / ,s - m t a l  /  t / rass)  

can h(* s im p li l ied  as 

( ( ’l a .ss =  m a m m a l ) —» ( I ' d  I i n  b) A ( Ha l .  s — n n a l  /  t/rass)

The last step is to analyze the data between dilfereni a t t r ibu te s  and lind lie* tela

tionsh ip  between them to infer equality  rules: for example, foi l |a i r  y s .  fea the i no.

( H a i r  =  t/c.s) (Hea l  In r  — .Vo)

(//«//■ =  t/t.s) (.)////.■ =  t/f.s)

(F e a th e rs  — yes) ( M i l k  =  .Vo)

:{7
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Ilair 

en:amnia' 1' 
1111g111;IIP Y 
nonllyb 
nonllyb 
flying!) 
11.0110 
viper 

I Teel h I.:ye — I Feat her Feet Eat Nlilk Fly Swim E 

pointed forward N claw meat V N 1' mammal 
Mowed side N hoof grass 1' N 1' mammal 
N side V claw grain N N N bird 
N side 1' m.1) fish N N N bird 
N side 1' claw grain N 1' N bird 
N forward 1' claw meat N y N bird 
pointed forward N N meat N N N 01 her 

Table 3.:,: :1 I emporary relation after the substitution 

:1nitual 1 Ilai 
1cmatuntal 1' 

ungulate 1' 

r i'reeth Eye Feather Feet Eat Milk Fly Swim E 
pointed forward N claw meat 1' N 1" mammal 
blunted side N hoof grass 1' N 1' mammal 

Table 3.(i: :1 temporary relation for mammal 

Next we dennnist rate the usefulness of Algorithm 3. 1. The prime relation table 

is illustrated in Table 3.2 and the concept hierarchy for -Animal" is shown in Figure 

3.2. 

1ttach the Lat ribut e to the Table 3.2 as shown as the right most colutnn in 

'kWh. we do I his by putting the values of the next higher-level concept (level 

2) in Figure :1.2 for attribute E aid the corresponding animal value in level 3. For 

example. if t he I. at I tibute value is mammal. then the corresponding animal value in 

the animal attribute should be earnivoraa.., mammal and ungulate. resulting in the 

temporary relation shown in '/'able :3.5. 

From Table 3.5. the dal a related to mammal and bird are extracted. resulting in 

the temporary Tables 3.6 and 3.7. Observe that Hair, Rather. Milk Fly and Swim 

do not distinguish mammals but !rah. Egr. , Pal awl Peet do distinguish mainmab, 

in 'kWh, 3.6. Thus the following rules are generated. 

(('/a...N = mammal) A ( = pointed) (Animal = carnivorou.s_maminal) 

(('la..4.,= mammal) A ( T« = blunt) —a (Animal = ungulate) 

:38 
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Animal l la ir Teel li Kye Feat her Feet Eat Milk Fly Swim E
cmamiiial V pointed forward X claw meat Y X Y mammal
ii n”,n la I e Y blunted side X hoof grass Y X Y mammal
non fly b X X side Y claw grain X X X bird
nnidlvii N X side Y web fish X X X bird
flvingb X X side Y claw grain X Y X bird
llvingb X X forward Y claw meal X Y X bird
viper X pointed forwa rd X X meat X X X ot her

Table .'ho: A temporary relation after the substitu t ion

Animal l la ir Teeth Kye Feather Feet Fat Milk Fly Swim ]•:
cmammal Y pointed forwa rd X claw meat Y X Y mammal
ungulate Y blunted side X hoof grass Y X Y mammal

Table :b(i: A tem porary relation for mammal

Next we demonstrate the usefulness o f A lg o r i thm  .'hi. The  p rim e relation table 

is il lustra ted in Table 3.2 and the concept hierarchy for '■Animal" is shown in Figure 

3.2.

A ttach the F .a t t r ib u te  to  the Table 3.2 as shown as the right most column in 

Table .’bo. we do this by pu tt ing  the values o f  the next higher-level concept (level 

2) in Figure 3.2 for a t t r ib u te  K ai d the corresponding animal value in level :h For 

example, i f  the F. a t t i ib u te  value is mammal,  then the corresponding animal value in 

the animal a t t r ib u te  should be r arn i rorous mammal  and ungulate. resulting in the 

tem porary relation shown in Table .’ho.

From Table To . the data related to  mammal  and bird are extracted, result ing in 

tin* tem porary Tables :h(5 and 3.7. Observe tha t Hair ,  Feather. Mi lk,  F ly  and Sirim  

do not distinguish mammals  but Teelli, Fye, Fat  and Feel do distinguish mammals  

in Table 3.(5. Thus the following rules are generated.

(C lass  =  m a m m a l )  A ( Teeth  =  pointed)  —> { A n i m a l  =  ca rn ivorous  . m a m m a l )

(( ' lass =  m a m m a l )  A (Teeth  =  b lunt )  —> ( A n i m a l  =  ungu la te)

38
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Animal !lair '(Beth Feather rI eel V.at 

non flyh N N side 1' claw grain 
innillyb N N side 1' V('b 11..11
Ilyingh N N side 1. claw grain 
flying)) N N forward 1. claw weal 

Table :3.7: A temporary relit' ion for bird 

Animal flair I...ye Feather rept Kat 

tiger 
cheetah 

V 
1.

pointed 
pointed 

forward 
ftirward 

N 
N 

claw 
claw 

weal 
weal 

1 

Swim 1 I..
bird 
bird 
bird 
bird 

Table :3.8: ;1 tempol•ary 'vial ion for carilivorons mammal 

I.' 
4 111411111$1:11 

t' 111.1111111.(1 

(C 'hiss = mammal) A ( Ey( = forteard) -4 011'1111'0"911.• Minn Mid ) 

(ClaNN = mammal) A ( Ey( = .yid( ) (Animal = angulalt ) 

((Vass = mammal) A (Pe(I = claw) —> (Animal = carnIrarans mammal) 

(Class= mammal) A ( I = hoof) angalalt ) 

(Class = mammal) A = merit) -4 (Animal = (•arnirarna, mammal) 

(Class= mammal) A (Eats = gr(rss) -4 (Animal =rrngrrlrrl r ) 

In a similar manner for bird. based oil Table 3.7. we can derive the following rules: 

(Class = bird) A (Fly = s) -4 (Animal = flipumbird) 

(Class = bird) A (Ply= no) (,Inimal = non flying bird) 

'Hu'n continue the process. descending one level of he concept hierarchy. for lie 

animal category: carnivorous 'minimal. ungulate. Hying bird and non II‘ ini!, bird. 

Tal)1e :3.8. 3.9. :3.10. :1.1 1 Obtained 

Nothing interesting can be found based on Table 3,8 awl Table :3.9. liecause the 

information stored in the database is not 0110111411 to distinguish bet wee!! Ilse animals: 

tiger and cheetah. giraffe and zebra. 1310 some interesting inherit ;III('(' Full-, amount 

flying and non-flying birds are discovered based on Table 3.10 and :3. 1 1. 
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Animal llair Teet h Kvc leather Feel Fat ]  Milk Fl\ Swim ]
nonflvb X X side Y claw grain X X \ bird
non fly b X X side Y welt lid, \ X X l.i hi
llyiiigb X X side Y claw grain X X X 1 ti r< 1
flyingl) X X forward Y daw meal X X X bird

'I'ablc* .‘i. T: A I cm porn ry rolnlioit for l>ir<l

Animal llair Teelli Fye Feather Feel Fat Milk Fh Swim

tiger V pointed forwa rd X claw meal X' X X
cheetah X’ pointed forward X claw meal X X X

Table 8.8: A temporary rolnlioit lor carnivorous mammal

(CVrts.s =  ma mmal )  A ( Hyt  =  f onr a r d )  —> ( An i mal  "  r a rn i r t raas  mammal )  

(Class s= ma mmal )  A (Hyt  =  sitlt ) ->  ( Animal  ~  tmyulal i  )

(Class =  m a mmal )  A ( F t  ( I  =  clam)  —> ( Animal  =  rami rnrons mammal )

(Class =  mammal )  A ( F t t l  =  hoof)  —> ( Animal  — anynlal t  )

(Class  =  ma mmal )  A (Hals  =  mt a l )  —> ( Animal  — rarni rormis mammal )

(Class =  m ammal )  A ( Hals =  t/rass)  ( Animal  ~  anynlal t  )

111 a similar manner for bird, based on Table 8.7. we ran derive ibe (Allowing rule-,; 

(Class =  bird) A ( F l y  =  yts)  - »  ( Animal  =  f l y i n t / Jdrd )

(Class  =  bird) A ( F l y  =  nt>) —> ( Animal  — non f l y iny  bird)

Then continue I lie process, descending one level o f  I lie roneepl hierarcliv. for I lie 

animal category: carnivorous mammal, ungulate, living bird and non living bird. 

Table 8.8. 8.9. 8.10. 8.11 are obtained

Nothing interesting can be found based on Table 8.8 and Table Mernuse the 

information stored in the database is not enough to distinguish between the animals: 

tiger and cheetah, giraffe and zebra. But some interesting inheritance rules about 

flying and non-flying birds are discovered based on Table 8.10 and 8.11.
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,Nitimal 1 Ilair h
giraffe blunted side TT 1 hoof l grass l 
zebt Y   blunted  side N hoof grass 

A 

pt 

Eye I Feather  j  ;:pet Nlilk 1  Fly I Swim E 

Table 3.!): A temporary relat ion for tin''ulate 

ungulate 
ungulate 

Mina] !lair Teeth 1.., e Feat her Feet Eat  Milk Fly Swint E 
Arid' 
with' 

N 
N 

N 
 N 

I ‘.ide 
1 side 

N. 
V 

1 claw 
I web 

grain 
fish 

N 
N 

N 
N 

N 
N 

nonflyb 
nonflyb

Table 3.10:A temporary relation for non-flying bird 

= non flying_bird) A(/: rrl = claw) -4 (.1nimal = ostrich) 

= not, flying_bird) A ( kat = grain) —4 (Animal = rich ) 

= non flying_bird) A ( = rr( = nguin) 

V = non flyiog_bird) A (Swim = —4 (Animal = Jrr again) 

= flytag_bird) A (Eyi = ) -4 (Animal = alba! 

= flying_bird) A (Eal., = grain) -4, (Animal = albal 

(( = flyiambird) A ( Ey( = forward) --+ (Animal = cagh 

f ag_hird) A (Pah: = ta«it)—+ (Animal = «rill() 

3.3 Knowledge Discovery by Conceptual Clustering 

111 last sect ion. we discussed the met hod NvIrich can find knowledge rules associated 

with concept ,  in different levels in the concept hierarchy. The method integrates 

machine learnitip paradigm. especially /«11.11ing from (.raiiiplc techniques. with 

tal I 
toss 

i

flair 1 Teeth Eye Feather Feet Eat :1111k Fly Swim E 
N 
N 

N 
N 

side 
forward 

V 
Y 

claw 
claw 

grain 
meat 

N 
N 

Y 
Y 

N 
N 

flyingb 
flying!) 

Table . .I I: A temporary relation for flying bird. 
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Animal l la ir 'loot li Kve Feather | Feel Kai Milk I 'lv Swim

giraffe V hlimlcci side X j hoof grass Y X Y ungulate
y.el.i a Y blunted side1 X | hoof grass Y X Y ungulate

Table A tem porary relation for ungulate

Animal l la ir  j Teeth IX e Feather Feet Kat Milk Fly Swim K
osi rich x  T x ... side Y claw grain X X X non II v!)
penguin X ! X side Y web fish X X X non fly b

Table .‘5.10: A tem porary relation for non-fly ing b ird

(Chi . s.s =  non f l t j int / .hi rd)  A  ( Ft  d  =  clair)  —> ( A n i m a l  =  ostr ich)

(Cla.s* — nonjh j /n t / . b i rd)  A  (/•.'<// =  ( / rain)  —? ( A n i m a l  =  ostr ich)

( (" /r /.s .s  =  aon f l i / int / .bi rd)  A  ( F t d  =  ir< b) - ?  ( A n i m a l  =  ptntpi in)

( ( ' l a . s.s =  non j  h/ int / .bi rd)  A  ( St r i m =  t/< s ) —> ( A n i m a l  =  pt ntpt in)

(('la.'..s =  f l  1/ni f j .bi rd)  A  ( hAjt =  s / r / r  ) - 4  ( A n i m a l  =  albalross)

(Cla.>s =  f l y i n f / J n n h  A  ( F a l s  =  t j rain)  - ?  ( A n i m a l  =  albal ross)

( ( 'la.'.s — JI  j/i nt /Jnrd)  A  ( /•„',</< =  f o n r a r d )  —¥ ( A n i m a l  =  c < 7 f/ / r )

( Class  — f l yu i f i . b i rd )  A  ( F a l s  =  mt a l )  —> ( A n i m a l  — tat / l t  )

3.3 Knowledge Discovery by Conceptual Clustering

In hi>( se< lion, wo discussed th<* method w l i i r l i  can find knowledge* rule’s associated 

wit II concepts in d il le re ii l levels in t lie concept hierarchy. The method integrates 

<i machine learning paradigm, especially I t a r u i n t j  f r o m  ( . ramplc  techniques, w ith

Animal l la ir Teet li lyve Feather Feet Kat .Milk Fly Swim IE
aIbalross X X side* Y claw grain X Y X flyingb
eagh* X X forward Y claw meat X Y X flyingb

Table* .'5.11: A t<*mporary re lation for f ly ing  bird.

•10
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database operations and extracts generalized data front actual data in I IR' dal at .1•••(',. 

It is often necessary to Mem porate 'tight.' le\ el concepts in t la• Iva! nine. wow, 

INlitTn: candidate rules are restricted to 1'01111111a \1 it II il part kiddy \ ocalutlar . t hat i, , 

a basis set called t he eon« phial Ina,. permitting the 'eat tied l ilies lir be lepies(illeil 

iii a simple and explicit Form. 1)ifFrIVIII le\ (AN OF COlIt'ept ( all be oigaiii/eil into ,1 

taxonotrkt or concepts. 'rile concepts in a i allononi t all I/0 pal I iall\ 01 tIt'l ell at t 0141.111g 

to general-to-specific ordering. Such a concept t lee is spe( 'died using an N 1 I 'Lei al ( h\ 

and stored in a relational table. the conceptual hierarch table. 

.11t hough data in a relational database are nsuall \\ell 1'01111,01(41 and int)delled 

l)y semant ic ancl data models ICC119 11. t he contents of I he data lita not het lassilivd. 

For example. a chemistry database ilia stole a ',lige iunottitt of e\peinnental da t a

in a relational format. but knowledge and effort are needed tot lassil\ I lae data iii 

order to determine the intrinsic regularit of the data. Clearl . s( hemas and (1,11 t1 

formats are not equivalent to concept lull classes. ()ker'\ al ion "II lie " ,g11-11 'I"' din "..' 
of human discovery shows that humans tend to chime' I lw data into diffelent ( lasses 

based on conceptual similarity and I hen ext ract I he ( lima( Feu isti( ,, Flom these 1 la,,(,, 

For example. 1)y clustering experimental data based on I he loi(A‘lede,e ()I' ( liemi, 1, . 

interesting relationships among data can be discovered. 

Previous st tidies on I be met hod assume I hat I he pit -r .ri.4( Ill l oft WI( (111 111.'1 ,11f li‘ 

information (provided by users. experts or data aiial sls). Ibme‘el . sin l i ji f f/m ild

Lion may not be always available ill Malty applicat ions. II Is impot I dill It, (Ik«/: ,. 1 

data regularities in the absence of concept hieraich info' Illation. In I hi • -,e( l ion. 

\ve develop the method further. The algoi it  presented here «ntibine. I he I et Ii 

nicptes of conceptual clustering acid machine learning. .1 he Ill'‘‘ 111(1 11401 I all I I ll .It'l 

the data au. Iotnat icall . ex t ract charm.' (list ir:„ For different , i,,,,,,.., „Hi.' I ii,„ (b., 1 ,. 

sonic 1:notvledge rules according to the relationships bet t‘vell diffetent ( lasses. 

II 
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database operations and extracts generalized data from actual data in tin- databases.

It is often necessary to ineoi porate hit* 1km lex el concepts in the learning p u n  ess 

[M itTT]: candidate rules are restricted to  formula w ith  a part icu la r xorabuh irx . that is. 

a basis set called the < um ( pttml  but.s. p e rm it t in g  the learned inles to be lepiesei i ted  

in a s imple and exp lic it  form. Different lex els o f concepts can be o igau i/ed  in to  a 

taxon o im  o f concepts. The concepts in a 1 axononn tan  be pm t iallx o id e i e d  a< < o id in g  

to  general-to-specific ordering. Such a concept t lee is spe« ified using an IS \  h ie ia i < h \  

and stored in a re la tiona l table, the conceptital hierarchx table.

A lthough  data in a relational database are usualh  well Ibi unit led and modelled 

by semantic and data models [ C C l I fM ] .  the contents o f  l lie data max not be c lassilied. 

Kor example, a chem istry  database max sto le  a laige amount o f e x p e i im en ln l d.ita 

in a re lational fo rm at, but knowledge and effort are needed to < hissif\ i he data in 

order to  de te rm ine  the in tr ins ic  regular'llx o f  the data. Clearlx. s( hemas and data 

fo rm ats  are not ecpiivalent to  conceptual classes. Ohscrxation o f  I lie < ognil i \e  p io iess 

o f  human discoxery shows that humans tend to c li is le i l lie data in fo  d ilfe ien t < lasses 

based on conceptual s im i la r i ty  and I hen ext ra d  t lie < haia< lei isti< s l io m  t hese i lasses. 

For example, by c lustering experim enta l data based on the Knowledge o f <h< niis|s. 

in teresting  re lationships among data can be discovered,

Previous st tidies on the met hod assume that tin* pi t  -t ,ri*l< n n  o f  c mu epl hiei ai i h\ 

in fo rm a tion  (prov ided by users, experts or data analxsls). I lowexei. M i d i  in lo im . i  

t ion may not be always available in many applications. It is i in p o i la n l  to d is«ow i 

data  regularities in the absence o f  concept hieiai<h> in lb i mat ion. In I hi • se it ion . 

we develop the  m ethod further. The  a lg o i i th m  presented hem (o m b in e . the te ih  

nicptes o f  conceptual c luster ing and machine learning. I lie new method < .m < lu . ie i 

the  data au tom a tica l lx .  extract characteristics for different t hisses .md then de iixe  

some knowledge rules according to  the relationships between difl'emul « hisses.

I!
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3.3.1 Review of the Related Work 

( '0111(1)111(11 ( lust ening. originally developed by Michalski and Stepp [MiS83] as an 

extension to the piocess of numet ic al taxonon*. groups objects ‘rith common prop-

et I ieti into c lusters and extracts the characteristic of each cluster over a set of data 

obje( t s. Cnnentl\. there are two iews regarding conceptual clustering: one repre-

sents an extension to te( ifiliques of numerical taxonotn . whereas the other is a form 

of hal ning-bll -obm oi (ow( pl formation as distinct from methods of arning-

funn-Lra mph., or cone( pi idr nlifkation. The clustering algorithms which ha\ e been 

framed as extensions to the numerical taxonom‘ techniques include CIA'STER/2 
imiss:31 and c OBWEI3 [Fiszin: whereas those which can be viewed as an extension 

of framing-by-am reation., include 111 :11'A° [ChF831 and Thought/K.1)1 [1IoN1911. 

3.3.2 An Approach to Concept Clustering 

Our met hod is divided into three phases. Phase I uses a numerical taxonomy 

to classify the object set. Phase 2 assigns conceptual descriptions to object classes. 

Phase 3 finds the hierarchical. inheritance and domain knowledge based on different 

iclat ionships among classes. For a numerical taxonom. various measures of similar-

it .‘ have been proposed. A' lum of them are based on a Euclidean measure of distance 

between numerical at tributes. Consequent ly. the algorithm works \veil only on nu-

Italica' data. Nlan database applications use non-numerical data. A new measure 

is proposed using the number of common attribute values in Iwo data sets Si and S2

as a similarit\ measurement. called sim_catac(St . S2). Notice that for any data set S. 

we set .s//// rain( S = 0. 

Algorithm 3.5 l'onciptual Data (111.4( ring ICD(7 

Input. A set of data stored in the relational table. 

Output. A cluster hierarchy of the data set. 

Method. 

I. Preliminary: Generalize attributes to a "desirable form" Ellux9,11. For ex-

ample. for the attribute "ago in an employer database. the substitution of 

.19
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3.3.1 Review of the Related Work

Conceptual < luslering. orig inally developed by Miehalski and Stepp [MiS83] as an 

extension to (lie pio<‘<‘ss o f num eiica l taxonomy. groups objects w ith  conin ion prop

el ties in to  clusters and ext ra fts  the characteristic' o f  each cluster over a set o f  data 

o b j e c t s .  C m ie n t ly .  there are two \ iews regarding conceptual c lustering: one repre

sents an extension to tec hniquex of numerical taxonomy. whereas the o the r is a form 

of Inti  ninfi-ln/-ob*t t r i l l ion*  oi ( o n a p l  format ion  as d is tinct from methods o f  hitrnini j -  

f i om- i  .rum pit *  or conn pi iih i i t i j iai l ion.  The clustering a lgorithm s which ha\e  been 

framed as extensions to the numerical taxononn techniques include C M \S T K R /2  

f.\IiSs.'i] and C O B W E B  [Fis87|: whereas those which can be* viewed as an extension 

o f hitrnin<j-l>u-ol)*( r rat ion*  include H l ’ ATAO  [ChF83] and T h o u g h t /K D l  [HoM91].

3.3.2 Ail Approach to Concept Clustering

O ur method is d iv ided in to  three phases. Phase 1 uses a num erica l taxonom y 

to classify the object set. Phase 2 assigns conceptual descriptions to  object classes. 

Phase 3 linds the hierarchical, inheritance and domain knowledge’ based on different 

ic la lionsh ips among classes. For a numerical taxono im . various measure’s o f .s im i la r

ity have been proposed. Most o f them are based on a Euclidean measure o f  distance 

between numerical a ttr ibu tes . Consequently, the a lgor i thm  works well on ly  on nu- 

meiicu l data. Many database applications use lion-numerical data. A new measure 

is proposed using the number o f common a t t r ib u te  value’s in two data sets Aj and A'j 

as a s im ila r ity  measurement, calk’d * im . ra l t t t (S i .  A'.jJ. Notice that for any data set A', 

we set s tin ra lut ( S . S ) =  0.

Algorithm 3.5 ( ' o n a  p lant  Data Clash r im j  [ ( 'DC ' ]

I n p u t .  A set o f data stored in the relational table.

Output. A cluster hierarchy o f the data set.

Method.

I. Prelim inary: Generalize a ttr ibu tes  to a "desirable fo rm " [Hux9>l]. For ex

ample. lor the a t t r ib u te  "age" in an employer database, the su bs t i tu t ion  o f

■12
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different age values into a small number or (ikt "Intl !light.' lei el con( epts. sia II 
as -young-. "middle-aged". -old-. etc. will make the descriptions concke a n d 

meaningful. 

2. Concept clustering: 

candidate_set := the data set obtained at Step I. 

repeat 

for each pair or si and .s'.2 in candidate_set . calculate ..,/,, c(////, (S1. .‘+'2 ). 

form clusters for I he candidate_set based on a threshold for s imi \ ;due 

(Note: The threshold varies for different catali.late set, and can he 

:.,et by user/expert or determined by I he analysis of slut Milne (61 1 i 

1)111 ion). 

remove redundant clusters. 

if t here is a new cluster produced 

then form the hierarchy based on the II('W and Ind olichni• clusters 

candidate_set := the new cluster IJ the untouched clusters 

until candidate Set = 0. 

`Note: An untouched cluster is a cluster ‘vhich is not ;t component of any newl\ 

formed cluster. 

Given a set oldata. suppose that the data is clustered into a 'demi ( h.\ as illusi hoed 

in Figure 3.3 after phase 1. In figure 3.3. //'s denote the ( histets ill the hicial, lit. 

//,,, is a subclass of it, ( I < i < /... where I. is the number or cli -,Iers in le\ el 2). 1,0 

the conceptual descriptions assigned to these classes be /) j . . . .. //). //L1. //I ). „.. 

Dk.i. . . .. Dk.„,. . . .. and so On. The values of k. l. . . . . III depend on the actual data 

set. 

Three kinds of knowledge rules can be discovered flow object (lassos: (1) hi-

erarchical knowledge rules. (2) 1/u relationship lx 1 w« n (111P ty of allubult., ,ifid (3) 

inheritance knowledge rules. 

For rule formation, there are three algoril Inns of knowledge di,/ ( A el ‘, . //,, i fi r r hi( a / 

Knowledge Discovery (1110)). Attribute knowl«lj« Discori ry (.1 hi)) and //t//( ram'« 

13 
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different age values in to  a small numl>er o f  distinct higlie i le \e l com ep ls . mu li 

as "young . "m iddle-aged . "old . etc. w il l  mala1 tin* descr ipt ions concise and  

meaningfu l.

2. Concept clustering:

candidate_set :=  the data set obta ined at Step I. 

repeat

for each pair o f  >'| and in cand idn te .se l. ca lculate .s/m ru /m  I . ,s \). 

form  clusters for tin* caiididate_set based on a threshold for sim value 

(Note: The threshold varies Idr dilferenl candidate sets mid c.m be 

set by user/expert or determ ined by the analysis o f  s im value d is i i i  

but ion ). 

remove redundant clusters, 

if  there is a new cluster produced

then form tin* hierarchy based on the new and untouched ' ( lusters 

candidate_set :=  the new c luster U the untouched clusters 

until candidale_set =  o.

"Note: A n  untouched cluster is a c luster which is not a component o f any nevvlv 

formed cluster.

G i veil a set o f  data, suppose that t he data is clustered in to  a h ie i.u < h\ .is i i lus l i a led 

in F igure d.d a fte r phase 1. In Figure d.d. l l ' s  denote the ( lu s le is  in the h ie ia n h v .  

I I , , j  is a subclass o f /’ /, ( 1 <  / <  /■•. where/.1 is the number o f  clusters in level 2). I,el

the conceptual descriptions assigned to  these classes be I ) ) ........... I ) ) .  I ) u . I ) t / .........

Dk , i  Dk.n, and so on. The  valu<*s ol k . i  m depend on the actual data

set.

Three kinds o f  knowledge rules can be discovered f iom  object classes: ( I j h i 

erarchical  knowledge rales, (2) the relat ionship he I tree n ehfft re nl n l t t i lm h s  ,md C-’ j 

inheri tance knowledge, rules.

For ru le  fo rm ation , there are three algorit Inns o f knowledge disc ovei \ . l l n  m u  h u n t  

Knowledge Discovejg ( I IK D ) .  Att r ibute Knowledge Diseore rg ( A K I ) )  and l i d n i i l n n n

Id
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III IA M  I kl lam 

Figure 3.3: Conceptual hierarchy 

Knowluij“ Di:,tor(ry (1KM [11uN9i]. For Ilkf). new rules are discovered by finding 

all of ihe possible implications bet Ween the descriptions of clusters in a cluster and 

those in its fat her cluster. namely D D,. For AND. the algorithm just looks for 

the characteristi( description fur each cluster. based on the relationship on different 

at Ili but e Values. t hen giN es the result in terms of a logically equivalent form. For Ili 1). 

which is a modification of II Ii I). labels are used. which are either explicitly defined 

1) users/expo' t s in terms of domain knowledge or labels arc produced automat ically 

by the system. 

Cluster labelling plays an important role in knowledge discovery. The new rules 

discovered can in, formed as 

. (k• /),„,  L.-1 /3E/. (11,..),....k.d ). or 

L.1/1E1.(11,„„,k )k -4 L.-4131; 

where the condition part of the rule consists of the conjunction of the description of 

the current cluster and the label of its father's cluster. 

For example. given the animal world depicted in Table 3.12. which is viewed as 

I lse data set that was passed through the preliminary step. 

The data in row I moans that a tiger is a animal with hair, pointed teeth, forward 

eyes. claw feet. and no feather. it gives milk and cannot fly but can swim. 

In Phase 1. the clustering algorithm CDC is applied to classify the data in Table 

3. 12. Aft er the first iteration. the number of common at tribute values between each 

pair of dat a is computed in Table 3.13. For example. the number -9" in row 1. column 

2 k computed by counting the number of common attributes between the data set in 

row I and row 2 of Thble 3.12. 
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Figure T T  Conceptual hierarchy

l\ notch <l<j< l ) i s(oc( i ! )  ( I K D )  [HuxO 1]. For H K D . new rules are discovered by f ind ing  

all o f  tIk* possible implications between the descriptions o f  clusters in a cluster and 

those* in its father cluster, namely D,,, [), .  For A K D . the a lgor ithm  just looks for

the t l iaraclerist ic description for each cluster, based on the re lationship on different 

a l l i i h u t e \alues. then g i\es the result in terms o f a logically equivalent form. For IK D .  

which is a modification o f  I IK D .  labels are used, which are e ither e x p l ic i t ly  defined 

b\ users/expeits in terms of domain knowledge or labels are produced a u tom a tica l ly  

by I lie system.

Cluster labelling plays an im portant role in knowledge discovery. The new rules 

discovered can be formed as

. . .  tV  u  —> L A B E  1.(11 or

l a b / • : / . ( )k  h* I .-iB E L ( )

where the condition part o f the rule consists o f the conjunction o f  the description o f 

the current cluster and the label o f  its father s cluster.

For example, given the animal world depicted in 'Fable T I2 .  which is viewed as 

tin* data set that was passed through the p re lim ina ry  step.

The data in row 1 means that a tiger is a animal w ith  hair, pointed teeth, forward 

eves, claw feet, and no feather, it gives m ilk  and cannot fly but can swim.

In Phase* I. the c lustering a lgor ithm  CDC is applied to classify the data in Table 

T  12. A f te r  the first ite ra tion , the number o f  common a t t r ib u te  values between each 

pair o f  data is computed in Table .'I. PI. For example, the number "9 " in row 1. co lumn 

2 is computed by counting  the number o f common a ttr ibu tes  between the data set in 

row I and row 2 o f Table T I2 .

-II
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# Animal !lair Teeth 1....ye Feather 
1 tiger V pointed forward \ 
2 cheetah 1. pointed lot ward N 
:3 gi rani. 1. blunt side N 
I zebra 1. blunt side N 
.) ostrich N N skit' Y 
0 penguin N N side N.
7 albatross N N side 1.
8 eagle N N forward 1.

l'i'ef Fit 1 I \I 

claw nte.tt S N 
cla‘v 
hoof 

meat 
grass 

1 \ 

hoof grass. 1 \ 
cla\v grain 1 

fish \ 
claw grain 1 
claw meat 1 

Table :3. 12: lite animal xvorld 

# I 
. I :i fi 

I 0 9 I I 2 2 
2 9 0 -I 1 2 2 
:3 .1 I 0 9 3 I 
I I I 9 0 :3 1 
5 • 2 :5 :3 0 7 
6 ' 2 1 1 7 0 
7 1 1 2 2 8 5 

S : :3 1 1 6 5 

- T . 

I 3 

I 3 

9 

9 

N ti 
5 5 
(I 7 
7 0 

Table :5. 113: Number or common attribute values after 1st it et at ion 

\ 
\ 

Suppose 6 is chosen as the t hreshold sim_value. the allot it 11111 ('I)('

clusters (1.2). (2.1). (:3, 1). ( 1.3). (5.6.7.8). ((i.5). (7.5.8). (S.5.7). I hus. 5 dist inct 

clusters (1.2). (3. 1). (5.6.7.8). (5.6). (5.7.5) are formed Ate' deleting, tedunddni 

A hierarchy is formed as depicted in Figure :3. 1(a). 

Next. the algorithm ('I)(' is applied to ( 1 .2). (3. 1). (5.6.7.N). CM' (al( ulatos 

similarity for the three clusters (1.2). (3. 1). (5.6.7.5). "I he common at Huth. \ 

are presented in Figure 3.5(a). Let 5 be the thre;.,hold value at I Ilk iterat iuu. "I his 

results in the hierarchy shown in Figure 3. 1(h). 

Finally. the algorithm CDC is applied to ( 1 .2.3.1). (5.6.7.6). A net I he t Itttd Meta 

lion. the Common attribute yalue5 between Iwo ( Insocis Ile pte,etlferl in 

3.5(b) and the resultant conceptual hierarch,‘ is Must tided in rigme 3.6. Nuti, e that 

15 
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# Animal l la ir Toot li Kye Feat her Feet Fat M I I ' Swim I

1 tiger Y pointed forwa rd X claw meat s ’ \ 't 1
2 clieotali Y pointed I'oi wa rd X claw meal d \ 'i
d giraffe Y blunt side X hoof grass Y \ \
1 zebra Y blunt side X hoof grass d \ \
•’» ost rich X X side Y claw grain \ d \
(> penguin X X side Y well lish \ \ \
7 albatross X X side Y claw grain \ 'i \
X eagle X X forward Y claw meal \

Table d. 12: I'lie animal world

# l 2 d 1 d (i
■_
i X

1 () !) i 1 2 2 T ~d
■> !) 0 i 1 2 2 i d
d •I 1 0 !) d 1 2 i
i 1 1 !) 0 d 1 2 i
d 2 2 d d 0 i X ii
a 2 2 l I ( 0 a .">
i 1 1 2 2 X d (1 7
X d d 1 1 (i d < 0

Table :i. I :i :  Num ber o f ron im on a t t r ib u te  values a lte r Isl de la t ion

Suppose OS is chosen as the threshold sim .value. the algoi it Inn C IH '  prodoie-. s 

cbtsters (1 .2) .  (2 .1 ) .  (d . l ) .  ( l.d). ( ”>.(>.7.N). ((»..’>). (7."i.X). (X.o.7). I Inis, •"> <I is I in • t 

clusters (1 .2) .  (-5.1). (d.(i.7.S). (d.ti). (o.7.N) tire formed aflei deleting icduudani ones. 

A hierarchy is formed as depicted in Figure d. 1(a).

Next, t he a lgor ithm  ( ‘DC is applied to  ( 1.2). (d. I ). (d.(i.7.N). C l ) ( ' r ah ulates t he 

s im i la r i ty  for t he three clusters ( 1.2). (d. I ). (d.(i.7.N). I lie common at 11 i lm ie  \ ,dues  

are presented in F igure d.5(a). bet 5 be the threshold value at this itera tion. I his 

results in the hierarchy shown in Figure .'h 1(b).

Fina lly , the a lgorithm  ( 'D C  is applied to ( 1.2.d. I ). (5 .( i.7 .X ). Aflei t he t hud item 

t ion. the common a t t r ib u te  values between the^e two < lusteis aie piesenird in Figm*- 

d.5(b) and the resultant conceptual hierarchy is illustiated in l igme d.fl. \o l i< r  that
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/ 

(a) 1st it

. ! • , ! 

(1)) 2nd iteration 

Figure :3. 1: ('oncept hierarchy 

(1,2) (3,4) (5,6,7,8) 

(1,2) 

(3,4) 5 

0 
(5,6,7,8) 

(a) iteration 2 

(1,2,3,4) 

(5,6,7,8) 

(1,2,3,4) (5,6,7,8) 

0 0 

0 0 

(1)) iteration :3 

Figure # of common al t ribute value

the eliaracteri,,t clemliptiow, of each cluster are the connimit alues fur all the data 

in the cluster. 
,-- --.1 

Hs.r.i. v....• r.o 
1..........--...............1 

g4 , .1,  yet -----.........:„...______.......—.----------------............. -------- Fel. rit,er ..y tq 

.............. 
F. 1.:4 • .C .

01 1 g . •1'(.1 I . 1 l'A' S 0 :Ai: ,  E. 0 6 ,. ..d° r....  , 
,. ..,1 Ft., r - .114 

, ,. ,,,,,„ t 1
1.: 

‘.4 .1 7.4.•tot 1.r ,  E. a. , IlA.t !): !...J1. --i Es• -I: i.r. en . .11/.. 

/. „ r ,, Ts...,......... ....," E. i ,  x. i . tie gIO ,  ^gal, 0: ,er 

E I r ^. t, F4t.! , ..,00C 
, -- ,..-- - -" 

r7,7 
L: - 1---] 

r---, 
, t 1 

L.....___. ;.....___J 

//\ /\ 
/\ 

Figure 3.6: Conceptual hierarchy after :3rd iteration 

In phase 3. the three knowledge Discovery Algorithms I1KD. AKD. and 11<1) are 

applied to the hierarchy depicted in Figure 3.6. respectively. resulting iu three sets of 
rules as depicted in Tables :3.1.1(a). :3. 1.1(1)) k 

13y substit liting the labels by the names given by an expert as shown in Table 
3.16. a set of meaningful rules can he obtained as shown in Table 3.17. 

-16 
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( 1 , 2 ) 

(3, -t)

(1,6,7,8)

(a) I si ilerat ion ( h ) 2nd itc'ration

Figure 3.1: Concept hierarchy 

( 1 , 2 )  ( 3 , 4 1 ( 5 , 6 , 7 , 8 )  (1,2,3 , 4 )  (5,6 , 7 , 8 )

(1,2,3,4)

(5,6,7,8)

0

I
<-n

1

0

5 0 0

0 0 0

0 0

0 0

(a) it (‘ration 2 (b) i te ra tion  3

Figure 3.5: #  o f  coniinon a t t r ib u te  value

I lie characteristic descriptions o f each dus te r  are the common \ allies for all the data 

in I he cluster.

in.r-v**
Fei• fioer*y

| P ~ *1 (JM<S
I ,■ torMi i L i:: llj frv^r*.r *>i !.*,
I-,,. t/esM-.Je tf,., -Uw or vior
E ,i s ' A. ~ ' —

rrn

E »’ - l i  3.r, ot

A  A
i . ■ ; f -

Figure 3.6: Conceptual hierarchy a fte r 3rd ite ra tion

In phase 3. tin* three Knowledge Discovery A lgo r ithm s 11K1). AK1). and 1K1) are 

applied to the hierarchy depicted in Figure 3.6. respectively, resulting in three sets o f 

rules as depicted in Tables 3.11(a). 3.11(b) k  3.15.

My subs t i tu t ing  the labels by the names given by an expert as shown in Table

3 .Hi. a set o f meaningful rules can be obtained as shown in Table 3.17.

-16
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Know tedgo Rules discovered by II 1. I) 
I 
2 
:3 
I 
5 
6 

Feet =hoof —a N lilk=yes 
Teeth=pointed v blunt —a Nlilk=yes 
Ea1=grass --a lilk=yes 
Feet =hoof --a Ilair=yes 
Tem li=pointed v blunt -4 Ilitir=yes 
Kat =grass --a Ilair=yes 

(a) 

•I # I \ II( /Vi .  IV( Igr 111114"s l I kli'M VI VI I I \ I \ I

I 

I hir ,rp,,... 1 1 \till, ,...., 

L_ Feather__  vs , a \Ink no 
•

fable' ( a )inorarchiciii k lioNviedp. rlll ' (101J116%01,mo. Hilo, 

I nowledge Hides discovered by I1<1) 
1 

3 

Label(1.2.3.1.5.(i.7.8) A (liair=yes V Nlilk=y(s) --a Lalfp1( 
Label(1.2.:3..1.5.(;,7.8) A (Rsalliorr-- '(,:, V no) > 1,a1w1(5,6.7,S) 

La 1)01(1.2.3. 1) A (Tvellf=pointed V ard - clay% v 1,11)44( 1,2) 

Labyl(1.2.3, 1) A (Ti)(tIli=bilitit V Ey(b=hide V Feet =lbw!' V 1.:;11:-, 1„11,01(3. I) 

2 
:3 

Table :3.15: Inheril ann. loaAvIedge 

Labels given by system Noinps given by oxpyri/iy-or 
La 1)(4(1.2.3.1.5.6.7.$) 
Label(1.2.3.1) 
Labp1(5.(i.7.8) 
La [fel( 1.2) 
Label (:3,1) 
1,abel(5.(i) 
La 1)(4(5.7,8) 

canii,,,„rom., mammal 

ungulate 
non-flyiim bird 
meaningless cluster 

Table 3. 16: Nantes list 

Alter renaming thy labels l) ox pyris or iisyr:, 
(Tbing=tininfol) ,A (Ilair=yys V N111k=yos) mammal 
(Tliing=aninial) A (FNither=y(s V Milk =no) bird 
(Animal=maiatnal) A (Teel li=pointe(I V Eye----forword 
V reet=clow V F,tits=ineat ) carnivorous mammal 
( A ninial=titaninial) A (TYY111=bliiii1 
V Feet=Ilool V Hats=p,rass) ungulate 

Table 3.17: :\ set of meaninglul rides alter sidro it Itt inn 

'17 
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# K now ledge I I i i It's discovered by 1 IK I)

Fool = | io o r  ->  M i lk —y«'s
'IVoth =  pointo<l V Munt —» M i lk = y o s
F.at=grass M i lk = y e s

l-Vot —lioof —» I la i r = y e s
Teet li =  pointed V 1>Iun 1 —r  l la i r s y e s
K a t= g ra s s  —> l l a i i —vos

(a)

a Knowledge Kiilcs discoM'i cd l>\ \ l \ I )  
l la ir  -M's i v Milk u s  
Feat Ik t - M's •. » Milk no

T a b le  ' i . l - l :  ( a ) H ii ' t ' i irch ica I k n o w le d g e  ru lrs ;  (b )F .c |u i \n le i ic o  mli-s

# xnowlodgo Riilos discovered liy IK I)
ibel( 1.2.;i.-L’).0 ,7 .8) A ( l ia ir= y e s  V  M i l k = y i ’s) --> Label) I . ‘J .d . !)
»bol( 1,'2.T-L">.G,7.8) A ( Feat lier=ye.\ V M i l k - n o )  Labe|(.">.(>.7,*) 
i bol (1 .‘2.8. I) A (Teel li =  pointed V F e e d fo rw a rd  V Feel .claw v K als  m r a l i  > Label 

ib i ’l( I . 2 . T  I) A ( Toot l i= b ln n t  V Fyo=sido  V Feet - 1 loof V Kal.s grass) > Lul>el(d. I )

Table d . l ' i :  Inheritance knowledge rule

Labels given by system Names given by expert
Label( l . ,2..'b-l..’).G.7.8) Animals
Label(1.2.:bl) mammal
La 1)01(0.0.7.8) bird
La bol (1/2) carnivorous mammal
L ab e le d ) ungulate
Label ('>.()) lion-living bird
La bol (5.7,8) meaningless duster

Table T  I(>: Names list

# Aflor renaming I he labels by ex|>erts or users
(Thing=animal) A (liair=yes V Milk=yos) -> uiainiual 
(Thing=animal) A (Foathor=yes V M ilk -n o )  > bird 
(Anitna l= inaiti ina l) A (Teelh=|>ointed V Kye---forward
V  Feet=da\v V Fats=moat) —> carnivorous mammal 
( Animal=mammal) A ('feelh =  bluni V Kyo^sido
V  Feet= I loof V  Fats=grass) - r  ungulate

Table T I 7 :  A set o f  meaningful rules after subs t itu t ion

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4 

Rough Sets and A Generalized Rough Set 

Model 

\Inch at tent ion has been paid recent by I lie expert systems research and machine 
led! icing „immuni ty to t he aoluisit ion of knowledge and reasoning tinder vagueness

mid incompleteness [Pawg • SI092. 11( 1119:31)}. Vagueness may he caused by the am-
higuit:„ of (,,,act meaning of the terms used in t he k• -n• I ow leoge oomain. uncertainty in 

data (e.g. due to noise). and uncertainty in knowledge itself (e.g. due to doubtful 

connect ion bet %wen the antecedent and the consequent in an inferred rule) [Zia9 I ]. 

Ine0111plelelless May 110 CallSed by the unavailability of data or the incompleteness 

of the knowledge of human beings. deal with vagueness. expert systems require 

techniques of her t han classical logic. Statistics is t he best tool for handling likelihood. 

Ilowe \ or. h id II\ met hods needed when using probability in an expert systems require 

t`lt MIMI' of pi obabilit somet imes wit hout even recourse to relative frequencies. 

Est imat Os are 10 be ver inaccurate. Expert systems based on statistical tech-
11 1

9110 .., 

have

I  1 1001 . 01  l ea  1 1

X011 1 010SS0S  cited by many aut hors [zia9:3]. Anot her way t o

deal With uncertainty is to use fuzzy logic, based on Zadeh's theory of fuzzy sets 

vadvd. The basic tools of I he theory are possibility measures. There is extensive 

literature on fuzzy logic which also discusses some of the problems wit h t his t heory. 

rho basic problem of fuzzy set theory is the determinat ion of the grade of niembership 

or the valve or possibility EGrzs81• 

15 
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Chapter 4

Rough Sets and A Generalized Rough Set 
M odel

Mu< it a tten tion  lias been paid recently In' t lie export systems research and machine 

lent ning (o m m n n ity  to the acquisition o f  knowledge and reasoning under vagueness 

and incompleteness [Pawl)I. Slo!)2. IK 'I Ib d b ] .  Vagueness may he caused by the am 

biguity o f exact meaning o f  t he terms used in the knowledge dom ain, uncerta inty in 

data (e.g. due to noise), and uncerta in ty  in knowledge itse lf  (e.g. due to doub tfu l 

connection between the antecedent and the consequent in an in ferred ru le) [ZiaOl], 

Incompleteness may be caused by the unava ilab i l i ty  o f data or the incompleteness 

of the knowledge o f  human beings. To deal w ith  vagueness, expert systems require 

techniques ot her I ban classical logic. St at ist ics is t he best tool lor hand ling  like lihood. 

However, many methods needed when using probability  in an expert systems require 

an estimate o f p iobab ilit ies . sometimes w ithout even recourse to  re la tive frequencies. 

Kslimates are l ike ly  to be very inaccurate. Kxpert systems based on s ta t is t ica l tech

niques have theoretical weaknesses cited by many authors [Zial)d]. A no th e r way to 

deal w ith  uncerta in ty is to use fuzzy logic, based on Zadeh’s theory  o f  fuzzy sets 

[Zad(i')]. The basic tools o f  the theory are poss ib il ity  measures. There i.s extensive 

l i te ra ture  on fuzzy logic which also discusses some o f the problems w ith  th is  theory. 

I'lie basic problem o f fuzzy set theory is the dete rm ina tion  o f the grade o f membership 

or the value o f possibil ity [(!rz88).
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In the past decade. Z. Pawlak 1PawS2) int rodnced a new tool t o deal %Nit h \agliv 

IleSS. Called 1he "rough set model". fuzzy set theory ;old rough set I Iteor are in 
dependent and oiler alternat i ve approadn,„ to um et aint\ ‘‘‘,„ „hum n in

The main advantage of rough set theory Is Alit 11 (kV:,  1101 Ile(41 I)1't`11111111411'.‘ tit 

additional information about data (1i1;e probabilit slat ist ics. gt ade of number ship. 

or the value of possibility in fuzzy set t !icor:\ ). ()titer advantage, of t in. t0th;11 set 

approach include its ease of handling and its simple algorithms 1S10921. 

Hough set theory has lwen successfull implemented in know ledge ba sed sh•ms 

in medicine and industry [Crz881. The rough set philosoph‘ is based on the idea 

of elimsifiration. The most imi)ortatit issue addrcssed 111 1114• lough set 1 11(.4)1.% Is 1 114 ,

idea of imin.(,cise knowimg„. In this approach. knowledge is inipte( ise if it ont anis 

imprecise concepts. It turns Out that imprecise concepts can he 114M4'1(.1 (14'1111(.41 ,1p 

proximately iii the available knowledge by enildo.‘ nig Iwo Precis(' ( on' (1)1 ,inert I beb 
/ortYr and upprr approximation. The lower approximat ion of a corn ept onsisis 

all objects which surely belong to the concept kyltereas I In tippet ,Ipinoximat ion 

the concept consists of all objects which possibly belong to the ( (anew in (plestion. 
The differen„. bm,„,,,„ t he lower and np-wr approximation is a borsm/ury Irgion 

t he concept, and consists of all objects which cannot he Classified Wi I 11 «1 1 al III It, I hi' 

conc'e'pt or its complement employing available knowledge. In this hapt el we into, 

duce the principal ideas of rough set from Pamak all(' present d genetali/ed 

model of rough set to handle uncertainty informat ion. 

4.1 Principal Concepts of Rough Set 

4.1.1 Information System 

Ily an information system S, we mean S = .1. t ".1.}. where is a (mile set 

of objects, 1' = is a finite set of rihnles. Inv attribute,-, 

is further classified into two disjoint subsets. cm/di/ion af t nibbles and (If omm 

attributes D. U 
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Id the past decade. Z. Pawlak (PawS'ij introduced a new tool to deal w ith  vague 

ness, called the "rough set model". Ku/./.y set theory and rough set theory are in 

dependent and oiler alternative' approaches to tunv i la iu ty . as was .shown in [ I ’awNaj. 

The main advantage o f  rough set theory is that it does not need any pre lim inary 01 

add it ional in fo rm ation  about data (like probability  in statistics, g iade o f membetship. 

or the value o f  possibil ity in fuzzy set l l i e o n ) .  O ther advantage's o f  I lie tough set 

approach include its ease* o f handling and its simple a lgorithms (Sit>1)12].

Rough set theory has been successfull\ implemented in knowledge based s\ste ins 

in medicine and industry  [CIrzSS]. The rough set philosophy is based on the idea 

o f classification. The most im portant issue addressed in tin* tough set (booty is t In- 

idea o f  imprecise' knowledge. In this approach, knowledge is impie< ise i f  it <oiil«iins 

imprecise concepts. It turns out that imprecise concepts cun be howevet defined up 

p rox im a te lv  in t he available' knowledge by employ ing two pree ise ( one epl s « ailed I licit 

lower and upper approximat ion.  The* lowe'r approx im ation  o f a corn opt (onsis ls o f 

all objevts which surely belong te> the* concept wln-re-as the tippet upp tox i inu l ion  o f 

the cone’ept consists o f all eibje-cts wltieli possibly be*|ottg to the eoneept in epiestioti. 

The  difference1 betwe»en the1 lower anel upper approx im ation  is a boi ini loru i t i / nm  o f 

t he concept, and consists o f  all obje-ets which cannot be* classified wit It < et I aitil \ to l lie 

concept or its complement employing available- knowledge. In th is i l ia p le t  we in t io  

duce the princ ipa l ideas o f  rough se't from Pawlak [PawN’2| and present a genetali/ed 

model o f rough se-t te) hanelle unce'rt a in ly  in formal ion.

4.1 Principal Concepts of Rough Set

4.1.1 Information System

By an in form ation  system S, \ \v  me*an S — (T .  . 1 . 1 . / } .  where- I '  is a finite1 set 

o f objects, C — .i'2 . ..., .!■„}. A is a finite1 se-l o f  a l l  rihtiles. the- a tt r ibu tes  in ,1

is fu r the r classified in to  two disjoint subsets, condi t ion  attr ibute's C  and d n i * t n n  

a ttr ibu tes  D. A =  C (J  I )

V.)
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= U vp ,,E,1 
and is a domain of attribute p. 
.1: r i A —OP is a total function such I hal f E r,/ for every E E 

Let IND C •r,—r, E (*. We define a binary relation LVD. called an indiscerni.. 

tidily rdalims. as follow: 

D {(a.,..rj ) E 1" x : for ( rcry pE IND p(x,) p(x id} 

We say that .1., and .r, are indiscernible by a set of attributes IND in S iff p(xi)= 

p(.rd ) for every p E !NI). One can check that IND is an equivalence relation on U 

for every /NO C .1 . Equivalence classes of relations are called IND-elententary sets 

in S. .1-elementary sets are called atoms of S. Information system S is selective lff 

all atoms in are one element sets. i.e. is an identity relation. 

An information stem pros ides information about the real-world objects. flow-

('v(1. infornutt ion about objects may not be sufficient to characterize objects without. 

ambiguity. Thus some objects are characterized by the same condition values. Two 

objects are indiscernible whenever they have the same values for all conditions. Ob-

jects can be characmized by some selected features represented by attributes. In 

general. infornialion about objects expressed in this way is not sufficient to charac-

set ize objects uniquely. as any two objects are indistinguishable from one another 

whene‘er they assume the same values for all the at tributes under consideration 

lrz88). 

.\ relational database may be considered as an information system in which 

coiumns are labelled by attributes. rows are labelled by the objects and the entry 

in column p and row .r has the value p(.1'). Each row in the relational table repre-

sent s information about some object in I'. The difference is that the entities of the 

ilArmat ion systents do not need to be distinguished by their attributc.s or by their 

relationship to entities of another type. In the relational database. one attribute is 

ideto Hied as a dcci.siotr attribute (learning task). and the other attributes are the 

o►rdilio►r attributes. We adopt the view that a relational database is a selective in-

formation syst0111 and will use the term IT/al/ono/ database ah,1 information .system 
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>■= u
1>£A

and Ij, is a domain  o f  a ttr ibu te1 p.

/ :  I '  /  A - >  V is a to ta l function such that f ( x , . q )  £ V>, fo f every q <E A. ,r, €  T.

Lei I S D  C -1. 6 I ”. We define a b inary relation I S O .  called an indiscerni -

bi l i l j l  n l i i l i on .  as follow:

I S O  =  { ( . r , .Xj ) €  f ’ x f ‘ : f o r  < very p €  I S D  p(.vt ) =  p{.Vj)}

We say that .r, and . i j  are indiscernible by a set o f at t r ibu tes  I S I )  in S i f f / ; ( . r , )  =  

/>(./•,) lo r every p € I S I ) .  One can check that I S  I )  is an equivalence relation on ( '  

for every I S ! )  C .1 . Kquivalence classes o f  relations are called IX D -e lem entary  sets 

in S. . l-e lemchtary sets are called atoms o f  S. In fo rm ation  system S  is selective i f f  

all atoms in S are one element sets. i.e. is an iden t i ty  relation.

An in formation sxslem proxides in form ation  about the real-world objects. How

ever. in formation about objects may not be sufficient to  characterize objects w ithout 

ambigu ity . Thus some objects are characterized by the same cond it ion  values. Tw o  

objects are indiscernible whenever they have the same values for all conditions. O b

jects can be «haraelciized by some selected features represented by a ttr ibu tes. In 

general, in formation about objects expressed in th is way is not sufficient to charac- 

le i i / e  objects uniquely, as any two objects are ind istingu ishable from one another 

whenexer they assume the same value's for all the a ttr ibu tes  under consideration 

[ ( irzSS].

A relational database* may be considered as an in fo rm ation  system in which 

columns are labelled by a ttr ibu tes, rows are labelled by the objects and the* entry  

in column p anel row ,r has the value p(.r). F.ach row in the re lational table repre- 

se'iits i n f o r m a t i o n  about some object in I ' .  The difference is tha t the entit ies o f  the 

in form ation  systems do not need to be distinguished by the ir  at t r ibu te .s or by the ir 

re lationship to  entit ies o f  another type. In the relational database, one a t t r ib u te  is 

idenli l ied as a decision a t t r ib u te  (learning task), and the othei a t tr ibu tes  are the 

(on t l i l io n  a ttr ibu tes. We adopt the view tha t a re lational database is a selective in

formation system and w i l l  use the term relat ional database and in fo rm a l  ion system
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interchangeably in this work, 

4.1.2 Approximation Space 

For the information system S = I and /.\'1) 

relation (iodise( rnibility rc lal ion) on 1*. an ordered pair 

(1,,riv(',4 all (.(111i., 

( 1'. I)) is called an 

approximation space. For any element .r, or '• equi‘aienev c lass or .r, in relation
IND is represented as j Equivalence classes of /No are called c I, nit /floury 

s(ts in AS because they represent the smalles. (..scernible groups 01 object N, 

Any finite 11111011 of den-R.111m.y sets 111 .ts is called a thfinah/, . IS. 

Let X C 1 We NVallt to define .V in dill/Whig IS. We 

to introduce the following notions cited from (l'aw821: 

CO The lower aPProximalioll of A. in AC is defined as: 

need 

IV/).\'={.r,C C } 

LVDN is the union of all those elementary sets each of which is contained by y. 

For any a; E LVDX. it, is certain that it belongs to X. 

(ii) The upper approximation of A' in .IS is defined as 

IN DX = E vo n x 0} 

I.VD\ is the union of those elementary sets each of which has a non yowl% 

intersection with X. For any E 1.VON. we can only say that ,r, is possible below!, 

to A'. 

(iii) The set /NDX-/NDX is called the I,\'/)-doubt lid region of IND in I)). 

For any .r, E U. if xi iu /N1)X-1.YDN. it is impossible to determine Ihat ,r, belong 

to .V or not based on the descriptions of the elementary sets of 0;0. 

The following diagram Figure 1. 1 illustrates the relat ionships among, I hem. 

The lower approximation of A' in ,IS is t he greatest definable set in .1. . l'Ont nod 

in X. The upper approximation of .\' in AS is I he least definable set in AS (4110;611;hp, 

A'. Let .V arat 1" be subset. of U. lower and upper approximations in , IS have I he 

following properties [1)aw821: 
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interchangeably in this work.

4.1.2 Approximation Space

For the in form ation  system .'̂  =  { / . 1 . 1 / } .  and I X P  c  I derives an equivalence 

re lation ( i i x l i s a  nu b i l i t y  n  hit ion) on I ' ,  an ordered |>air AS  ( / ’. I X  P )  is called an 

approximat ion spaa.  For any clemenl x, o f  ( ’ . the equivalence ( lass of  x, in re lation 

I A D  is represented as [.*■,]/a Fquivalence classes ol I ,\ I) are called 11< on n l t i r t i  

sets in .l.S'because they represent the smallest discernible groups of  objects.

A ny  f in ite  union o f e lementary sets in . l.S’ is called a thj inabh  s<I m  .IS.

bet .V C  I ■ we want to  define X  in terms o f  ih j inabh  s t l *  in \S.  thus we need  

to  in troduce the  fo l low ing notions cited from [PawN2j:

(i) The lower approx im ation  o f .V in A S  is delined as:

L X J I X  =  {.r, € / C A }

/ X D X  is the union o f  all those elementary sets each o f which is contained by V. 

For any x;  6 I X l ) X.  i t  is certain that it belongs to  X.

( i i )  The  upper approx im ation  o f .V in . l.s' is defined as

I X P X  is the union o f those elementary sets each o f which has a n o n e m p lv

intersection w ith  X .  For any x,  € I X P X .  we can only say that x,  is possible belong 

to .Y.

( i i i )  The  set I X  P X - 1 X P X is called t he I  A /J-doubl fid region o f  I X  P  in f I \ I A P) .

For any x,  € V.  i f  x, in I X  D X - 1 X  P X.  it is impossible to  determ ine that x, belong 

to  .Y o r not based on the descriptions o f the e lem entary sets o f I X P .

The fo llow ing d iagram Figure 1.1 il lustra tes the relationships among them.

The lower app rox im ation  o f .V in A S  is t lie greatest definable set in . I,s', contained 

in .Y. The upper approx im ation  o f .Y in A S  is the least definable set in . lA A o n ia in in g  

A', bet .Y arm ) ’ be subset o f  lower and upper approx im ations  in , l.s' have the 

fo l low ing properties [PawS'2]:
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boundary 

negative 

AP 

A 41■ 

■ 

mar 
MM. 1111 
•UU&Al III 

\ 
upper approximation lower approximation 

Figure .1.I: The diagram of rough set model 

I N _I )X C %.V I)\. INDC =7 N IiI. =1' . I .\' DO. LVD(I)=0 

LV 0( X u 1') .7) LVDX li LVDY. / .V /)( X u 1") = /.\' DX U /NM'. 

/A 0( X it 1") = LVDX n i.vm". Lvi)(N n Y) C /NON U /NM.. 
/.,VP(-N)=-/N /)X. /.ND(-X)=-/NDX 

/NM /NOX )=/N0(INDX)=/NDX. 7:\ D( I A DX)=I A. Di IA I N)=7:\ DX 

Example 4.1 Let us consider a generalized car relation given by Table 1.1. U = 
i 1. 2. 3. .... 1 1 } is t he collect ion of cars. Suppose we choose /NI) = fey,. pow( P. u' ighl} 

mid I) - wil( am is Iliv decision at 1 ribute. Thus I he decision at I Hinny consists of two 

concepts /) w von, I/ = -loil«sfy = .1/ED/1 'AI- and Dniaii = "in il«Ify = MO ll - . 

DAIEDicm = {1. 2, :3..1. 5.6. 7} 

011/6.1/ = {8. 9. 10. 1 1. 12, 1:3. 10 

we have t he equivalence classes of I N D as below 

I.:1 1 1. 61. I...2 = (2}. /;:i = {:3„ .1. lo. 1:3. 1-1 }. L'1 = {5. 7. 11}. Er, r.-- {8}. E = 
19}. /;•;. := 1 121 

Hie corresponding lower approximation and upper approximation of 1) are as 
follows 

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 

boundary

negati ve

uppsr approximation lower approximation

Figure -I.I: The diagram o f  rough sot model

IX D X c  7 T 7 7 X . l . \D{ '=TTL) l=V.  I .V IM=TXn<I)=(!>
IXIHX  U V )  j  IXJ)X u I X D Y. TXD(X u Y)  = TXDX U fXDY.
IXLHx  n V) =  i x n x  n i x d y. Txd(X  n V)  c  T x d x  u T x d y .
i x  m  - x  )--T \T )X . T\T)(-X)=-i x  d x

I XI HI XDX )--TXl){ IX  l )X)=l  X DX. TxD(TxT)X )=I\1)_(TXDX )=T.W X

IS xnm p le  4.1  Let us con.sidor a generalized car relation given by Table 1.1. I '  =

{ I . - . ' I  I 1} is the ro lle r! ion o f ears. Suppose we choose /  X D  — {c t / l . pouu r. ir< i f / h l }

and I )  - m i h i i j i t  is I he derision at t r ibu le. Thus t lie decision at t r ib u te  consists o f  t,wo 

concepts D \ i i . p i t  \ i =  "mil(( i( j<  =  M F . D U ' M "  and D u i a n  — "m i l (a<n  — I I K i l l ".

I).m e d i u m  -  (1 .2 .8 .  I..5 .6 .7 }

D u  t a n  =  (8 .9 .1 0 .1 1 .1 2 ,1 8 .11} 

we have the equivalence classes o f 1 X D  as below

/■:, -  { ! .(> }. /■:, =  { 2 }. /■:•, =  { 8. 1. io. i t  m } .  e ,x =  { 0. 7. 11} .  / : ,  =  {8 } .  =

(!)}. /--V - ( I -2}

The corresponding lower approx im ation  and upper approx im a tion  o f D are as 

follows
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111, 1,11 M 
', 11:I. , 
\troll \I 
a\I AI I 
:0,1,11,1. 
10 ,1A1.1, 
=\1,11,1. 

111, 4 I 
MEI, %.I 
111,111 
\Mint \I 
\u:1111 NI 
N11.1111'10 
\11.1,I1 \1 
Il14:11 
Ilfdil 
\II;1,11 \I 
111, ;II 
NIF1/11 \I 
111,111 
1111:11 

Twin— 
\11'1M \i 
\WWI \1 
‘ 11.1.11 \I 
111611 
11;, :11 
111,41 
111, 41 
I 1'1\ 
'0 1. 1'I1 \I 
III, ;II 
I,,\\ 
'01. 1011 \I 
\II 1,11 \I 

Ai r, 
\INN' N 
11 1 ,. 
\I\ \I \ 
\I \ \ I 1 
\I I,, 
11 1, ,
m \ N. I % 

\I \\I ‘ 
\I \ \I \ 

\I \`,I ‘ 
NI:, ••• 1 \ 
\1NNI 1 
MA*,1 \ 

Table 1. 1 : A generalized cat relation 

15 r'1(III 

/NO i)itErnu = 1 VI. - f l .G.21 

Lvi)(Dmi...olum) = El. /%2. Eil = 1. 10. 13. I 1. 71. 7. I I I 

LVD(Onimi) = En•• - S. 9. I2}

/.\ = {3. 'I. 10. 13. 1 1.5.7. I I . s. It. 121 

4.1.3 Core and Reducts of Attributes 

In ntany applicat icnts. the set of ()Idols is classified lulu a dkjoilit of I 

based on the vahR, s of I he decisional t i ihulc'.and  we %yang I I , (Ici (.1 'Min, . 

Ill terms of Features of corresponding condition at ribute, belonging, to ea( h I I.1 . .. 

most cases. classes are determined by several (a e% en one at t ;lane. not dif 

ference in all 1 he at t ributes t he databases. This is also (thihihicio itIiIhl 1 c,1.r,nil itt

process of 1111111all (IISCOVe0'. uncli hltte dilli4 1,11,1102, Inulc I hall 

a few at trilmtes into account and tend to l 'ocus on a few important at ft ilaties. '1 he 

rough set theory provides its the tool to deal with this prohh in. cord, ',dui I di f . 

the two fundamental concepts of rough set. .1 redact is the essent ial pill I ()I' an info, 

mation system tyllich can discern all objects disc etnible 1)", t he (a iginal ;n161111,11 ion 

system. A core is t he common parts of all I he rednets. 
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Ol | # M j k r  j n o - l e l t y \ do  oi i ImpI .k  r < o i t i p t r * * j u m r i t i w r t t i i  1 
M I T ' I I  M

li t  i t r
1 1 . 'A i M iTrr,TT i r r r r r r - Z r T T r -  * \ l  1 l*f» M

1 j?A <> 1 M M V 1 • M M M > H  M M A M  \ \ M l  1 Ml M M I  l 'M  M
». 1 ' A 1 2 > .M A L L m o i l M P I ' H  M \ \  1 *• M l  M l  \ | M i l ' l l  \1

t S A 1 2 M K I ’ I I  M M L l M t  M M i l ' l l  M M \ S I  \ l M l  I ' l l  M M l  I 'M  M
*, t \ - A 1 t M K h U ' M \  t j : i>11 m l l l . i l l M \ M  \ I M l  I 'M  M M l  I ' l l  M
<. r . - A (, \ M K D I P M M f l d l ' M i i * * ; i i M l  l»M M M l  1 »t M
? r . - A 1 2 Ml-* I ’ l l  M M l - 1*11 M M L . I I M M l  h M  M M i  1 I f  M
A 1 .-A 1 > M K I i l l  M I I l i  i l l M L . I I M \  M  \  1 1 P . I I  1 l i l . l t
9 JA P A N 1 2 ' 'M A L I . 111011 1 t A \ M \  M  \ l 1 i ' . l l  I M L  .11
10 J A P A N 1 2 M I P H  M M i ; i * M  M Ml* I d *  M M \ M  U M l  b i t  M I I I  .11
11 JA P A N 1 2 - M A I  1 m - ; n II b i l l M \ M  VI M l  I I* M I I I  ,11
12 JA P A N 1 2 - M A L I . M l - l d l  M 1 i»V\ M A M  VI M l  M t  M l i t  .11
Lt JA P A N 1 2 S M A L L H l< i l l M I 1 Mi M M A M  VI M l  I 'M  \1 I I I  . I t
1 1 PS A 1 * -’ M A L I . H U i t i M l  i * n  m M A M  \ | M l  I 'M  \1 I I P . I I

T a b le - I . I :  A generalized cat relation

I A IX( I ) \n : i ) i t  \ i )  ~ { /'-’i ■ } ~ { I • <>. - }

/ A ’ l ) ( l ) \ i i ;ni ru)  = { /v' | .  /v’j .  =  { l . t i . ’J . T  I.  10.  I T  I l . o . T .

JAJ2( I )man) = { I'-:,- r } I T  0.  111

I S D d h n r . n )  =  {/•-:«. /•;.!. /Is. /•:«. AVI =  10. 1.5. I I . •'». 7. I l . s . ! ) .  I.'J

4.1.3 Core and Reducts of Attributes

In many ; , , 1 ’ ations. the set o f  objects is classified in to  a disjoint f.uuilv ol < l. iv.c. 

based on the values o f  the decision at t r ibu te ,  and we want to  de tem iiue  e,i< h < I . is  

in terms o f  features o f  corresponding cond it ion  a tt r ibu tes  belong/mu. to e.n h i | , i . .. In 

most case’s, classes are determined by several oi even one ;1111ib ■ 11<■. not l.v in.il l d if  

ference in all t he at t ri bales in I he databases. This is also < < insistent w ith  I lie < ognii ive 

processed human cliscowry. because* people often have dillie i i i lv  in tak ing  n io n th .u i  

a few a tt r ibu te s  in to  account and lend to locus eni a feu im portan t a l l i ib i i le s .  I lie 

rougli set theory provides us the lejol tej deal w ith  this probh m. (o r e  ami i. dm t ao 

the two fundam enta l concepts o f rough set. A reeluct is t in ' essenti.d p,ni of an in lo i 

m ation  system which can discern all objects discernible bv th e o i ig in a l  in lo i iu a i io n  

system. A core’ is the common parts o f all the reclucts.

TA
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Let S f} be an information system. C B C C. a positive 

region /I in I). P('1CB(I)). iq defined as 

1'0.").1.3(1)) = u{B.V : .V E 

The positive region POSH ( DI includes all objects in I" which can be classified 

into ( lasses of /.) without error based on the classification information in 13. 
hat I he set or at I rib,- esn 1.) depends Iii degree k (0 < k < 1) on the subset 

I? of (' h1 S if 

k( R. I)) = card( POSR(D))1eard(1") 

'I lie value k(R. I)) provides a measure of dependency between /? and D. 

Definition 4.1 in altribut( p E 13 i.,...nin-rfinon, in 13 with r(sp«.1 to D if POSB(D)= 

l'OSH-(r0(D): oth(-rwrs( p indispmsabh in B with r(spret to D. 

If an attribute is superfluous in the information system. it can be removed from 

lic infol mat ion s),steni v. it bout changing the dependenQ relationship of the original 

st( in. While au indispensable attribute carries the essential information about 

of the i n formation system. It should be kept if you do not want to change 

the dependency relationship of the original system. 

Definition 4.2 If (r(rg attribuIr of B indisprosablc with r(spret to D. Him 13 is 

orthogonal with r(sp«.t to D. 

Definition 4.3 II r thfin«1 r«lart S if B is orthogonal with ri-sp(ct to D 

PO.Cc( 1)0,s.B(1)) 

I he reduct of C is a nonredundant subset of attributes that discerns all object 

dim ernible b1 the ent ire set of at t ributes. Vsually. may have more I hail one reduct. 

Definition 4.4 'fire s(t of all attributes belonging to the- inhrs(etion of all mluels 

of C with r(sp«.1 to U is called 111( Con- of C. drnot«I as CURE((' 
I In rouccpt of the core can be used as the starting point for computation of reducts. 

5-1 
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bet S -  { ( ' .  A. \ . [ }  be an in form ation  system. .1 =  ( '  U  I ) .  B C a positive 

legion I I  in I). P O S f r d ) ) .  is defined as

l>OSh ( D )  =  U { R X  : .V € P }

The positive1 region R O S b ( I ) )  inriude.s all objects in / ’ which can he classified 

in to  < lasses o f  / )  w ithout error based on the classification in form ation  in 13.

We sa\ that the set o f  a ttr ibu tes  I )  depends in degree k (0 <  k <  1) on the subset 

R  o f  ( '  in S i f

k( /?. D ) =  card( POS'n ( I )  ) ) /card {  I ’ )

I he value k( R. D)  provides a measure o f dependency between R  and /.).

Definition 4.1 .1;/ attribute p £ 13 is stipe rf luous in 13 with respect to D  i f  P O $ b (  D)  =  

P ( ) S b ~ o t h e r w i s e  p is indispensable in B  with aspect  to I ).

I f  an a t t r ib u te  is supetfiuous in the in fo rm a tion  system, it can be removed from 

the infoi mat ion s>stem w ithout changing the dependent\ re lationship o f  the  orig inal 

s\ sl< in. W h ile  an indispensable a t t r ib u te  carries the essential in fo rm a tion  about 

o b j e d s  o f the in form ation  system. It should be kept i f  you do not want to  change 

the dependency relationship o f the orig inal system.

Definition 4.2 I f  ec i r y  attr ibute o f  B  is indispensable with respect to 1). then B  is 

orthogonal with r isp ic t  to I ).

Definition 4.3 B  C ( '  is defined as rcelttcl in S i f  B  is orthoejoneil with respect to D 

and B O S c i D )  =  B ( )B H( B )

I Ik* rod net o f  C  is a nonredundant subset o f  a t t r ibu te s  that discerns all object 

dis< ern ib le In t In* ent ire set o f at t l ibutes. I 'sua lly . C  m ay have more t han one re d uc t .

Definition 4.4 The set o f  al l  attr ibutes belonging to the intersection e>f a l l  redacts 

o f f  with n spiel  to I )  is called the core o f  ( \  denoted as C O R E { C  D).

I lie Muuept o f  the core can be used as the s ta r t ing  point for com puta t ion  o f  reducts.

■>!
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4.2 A Generalized Rough Sets Model 

The theory of rough sets. as proposod l'awlak. pro\ ides a lot Mal tot)! ful dealing 

with imprecise or incomplete information. It has been sin e essfullt applied hi Mal Illike 

learning. expert system design. and linowledge representation [S10921. Substantial 

prOgreSs has been achieved in understanding practik dl impli, (Ilion, and limitation, of 

this approach. In particular. the inability to model 11111..rtain informal ion was one 

limitation frequently emphasized researchers. It lied he inadequate to deal wit It 

situations in which the statistical information plays ail Iltlpoll.Illl tole. Colf., 1(1c1 . rut 

example. two equivalence classes Ei l: in the partit ion 1.1 h that ea, h has 100 

elements. Suppose only a single element in El belongs to N. and single element 

in E2 does not belong to X. In the original rough set model. thew "`" \ diem e 

classes are treated in the same \vay and both \\ ill he in( hided iii t he (1(mibi hd 

From a statistical point of view, such an ident ical I real mem of L 1:! dm, Hut 

seem reasonable. Moreover. the observation that one element in VI Ilelongs to 

X may be a result of noise. Therefore. the original rough we) model ( dri he ,ensit 

to noise often encountered in mar* real-world applications WZ) 'I his 

severely reduces the applicability of the rough set appithiell I() 1,14,61(lirs \‘ hi( h ate 

more probabilistic in nature. .1n attempt to oret(ome this It-all( \\ (Tot ied 

in EPNVZS8). However. the proposed gPlIeraliZill icru WW1 141'1(11 WI sl lung I( di 

assumptions and did not direct I1 inherit all of the useful propel ties of the uh iginal 

model of t he rough set. 

In this section. a new generalized version of the rough sot model is pioposed. 

The generalized rough set model is hit kohl( eel I() ()rrei(mile th(nse shifil(((niings ht 

incorporating the available statistical information. 'I he geneldli/4 d model 

is an extension of the concept of the kqtriable pre( isiun tough sets mo(1(.1 

Ottr new approach will deal with the sit IlationS \t here MR erldin obje( t s mot exist . 

different objects may have different importance degrees. and (14(9(111 ars ses ma\ 

have different noise ratios. The standard rough set model and the VP 'mold of tough 

sets [Zia93b1 become a special case of the CRS-model. he pm ;mat ad‘atildge of 

the ORS-model is that it modifies the ! radii ionAl roug,11 sets model to \\ utk rtell in a 
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4.2 A Generalized Rough Sets Model

The  theory o f rough sets, as p ropos 'd  l>\ Pawlak. pro\ ides ,i lo tu ia l to o l  I'oi dealing 

w ith  imprecise or incom plete  in form al ion. It has l>een mii «essfullv applied in mn<liihe 

learning, expert system design, and knowledge representation [Sloil'j], Sul»^t.mti.il 

progress has been achieved in understanding practical impli» ations and l im it  at ions of 

this approach. In part icu la r, the in a b i l i ty  to  model uncertain in fo rm a tion  was one 

l im ita t io n  frequently emphasized b\ researchers. It ma\ In* inade(|iiate to deal w ith  

s ituations in which the s ta tis t ica l in fo rm ation  p lavsan  im po itan t  iole. ( 'ous ide i. lot 

example, two equivalence classes /:’|. E> in the pa r t i t ion  / A’ / )  mu Ii that ea« li has 100 

elements. Suppose only a single element in E\ belongs to X. <md onl\ a single element 

in E i  does not belong to X. In the o rig ina l rough set model, these two equivalent e 

classes are treated in the same way ami both w il l  be itn hided in the doub tfu l legion. 

From a s ta t is t ica l point o f  view, such an identica l treatment o f /. j  ami /..■ does not 

seem reasonable. Moreover, the observation that on l\  one element in E\  belongs to 

X  m ay be a result o f  noise. Therefore, tin* o rig ina l rough set model <an be sensitive 

to noise often encountered in m a in  real-world applications [ \V /A  N(ij. I his l im ita t io n  

severely reduces the  a pp licab il i ty  o f the rough set appioach to p iob len is  which am 

more p robab il is t ic  in nature. An a ttem pt to  u \e i<om e this le s t i ic t io n  was icp o ited  

in [PWZS8]. However, the proposed generali/at ion was based on si long st ,u isiic ,d 

assumptions and d id  not direct 1\ inheri i all o f  the useful pm pe it ies  o f the o i ig ina i 

model o f the rough set.

In th is  section, a new generalized version o f  the rough set model is purposed. 

The generalized rough set model is in t io d m e d  to oveicome these slim (comings In 

inco rpo ra t ing  t l ie  available statis t ica l in fo rm ation . I lie genetali/c d lough a i s model 

is an extension o f  the concept o f  the variable precision lough sets model 'Z ia 'IT i ] ,  

O u r new approach w il l  deal w ith  the situations when* i tnce i la in  ob jects  m a\ exist, 

different objects m ay have different im portance degrees, ami d ilfe ient clashes mav 

have different noise ratios. The standard rough set model and the VP  model o f  lough 

sets [Zia9db] become a special case o f  the* (IRS-m odel. 'I lie p i im a iv  ac|\,mtage o f 

the GRS-model is that i t  modifies the trad it iona l rough sets model to w o ik  well in a

5')
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4.2.1 Uncertain Information Systems (UIS) 

iu geneial. an information system represents objects crisply. That is. for a given 

objec I in the database. and a given property (attribute-value pair). there is no tweet.-

I ahoy whether or not the object has that property. This certainty is restrictive. Such 

a tepiesentation restricts our representation power in two ways. First. all objects in 

he universe must be represented by a uniform representation. Second. represent a-

I ik powei is also restrictive because the object representation is crisp. i.e. there is 

no loom fot the expression of degree in an object's representation. That is. an object 

cif her has. or does not have a property. 

To manage objects with uncertainty and different importance degrees. we intro-

duce an nucert ain informal ion system (11S) based on the informal ion systems defined 

1) Pawlak [PawS21. In the uncertain information system. each object is assigned an 

uncertainty a and an importance degree d. The uncertainty is a real number in 

the range from 0.0 to 1.0. If uncertaint a equals 1.0. it represents a completely pos-

itive object . If uncertaito a equals 0.0. it represents a completely negative object. 

The importance degree (I represents the importance of the object in the information 

system. The (/ ). a induces the positive class and d x (1 — a) induces the negative 

class in the uncertain information system. An example collection of classes (objects) 

of all uncertain information stem is shown in Table 1 2. The uncertain information 

system (/'/S1 is defined as follows: 

Definition 4.5 /*/.c =< U. C. D. {l'AL„}„Ec.a.d > is an ancrrtain information 

,ystr in. when 1 . is a non-rmpty set of objrci. C is an non-empty set of condition 

alto/nil( s. I)  is a dreision altribut( with uncertainty a. V.-1L„ is a domain of a 

condition attribut( "a" with at 1(051 Iwo &muds. Each condition attribute a E 

can In /n refired as a function assiynrd a value a(obj) E 1'AL,1 to each object 

abj c d(obj) is a function as5ign«1 an importune( d(gr« 10 (ach object obj 

Er( ry object which belongs to 1 . is th(r(for«tssocial«1 with n 8(1 of crrtain values 

cornsponding to the condition attribute C, an unr(rtain milt( conT6ponding to the 
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noisv env ironm en t.

4.2.1 Uncertain Information Systems {CIS)

In geneial. mi in form ation  system represents objects crisply. That is. for a given 

objc< t in t lie database, and a given property (a ttr ibu le -va lue  pa ir) ,  there is no uncer

ta in ty  whether or not tin* object has that property. Th is  ce rta in ty  is res tr ic t ive . Such 

a jep iesentution  restricts our representation power in two ways. F irs t,  all objects in 

the universe must be represented by a u n i fo im  representation. Second, representa

t ive powet is also restr ic t ive  because the object representation is crisp, i.e. there is 

no loom  I'oi the expression o f degree in an o b je c t ’s representation. Tha t is. an object 

e ither has. or does not have a property.

To manage' objects w ith  uncerta in ty  and different im portance  degrees, we in t ro 

duce an uncerta in in form al ion svxlom ( /  7 5 ')  based 011 the in form at ion systems defined 

b\ Pawlak [PawS2]. In the uncerta in in fo rm ation  system, each ob ject is assigned an 

uncerta in ty  11 and an im portance degree d. The uncerta in ty  11 is a real num ber in 

the range from 0.0 to 1.0. I f  uncerta intv u equals 1.0. it represents a com ple te ly  pos

it ive  object. I f  in 1 certai 111 \ 11 equals 0.0. it represents a com ple te ly  negative object. 

The im portance  degree d represents the im portance  o f the object in the in fo rm a tion  

system. The d > 11 induces the positive class and d x  (1 — 11) induces the negative 

class in tin* uncerta in in form ation  system. An example collection o f  classes (objects) 

o f  an uncertain in fo rm ation  system is shown in Table I 2. The  uncerta in  in fo rm ation  

system ( C I S )  is defined as follows:

D e f in i t i o n  4 .5  C I S  = <  C. ( ' .  I). { \ ' A I . „  } „ c c - »• d >  C an uncerta in in fo rmat ion  

,s//.«./r /n . when C is a non-empty set o f  object. (.' is an non-empty set o f  condi t ion  

a l ln b u l t s .  I )  is a decision attr ibute with uncerta inty a. \ ' A L „  is a domain  o f  a 

condi t ion attr ibute "a "  with at least two elements. Each condi t ion att r ibute a € 

C  can In pt ret i red as a func t ion  assiyned a value a (ob j)  € \ A L „  to each object 

obj v  I . d(e>bj) is a funct ion  assiyned an importance deyree to each object obj  € C.  

C n r y  ob j tc l  which Inlonys to C  is therefore associated with a set o f  certain values 

corn  *pondiny to the cemdil ion att r ibute C,  an uncertain value cor re spondiny to the

56
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OBJ cl c2 dec d 
c i 0 0 0.75 I 
c, U I 0.67 3 
( 3 0 2 0.35 
( I I (1 0.75 
( 1 I I 0.67 :3 
(6 I 2 0.35 .1 

'fable -1.2: An uncertain information system 

(1((• attribute 1) and a r«II numb( corn.vo)►dloy to 1hr I:opinion« de y►r «1 al 

tli«)bjcet. 

Example 4.2 In the Table 1.2. ‘Ve have a set of qbji.ctS 1( . \Vhere(1

I. 2..... 6) are the rows of' t he t able. The set of condit ion at t ribut es is ( - . c2 } and 

the domains of condition attributes C are = {0. 1 }. 1: 2 .2}. and the deci 

sion at t ribute is D = id( with uncertainty value111,,,  = {0 .7 . 0 .67 . D.35. 0.75. 0.67. 0.35 } 

(i = 1.2. ....(i). For each object. an importance degree d is assigned and the so 

importance degree is d(obj,) = {•1.3.-I.•1.3. •1} (i = . 2. .... 6 ). 

4.2.2 Noise Tolerance in Uncertain Information Systems 

To manage noise in uncertain information sySi CMS. adopt (1)11( (V Of I rid 
I ivy classification error which was introduced Ziarko IZia93aj. 1 he main idea is I 

draw MAlle boundary region between posithe 112:1011 and urgati‘e .It oiding 

to SOIIIC classificalion factors. The goal is to generate some .-.Irony %%hi, h ale 

almost, always correct. In the real world. each class (posit Idy-s and r 

in the information system contain different noise. TWO .11 1011 rat 1()I • I', 

and .V,3 (0.0 < < 1.0) are int roduced to solve this problem. PI and X; may 

be the same values and simultaneously exist. they (an be (loci mined b% edima)ing 

noise degree in the positive region and the negative region respectively. 
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O B J c l c2 d ec d

< i 0 0 0.75 1
(> 0 1 0.07 5

(■\ 0 2 0.55 1

< i 1 I) 0.75 1

< 1 1 0.07 5

<<> 1 •> 0.55 1

T a b le -1.2: An uncerta in in fo rm ation  system

decision attr ibute D  and a r i a l  number corn  *i)ondm<i la l ln  inipoi  la in  < dt t / nt  d o f  

l l ic object.

E x a m p le  4 .2  In the  'Fable 1.2. we have a set ol objects I -- {( ,}■  where (/

1 .  2 ...... 6) are the rows o f  t he table. The set o f  cond it ion  at t r ibu les  is ( '  { r l . e 2 }  and

the domains o f  cond it ion  a ttr ibu te ’s C  are l'.| =  {(). I }. l ’ .» (0. 1 .2}. and the der i

sion att r ib u le  is D — { dt c }  w ith  unce rta in ty  value — {0.75. ().C»7. 0.55. 0.75. 0.07. 05

(/ =  1 .2 ....... 0). For each ob jec t, an im portance  degree d is assigned and th e  set of

im portance  degree is d(obj ,)  =  {•!. 2. d. •!. 5. 1} (/ =  1 .2......<>).

4.2.2 Noise Tolerance in Uncertain Information Systems

To manage noise in uncerta in in fo rm a tion  systems, we adopt the eo inep l o f  ie|,i 

t ive  classification error which was in troduced bv '/ ia rho  ('/ia!)5aj. I ho main ide.i is to 

draw some boundary region between positive region and negative legion. a<<oiding 

to  some classification faclors. The  goal is to generate some s/ro/u/ mles  u h n l i  me 

a lmost always correct. In the real world , each ( lass ( posit ive < lass and ueg.it i \e  t hiss) 

in the in fo rm a tion  system mav contain different noise. T w o  c lassilit at ion I’a d o i  , I ’ , 

and .V,j (0.0 <  P. j .S . i  <  1.0) are in troduced to  solve this problem. /'< and ,V , may 

be the same values and s imultaneously exist, they (an be de te im ined  bv es t im a ting  

noise degree in the positive region and the negative region respectively.
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Let .V be a non-empty subset of a finite universe I The measure of t he relative 

dep,ree of lids( lassi heat ion of the set .V respect to t he positive class P,./,,„ and 

negat ive class X t,,„ defined as 

cr(  ( -- a,)) 

E de
E(d, 

('\(.V) = E 

f obj, E .V. .V C 013.1 

obj, E .V C 013.1 

Whew E d, is the sit Ifl of import ance degree of objects belonging to 1 he set N. E( d, 

is the sum of iltdming posit ire class degree of objects belonging to the set -V. and
T(d, f I — (r, )) is the sum of inducing negative class degree of objects belonging to 

I he set V. 
) defined as the ratio bet %wen the sum of inducing negat i\ e class degree of 

ubjecis and the slim of importance degree of object:„ In the set .v. (.v) is defined 
as I he 1(04, bet %wen the sum of inducing posit i\ e class degree of objects and 1 he sum 

of importance degree of objects in t he set .V. If we classify objects belonging to the 

set N to the positive class. we may have an classification error rate Cpf.V . If we 

classify objects belonging to the set :\ to !legal i\ e Hass. we may hate an classification 
error rate ('\(.\'). 

Based on the measure of relative classification error one can (feline t he set of 

obje( Is .V which belongs to t he posit ive class if and only if t he classification error 

'p( .V is less than or equal to given precision level PI. or t  11CgatiVc Class if and 

oul} if t lie dassilical ion error r, (.v ) is less than or equal to given precision level .V,5. 

I fills. 

P /.,„ D .V only if Cp(X) < 1'5 

if only f ,v( < 

herwise. I he set of situations X belongs to the boundary region. 
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Let .V be a non-empty subset o f a fin ite universe ( ' .  The measure o f  the re la tive 

decree o f mis< lassifiealion o f the set .V w ith  respect to  the positive class P,./,„s and 

negal ive class A’ defined as

i f  obj, f. X .  X  C O B J

i f  obj, € A'. .Y C O B J

where J, is the sum of im portance degree o f objects belonging to  t he set X . £ ( f / ,  *  (,i ) 

is the sum o f indue, ittg positive class degree o f objects belonging to the set .Y. and 

}Z(J, ( I -  '/ ,)) is the sum o f inducing negative class degree o f  objects belonging to

I lie set Y.

( "i>( X  ) is delined as t he rat io bet ween t he sum o f  inducing negat i \  e class degree o f  

objects and the sum of im portance degree o f objects in the set A’ . C .\(-Y ) is defined 

as the la t io  between the sum o f inducing positive class degree o f  objects and the sum 

o f  im portance degree of objects in the set X ,  I f  we classify objects belonging to  the 

set X to I lie positive class, we may have an classification error rate C /d  A” ) . I f  we 

classify objects belonging to the set X to  negat ive class, we may have an classification 

error rat e ( \  ( X  ).

Based on the measure o f  relative classification error one can define the set o f  

objects X  which belongs to the positive class i f  and only i f  the classification error 

C/>(.Y) is less than o r  equal to given precision level P ,. or the negative class i f  and 

only i f  I he classilical ion error ( \  { X ) is less than or equal to  given precision level A ’.*.

I tills.

P i - „ ,  2  -Y i f  on l i /  i f  ( ' p ( X )  <  Pj

i f  only  i f  C.v(.Y) <  AX

otherwise, the set o f s ituations A’ belongs to the boundary region.
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Example 4.3 Assuming the same set of objects 

set 1'3 = 0.30 . .V j = O.G. The set of equivalence 

. Nvliere XI = 1( 11. .V2 = 1(2}  and •V 0 = 

x ( I .01 — 0.75) cp(x 
0.25 

I as demi ibed h 

relation I 

0. Ihums

1 s 0.75 
( X - 

Fable 1.2. and 

\' 2 . . . V61 

0.7-) 
= 

= 

Similarly. 

\ ( 1 .0 — 0.67) 3 . 0.6
Cr( 0.33 Co X21 0.67 .V2) = = 

-I x ( 1 .0 
Cp(X3) 

_ 0.35) 
0.65 Co V3) 

1 • 0.35 
- 0.35 = = 

1 x (1 .0 _ 0.75) 1 • 0.7.; 
riq NI) (1.75 = —I1.25 

1 

x ( 1 .0 — 0.67) :5 • 11.tii _ 
CH•V,)) 0.33 ( - 0.67 = = 

3 

• 0.35 
CP(A.(i) 0.65 CO .V6) — 

1 
0.35 = = 

Now we can say 

b,„ = V 1 —V 1 } 

and 

= { x3. x6} 

4.2.3 Set Approximation in the GRS-Model 

In t he' original model of rough sets OW .11)1)1()N1111.1t 14111 Is (1(1111(41 .1 , .1 poll 

.1 /VD) Which C011:,Iht;, of a non-empty. litritt 111111(V IC 1,f (11,411111W I .1111 I 11c 

equivalence relation I.\' I) on I'. The equivalence relation I.V1). ielerred h) 

indiscernibility relation. corresponds I o a part ii lolling of the Ind \ et se I into ( 4)11(1 

I ion of equivalence class or elementary sets / A I) = { L.). .1 he element ;11'‘ 
sets are the atomic components of gi‘en inforinat ••, stems. The\ 1(111"1,1,1111 
the sntallest groups of objects ate (list ingtikhable in .( I lir, (al lic 
used to represent them. e.g. in terms of object feat ures and their \ 
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E x a m p le  4 .3  Assum ing the same set o f objects / as des< 1 ibed In l'able 1.2. .mil

set l yj  =  0.A0 . \  i =  03). r i te  set o f equivalence re lation l i  i-- l i  { V I .  Y 2   YO}

. where A’ I =  { f I } . A’ 2 ■— {< 2 }  ;ut<l A(> =  I lots

, ,  .. , -I x (1.0 -0 .7 . ' . )  I - 0.7-')
(  i>( A  I ) =  ------ - j  =  0.2.) ( \ ( . \ l l  -  0.7'.

S im ila r ly .

v ( i . o  -  0.07) 3 -11 .07
(  />( A 2) = -------------------------=  0.33 ( \  ( A 2 1 -- ().(•*

-1 x  (1.0 -  0.3")) i - O.3.")
f / > ( . \ 3 )  = ------ ----------------- - =  ().<>.-> f \ ( \ 3 ) i  t 0 .3:.

I I

, ,  ,, 1 x (1.0 -  0.7')) _ I ■ 0.7-')
(  />(A I ) = ------------- j----------- =  0.2o ( \  ( A I )  ̂ O. i )

t . -  x' (1.0 -  0.07) , 3 ■ 0.1.7
f / . ( A . ) )  =  ------ -— - ------------= 0 .3 3  f \ ( . \ . i )  - 03.7

-I x (1.0 -  0.3o) I tl.3')
( > ( A ( i )  = ------ - j   =  0 .0.) r N( . \ 0 ) - -  ( 0.3')

Now we can say

{ Y I . .Y  I }

ami

-= { .Y 3 ..Y 0 }

4.2.3 Set Approximation in the GRS-Modcl

In the orig inal model o f  rough sets the app tos im u l ion space is delim-d pah 

.1 =  ( /  . I X I ) )  which consists o f  a non-e.. , ' . l in i le  universe o f dis« otuse I .md lh<- 

equivalence re lation I X  I )  on / ’ . The equivalence re lation I X  D.  leferred to ,.s .m

ii t f l is ce rn ih i l i ty  re la tion , corresponds to  a p a r t i t ion in g  o f  the univeise / '  in to  a i ollet

t ion o f  equivalence class or e lementary sets I X  I )  —  I he element arv

sets are the a tom ic  components o f given in fo rm a tion  svstems. Thev cone ,pond  to  

the smallest groups o f  objects which ate d istingu ishable  in I n in s  o f the in fo i mat ion 

used to  represent them. e.g. in terms o f object features and the ir  values.

o')
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ln the f.keneN.dized tough set model objects which belong to au element Set are 

pelt eked as identical. it Ina\ not be possible to determine set inclusion criteria for 

eve! \ subset of the Lod P1 s(' I .. We can consider sOnle eleMent ar in lle upper 

appioximat ion spat t. with degree of classiln at ion error lower than given PI and .V 1

idclots. It means that this will di ilW SUM(' (lenient ary sets Or boliudarl area into the 

lower a pprOXIIImill 11011 space. 

tiling two elassili( at ion factors P,, and .V,,. we obtain the following generaliza-

t ion of the eon,.ept of rough approximation: 

Lot the = I A' D p.\. ) be au aPProximat ion space and I X PA ={E1 • E'2, En} 
be t he collet t ion of equivalence classes of the relation LY D1 v. Let P3 and .V.$ be 

two real numbers as defined in previous section. such that 0.0 < P. .V 1 < 
( ;1% en ally arbitrary subset .V C 013.1. its posit IV(' lower approximation POSM.V) 

15 t('hill'CI c .., a union of t hose element ar-‘ set:, NV 110:,(11 (km ion criteria guarantee

that the relative error ('1,( I..) of the set .\ will be less or equal to 

l'O.s'r ( ) = U{E E : Cr( < 

Its negative lower approximation .VEQ\ (.V) is defined as a union of those ele-

ment al \ sets w host' ion Criteria guarantee that the relative error Cv(E) of 

the set .V xvill he less or equal 

NEG\ (.V) = U{E E /.C7)p. v : cy(E) < 

upper

Its  approximation o f the positive 
region

I P P p ( X) is defined as a union of 

I 'IOW (*lenient ar\ sets Whose ClaSS•dl( al 1011 criteria guarantee that the relative error 

( ( of t he set will be greater than or equal .V,(. 

1.1)1'M.V) =U{1; E LS701'.\ • rx(E) > 

its upper approximation of the negative region f'PPv(.V) is defined as a union 

oft hose elementary sets whose classification criteria guarantee that the relative error 
of Ihe set .V will be greater t han or equal P.3. 
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I ii I lie gcncm li/cd  lough scl model objects which belong to an element ar\ set are 

peneiced <ts identical. it ma\ riot I><* possible to determine set inclusion c r ite r ia  for 

even subset o f the t in i\e ise  / ' .  We can consider some elemental^ sets in the upper 

(ippioNimation space w ith  degree of classification error lower than given P,f and A’ < 

faclois. Il means that t his u il l di aw some eiemenl a rt1'sets o f boundary area in to  the 

lower approx im ation  space.

H\ using I wo < Iassilic at ion factors l \ ,  and A,j. we obtain the following generaliza

tion o f  the concept o f rough approximation:

Let th e j  .-.I =  ( l \  I X  Dp  v )  be an approximation space and [ X l ) p \  =  .....

be the collection o f equivalence classes o f  the relation I X D j> m\ .  Let P.i and A’,* be 

two real numbers as defined in previous section, such that 0.0 <  P.i. Ay <  1.0. 

( ! i \e n  any a rb itra ry  subset A’ C O B J .  its positive lower approx im ation  P O S p ( X )  

is delined as a union o f  those element ar\ sets whose classification cr ite r ia  guarantee 

that the rotative error Cp( I:') o f  the set X  w il l  be less or equal to  P f .

POSr ( . X )  =  U {/•: € 1-XDr.y  : ( ' p ( E )  <  P i }

Its negative lowc'r approximation . X E ( ! \ { X )  is defined as a union o f those ele

mental^ sets whose classification criteria  guarantee that the relative errot ( \ ( E )  o f 

the set .Y w il l lie less or equal A y.

.Y/vY,\(.Y) = U ( ^ €  I X D r . y  : ( ' x ( B )  <  .X, }

Its upper approx im ation  of the positive region I '  PP/>(.  X)  is defined as a union o f 

those e lem entan  sets whose classification criteria  guarantee that the re la tive error 

( \ ( / ’.') o f  the* set A’ w il l  bo greater than or equal Ay.

rpPn(X) = (J{i-:€ ixn,>A ; ( \ (E)  > x, }

Its uppe'r approx im ation  o f the negative region ( ’ I ) P \ [ . X )  is definc'd as a union 

of those' e lementary sets whose classification c r ite r ia  guarantee that the re la tive error 

( V( /’’ ) o f the sc't A’ w il l  be greater than or equal / Jy

(50
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( TIM X ) = U{ l; E /.\70r. : Cr( 

The boundary region /3.\*/)p..\ (X) of the set X is the union of those ehltientar 

sets ‘vhose classification do not belong to the positi\ e legion and Ike e 

of the set X, 

/3.vomv(x) = LAE E : V 1)()Sr• 

Example 4.4 (or the uncertainty information system in Table 1.9. 

1'0.4-;),( = {XI. V 1 } 

.VE(;OD) = 1.V3. V61 

/3.VOr.\ f /)) = 

4.2.4 The Degree of Attribute Dependencies in the GRS-

Model 

To formally define the at t dependt.no measure bet kt evil I lie set r 

attributes C C .4 and the set of decision alt ribuies ( /)). let 

denote the collect ion of equivalence classes of I he relit ion I V DI, \ ((') and. .41161,11k. 

let 1) be a fatuity of equivalence class of /..Vnp, v(n) 

classification factors and .X,f (0.0 < 1.0) ‘ve say that the .-4.1 of derision 

at tributes I) imprecisely depends on the set of «uldit ion at I t ibut to I lie deg) re 

',(C. 1). if : 

^;((% = PUNT(( % PI—V »// HOW ) 
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r P / \ ( . V )  = SJ{/:€ /.\7 >r.N / ’<}

The boundary region H . X D r . \ ( -V) o f tin* set V is the union o f those element ar> 

s('ts whoso classification do not belong to the positive legion and the negative legion 

o f  t lie* sot .V,

/ i .Y A V .v f .Y )  =  ■ /■•' </ /Tbs',.. \  l ' ( > \

E x a m p le  4 .4  For the uncerta in ty  iu fo r ina t iou  system in Table 1.2.

m s V ( / > ) =  { . Y I . Y I }

.Y / - Y / v ( / ) ) = :  {.Y:{.  Y t i }

mi >, . ( f ) )  =  { . Y I . . Y 2 .  .YI. .Y.11

l ' l > l \ ( D )  =  { .Y2 .  A T  .Yu. .Yf i}

n \ l ) r . \ (D)  =  { . Y 2 . . Y 5 }

4.2.4 The Degree of Attribute Dependencies in the GRS- 
Model

To fo rm a lly  define t he at t r ib n le  dependent \ measure bet ween l lie set o f lo n d i l io i i  

a t t r ibu te s  ( '  C -1 and the sot o f decision a ttr ibu tes  I )  < 1 ( 1  f t )  I ) ) ,  let ( '

denote the collection o f equivalence classes of the relation / Y !)/> \ ( f ) and. s im i la ih .  

let I )  be a fa m ily  o f equivalence class o f I .X f ) y . \ (  I ))  — { / J /„..... A . vs}. ( l iven  two 

classification factors P,t and .Y,< (().() <  /•*<. A7 Y 1.0) we sav that the set o f de< ision 

a tt r ibu te s  I )  imprecisely depends on t in 1 set o f  <ond it ion  a t l i ib u te s  f  to  the degiee

D . P , . . Y,d i f :

•)(( ' .  I ) .  =  I M  P ( I S T ( ( \ l ) . I > . , . X , ) ) l l \ l l > ( ( ) I U )

(i!
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\\licie ,VT(r I). /',1. .\',,) is a union of positive and negative lower approximat ions of 

all elemntar‘ sets of the part ition 15 = { in the approxitnat ion space 

(co, and the LW ) is an importance function assigning the sum of 

importance degree of objects the set N. such that 

1m1'(0/3./ ) . Ed, obj, E 0/1.1 

and 
b 

Im1'(1x7.(c. = E dpus+ E d»(,,,

pus=1 R( !r=1 

E POSP( X )• E \'(.V) 

can 

I ra  

I  v ..S el . II(. a  b OVe  f 011  It  II  l a  
to: 

/). _  ,i„s=1 clP>s +  L,„ (3=1

\- -11 
z--,=1 

Informally speaking. the dependency degree (C. D. PA..V,1) of at t ribut es I) on the 

al I ributes ' at I he precision level 1'.1. .1',1 is t he proport ion of t hese objects obj, E 013.1 

\vide!' can he classified into corresponeing classes of the partition b (positive class 

and 'legal lye class) with an error rate less than desired value (1',1. .V,$) on t he basis of 
1 he inrormat ion represent eel by t he classification (. 

Example 4.5 Based on I he uncertain information system given in Table 1.2. kVe call 

calculate the degree of dependency bet %wen condit ion attributes C and Ille decision 

at tribute 1) with classi heat ion factors P,1 = 0.30 and = 0.60. From Example 

we obtained I he following,: 

PO Sp ( 1)) = X j.

/)) = {X3. .V6} 

So that. the degree of dependency between and D is. 

+
-)(C. 1). 0.30.0.60) = 1 -1- .1  1 + 

4— 0.13 
92 
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v l ie ie  I X T ( ( \  I ).  I j .  A’,*) is a union o f positive and negative lower approx im ations o f 

all e le inen tan  sets o f I lie part i t ion  I )  =  { I ]  A’r/,,.„} in the approx im a tion  spare

( ! ' .  / .V />/* \ ( f '))• and the l . \ I P ( X )  is an importance function assigning the sum o f 

im portance degree o f  objects in tin* set .V. such that

//
i m p (o b j ) =  Y,<i .  <>l>j‘ <= o b j

1=1

and ^

I M P { I X T ( ( \ D .  =  £  <lpult +  j r
p o s s s  I n (  g s z  I

«/■»./;><« € P O S , A X ) . o b j nf!l €  .V A T /v (.V)

We can transfer tin- above formula to:

’p "  ( I  j -  ' p ’> A  
i t '  n  i) v  \ — ^/>ua=i /)ui ' £*>h<i=\ " '"a-,,r. A . , ) - ------------ --------------------

In fo rm a lly  speaking, the dependency degree D. P.i. A ’ B o f  a tt r ibu tes  D  on the

at t ribu les ( '  at t he precision level P.i. X,f is the proportion  o f these objects ubj, €  O B J  

which can be classified in to  corresponding classes o f the p a r t i t io n  /) (pos it ive  class 

and negative class) w ith  an error rate less than desired value (P,i .  X .p  on the basis o f  

the in fo rm ation  represented by the classification ( ' .

E x a m p le  4.5 Based on the uncertain in form ation  system given in Table 1.2. we can 

calculate the degree ol dependency between condit ion a tt r ibu tes  ( '  and the decision 

a t t r ib u te  () w ith  classification factors Pti =  0.30 and A’,< =  0.60. From Hxample 1.1, 

we obtained tin* following:

POS,>(D)  =  { .Y L .Y - I }  

X I  X ; x ( D )  =  { .Y3 ..Y6}

So tha t,  the degree o f  dependency between C  and D  is.

.1 J_ A 4- J -L A
-)(( ' .  /). 0.30.0.60) =  ■■ =  0.73

62
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4.2.5 Attribute Reduct in the GRS-Model 

Let ("IS =< {I 'A u. d > be an uncertain information system a nd 

P C C. and given classification factor Pi. .V,: 

Definition 4.6 An all ribuha E P i.. r«lInnlanl P P 

(P• 0111( rwis( th«illribaha indi'PHP•abb 

Definition 4.7 if all atlribrrlr a, E P art indi.spi P. Ih, n P 

ort hogon al 

Definition 4.8 A P C C callyd redact of (T'- 4)" orlhovpii,11 
and -1(/). = -,(r. P.1. .vo 

A relative reduct of the set of condition attributes will be defined as nontedom 

dant independent subset Of condition at tributes that diseetns II Ia.. 0.6(4.s h 

discernable by the entire attribute set. 

The GRS-reduct. or approximation rednct . of the set of condition dmilnite,, 

with respect to a sot of decision attributes I) is a subset of /?/ ,;(4('. /). (' 

which satisfies t ho following two criteria: 

1. p,. .v,i ) ,,(1?E)(c. I). p,. .v,,) 

2. no attribute can he eliminated for /?/;'/)(('. I). .v with,,ffi ikireciing 

first criteria 

Example 4.6 Consider dropping the condit ion at  cl irr 

= 0.30 and .V,$ = 0.00. The set of equivalence relation /e 

' Iable 1,2 and ,,et 

11 

where XI = fe l .( 41, X2 = 1,1,-,} and .V3 = {r•;. r,;}. So that . 

2 x .1 x (1.0 — 0.75) 
= 0.25 (VNI ) 

2 1 / 0. 75 
0.75 

= 

8 

2 x 3 x (1.0 — 0.(i7) 2 / 3 / 0.07 
Cp(.V2) = 0.33 CA,(X2) r 

6 
0.67 = 

6 

2 x 4 x (1,0 -- 0.35) 2/ 1 / 0.35 
0.37; 

8 x 

63 
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4.2.5 Attribute Reduct in the GRS-Moclel

Let I I S  =  <  I . ( ' . ! ) . { \ .11.,, },,£<•■. u .d  >  bo <m uncerta in i ii IV mi i tii t it >n system <iikI

P C ( ’ , and given classification fact or / j .  A',:

Definition 4.6 An u l l r i b i tU  a € P ndundt in l  in I 1 ! j ' ( P  {</}. I K P . .  A ,■)

*;( P. I ) .  P j .  A’.j):  olh< rii ' isc l lu  a l l r i l i i i h  a i* indi.spt n^nblt

Definition 4.7 I f  (i l l a t l r ib i i h  a, £ P t in indispi n.'.ubh m P. Hun P m i l  b< m l h d

orl liogonal

Definition 4.8 A .•>ubsfl P  C C  i* t t i l l t d  redncl oj ( '  in I I S  iJJ I ’ /> orthogonal

f i n d ~ , ( P . O . P t . X i )  =  P.  P.i. S t )

A re lative reduct o f  the set o f  condit ion a ttr ibu tes  w il l  h r  d r l in rd  .is <t n o m rd im  

dant independent subset o f condit ion a ttr ibu tes  that discerns .ill objec Is u h i i l i  m e  

discernable by the entire  a t t r ib u te  set.

The GRS-reduct. or approx im ation  reduct. o f  the set o f  condit ion attributes ( '  

w ith  respect to  a set o f  decision a t t r i lm le s  I )  is a subset o f I { p.! ) ( ( ' .  I). I 1,. A,<) o f f ’ 

which satisfies the fo l low ing two cr iteria :

1. y (G . I) .  P, .  N,i)  =  ~ . { P P l ) ( ( \  I) .  P.i. A’,,). I ) .  P.,. X , )

2. no a t t r ib u te  can be e lim inated for I f  l ) ( (  D. P, .  X , )  w ithout affecting tin- 

first c r ite ria

E x a m p le  4 .6  Consider dropping the condition a t t r ib u te  cl in la b l r  \:1 ,md set 

P,i =  0.00 and X.i =  0.60. The set, o f  equivalence relation P  is I f  { V I .  V ’J. VM} 

whore .VI =  X 2  =  { ( 2. 0 ,} and AM =  { f  So tha t.

r ,(.vi) -  -L lilM z m  cstx» "■r' U.75
') ') f ) ( ,P*

C i > ( X 2 )  =  — ^ ^  =().;{:{ G,V(.Y2) 7 - x ’ ^ "  „  (,7
6

O( . Vd)  = ........... ..1 = o.fjr, r v f.V:5j -  1 '  1 '  (U ‘’ o.;5o

8

'i x . ' jx  (1.0-- 0.07)
0

2 x 4 x (1.0 -- O.do)
,x

0:1
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we obtain /'O.''j.(('') = {XI} and ,VAY;p((s ) = {.Y•1} (C1 = {.r2} ). Thus. 

8 8 
a 0.30. 0.60) =  + = 0.13 

example 1.5. we know t hat -;((' . 1).0.30. 0.60) = W. 1).0.30.0.(10). so t hat 

c2 k a reduct of on D. 

We Call 

The Or I edn, t is most useful ill those applicat ions Nvhere it is ti(' essary to find 

I lia most impoitant olle( I ion of ((radii ion at t ibut es responsible rot d dllhe-cfrect re-

hitionship and also useful lot eliminating irrelevant att ributes from the information 
sl ri‘ en an in  system. t here may exi st more than one ',Nino Each 

rednct in the set of /t)/..7)(C. Pl . .V1) can be used as an alternative group of at -
I l HMI cs  l i n II ( ou ld represent l ie  or i g i na l i n f ormal  i on  

sirnl

\V II 1 1  lie classification 

Factor p,. .V,. .111 important problem is how to select an optimal reduct front t he set 
1?En(c. 1). The selection can depend on the opt i y criterion associ-

ated wit It at t ributes. 
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VVC i )  

s;iv

blaih l ' ( )S i> (C ' )  =  { .V I }  and X K d !>{(' ' ) =  { . V I }  { ( ' '  =  { . r2 } ) .  Thus. we can

AUUO.(J.fiO) =  =  0.7:5

I'rcn i example I.a. we know that /J. O.-iO. 0.60) =  ~(C. 1). 0.:5(). O.fiO). so that 

( ' '  -- {r-2} is a reduct o f f "  on I).

I lie idea o f ledm t is most useful in those at ions where it is necessary to find

I lie most iu ipo itan t « ollet t ion o f  lo iu l i t  ion at ti ihut os responsible Coi a lause-eflect re- 

la t io iish ip and also useful I'oi e l i in ina ting  irrelevant a t t i ih u te s  from the in fo rm ation  

s' siein. ( ! i \e n  an in form ation  system, there may exist more than one reduet. Kaeli 

reduct in the set o f  I t l \  l ) ( ( I ) .  I d .  X.A can he used as an a lte rna tive  group o f a t 

tr ibu tes u l i i i l i  could represent 1 lie original in fo rm ation  s\stem w ith  the classification 

factor P).  A’ ,. An im portant problem is how to select an o p t im a l reduct from the set 

o f l t i : i ) ( C .  I ).  I d . X . i ) .  The selection can depend on the o p t im a l i ty  cr ite r ion  associ

ated wit li alt riluites.

(M
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Chapter 5 

Rough Set Based Data Reduction 

In many practical applications. such its diagne)sing Aiim% ;dein ik iii .

unkii()‘vii ()bj ed,. (bit i ng I da t a collection I5(.l)lI it i s (In (h 11111i ) 'i ll to Lii„%\ 4'\.II I k 

features are relevant and/()r important lot the learning task. and the\ 

should be represented. Sc, all teal ures believed to be useful ale c led into I he 

database. Hence databases usually contain some attributes Him able. 

irrelevant . miimport ant to a g,iven disco\ ery l d sk. lociissing., on a ,11 1 

1 iS 111()\V (*()Ilini ()11 1)rac t is  aill "'is is I li r  11 / 1 11Y iIIP.

technique. Iii Chapter :1. ‘ve dbicussed al l ribille orienled ail', )131,1..111 N
system and its extensions. The general idea of I lie s‘ slew is lo v\I I.1( 1 1 110 14'1('1 .1111 

(lithi from ho flat al)aso. and 1 lien p,i.nei lie rele‘iiiit (Lila Ill I 'll' 1€ '1,1 

and t ransform the t uples in the generalized ielai ion to logic al i tiles. I /wing t Ill 1 ule 

generalization procedure. all 1 he ill tributes in the genetalized :elat ion ale 1 iedied III 

the same way. i.('.. (,(Iiia ily imp()1.1 11114 . 13111 ibis is not ink. applic at ion 

III the generalized relation there ale tit ill some irrele\ ant . 1)1 tininipot knit am Wine 

to a given discovery task. For example. to detei mine the (t.'s) mileage of a I .11. 1 he 

Nveight and p()‘ver of the car arc important ‘vhile the Intliiln of (11,01 ., of I lie 

DM needed for cenisi(lerkiti()n. So one of I lle 11111)()1 1 diiI 1-,Sllek, heed 14) I/W1111'i( (I 

to find ()tit the tne)st relevant at tributes arid eliminate the it of non 4 ,

att rilmit es ac(e)reling to the d(`( isic)n task ‘‘ it how losing i.11.ot mat ion about Ile dal d III 

the gencIalizvcl rclitt ion. The goal is to 1'111(1 a minimal sul,,ct of into t,,t ing, at I , 

hat have the same power to (list iliguitih (liffercnt ( 1,16,s in t he tle( kion al 1 , 

6,5 
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C hapter 5

Rough Set Based D ata R eduction

In m any practical applications, sucli as diagnosing unknown disease, idenl il'v i 11 

unknown objects, d in in g  t lie data collect ion phase, it is often d il l i i  nil to know exac 1Iv 

which features are relevant a n d /o r  im portant I'm I lie lonrniug task, and Imu thev 

should be represented. So all features believed to lie useful me collected in to  the 

database. Hence database's usually contain some a ttr ibu tes  that me uude .i iab le , 

ir re levan t. or un im port ant to a given discos cry I ask. focussing on a subset o| at 11 i lm i e 

is now common practice. Idemlifv ing rele\ant fields is the most common focussing 

technique. In Chapter T  we discussed a t t r ib u te  oriented indue lion o f  t he I ) 11 LI . . \ l { . \  

system and its extensions. The general idea o f  the svsleiu is to e s l ia c l  I lie ie |e \.u il 

data from the database1, and then geneia li/e  I lie relevant d.i la to the desiiable l e o l  

and transform  t lie t uples in I lie1 generalized id a t io n  tec logical niles. I tm in g  th< iu|e 

generalization procedure, all the a tt r ibu tes  in the geneia li/ed n ja l io n  .ue t ie .i ted  in 

t lie1 same' wav. i.e.. equa lly ' im port a n t . Hut this is not I rue in immv iral applic .it ion .. 

In t he generalized re la lion llic're a ie  si ill some irre levan t. oi i in im po i taut at 11 ibu ie  , 

to  a give'ti discovery task, fo r  example, to de ie im ine1 the (gas) mileage o| a cm. the 

weight and power o f the car are im portan t while  the- number o f dooi - o f  I lie cm is 

not needed for consideration. So one o f I lie- im  pot I ant issues need to be condde icd  i .  

to  find out the most relevant at I r i ln ites and e lim inat e l he ii ic levanl 01 non <•, .cut i.d 

a lt  r ibntes according te; the dec ision task vv it liout losing in ld i m.it ion about I lie ckit ,i in 

the generalized relation. The goal is to linel a m in im a l subset o f in t * i <*sting at 11ibu ie  , 

that have the same1 powc*r to elislingiiish different classes in the 'let ision a t t i ib u te .

Go
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as all the attlibutes in the generalized relation and thus simplif the generalized 
!vial ion I ) ‘ ciii(A hig 11050 ilTeleValil ial al I ribilles alld produce a set of 

h row IsO awl meaningful decision rules for each class in the de(ision at

Rough sot thoor.t [l'awS:21 introduced in Chapter I prOVIIICS 01 le Or he 1110s1 

loots 
I 

II a 

o set of attributes globally. 13ased on I his consideration. %V(' propose

new framework for knowledge disco\ er databases. \\i lk!, combines database

()pet al ions. machine teaming techniques and rough set theory. In our !s sient. the 

leaining pro, ednre consist s of two phases: data generalization and data reduction. lu 

dat a generalizat ion. our met hod generalizes Ihedata performing at I CI but e rento\ al 

and attribute-wielded concept tree ascension. thus some undesirable attributes to 

the learning task are rennAni. Subsequent ly the primitive data in the databases are 

geuvrah/ed lu the high le\ el concepts in the concept hierarchies and a set of tulles 

II Ia\ be generalized to the same generalized limb% The goal of data reduction is 

lu lind a subset of interest ing attributes that have all the essential information of 

the generalized relat ion. so that the subset of the attributes can be used instead 

of the entire at  set of the generalized relat ion. the I tildes in the 

reduced relation are t ranS1.0111101 into different knowledge rules based on different 

knowledge disco‘er algorithms. 0111' method ttnal zes the cause-effect relationship 

driunig, I he condition and decision attributes. meaningful properties of data. such as 

data ili`p0114101Ity I lie attributes. are explicit ly analyzed by rule-generation 

dlgorit hms. "Hie method is able to identify the essential subset of non-redundant 

at I ribut e5 (Glow's) that determine I he decision task. t hiiis I he rides generated ill this 
way are 1,(.1,1. coneiso and St rong wit hi 110 redundancy in f,orinat i()" Ininc(vssitry

constraints in I hem. In this chapter we will discuss two algorithms: DI3Deci and 

1)13 1axi. One is to Lind a set of concise decision rules. 'rho other is to compute 

all the nnt\imal generali/ed rules From the generalized relation by using a decision 

matrix. 

66 
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as all lhe a lt i ib u te s  in (lie generalized relation and thus s im p l i f \  the generalized 

te la l ion  by lemoving tliose irrelevant or non-essential a ttr ibu tes  and produce a set o f 

1111 ic 11 concise and meaningful decision rules Cor each class in I lie decision a tt r ibu te .  

Bough set theory [ I ’awNli] introduced in Chapter I provides one o f  the most powerful 

leads to  analyze a set o f a ttr ibn tes  globally. Based on this consideration, we propose 

.1 new framework for knowledge diseowry in databases, which combine’s database 

opei at ions, machine learning leciinicpies and rough set theory. In our system. the 

learning procedure consists o f two phases: data generalization and data reduction. In 

data generalization, our met hod generalizes t he data by perform ing at t r ibu te  rem ou il 

and a t t r ib u te  oiic’iited concept tree ascension, thus some undesirable a ttr ibu te ’s to 

the lea t i l in g  task are remo\cd. Subset, ' 'y the p r im it  ivc dat a in the databases are 

generalized to the high le\el concepts in the concept hierarchies and a set o f tuples 

may be generalized to the same generalized tuple1. The goal o f data reduction is 

to line] a subset o f  interesting a ttr ibu tes  that have all the’ essential in fo rm ation  o f 

the generalized relation, so that the subset o f the a ttr ibu tes  can be used instead 

o f  the e n t i ic  a ttr ibu tes  set o f the generalized relation. F ina lly  the tuples in the 

reduced relation are transformed in to  different knowledge rules based on different 

knowledge discw\er\ a lgorithms. Our method analyzes the cause-eflect re lationship 

among the condition and decision a ttr ibu tes, meaningful properties o f data, such as 

data dependency among the a ttr ibu tes, are exp l ic i t ly  analyzed by rule-generation 

a lgorithms. The method is able to identify  the essential subset o f  l ion-redundant 

at t ri hiites ( factors) that determine I he decision t ask. t Inis t he rule’s genera Ic’d in this 

way arc* very concise and strong w ith  no redundancy in fo rm ation  or unnecessary 

constraints in them. In this chapter we w il l  discuss two a lgorithms: DBDeci and 

DB.Maxi. One is to find a set o f concise decision rule’s. The o ther is to compute 

all the m axim al generalized rules from the generalized relation by using a decision 

mat ri.\.

66
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5.1 Reduction of the Generalized Relation 

In the reduction of the generalized relation the basil tole 1, \ \No fun 

(lament al concepts — a teduct and a core. !multi\ el‘. a ;edit, I of the 4.2,011,4,11'1,14i 
relation is its essential part. NvItich suffices to define all I I 11 I 111 111 

11(' considercd data. Nvitvrea...., it Is ill a certain sense its most impoi tam pal l . lie 

&Icing generaI.zed relations consists or reitio‘ superlIttous pail it ion.,  Ictiiii\ dicie4 

relat ions) or / and superfluous at tributes in such a that the set of elemental 

categories in the generalized relation is preserved. l'Ilis enables II , to, lim 
ma t e wittecessar • data 1.1.(mt t he ge.m.ralizoi Iclat 11,11. III cm., ‘ 111,..!, olik I 11.11 poi l . 41' I 11, , 

data 11'111(11 is r('allv useful. 

5.1.1 Significant Value of Attributes 

1)ifferent attributes imty play difk t I I 1Teti. nix, .11 (.e.ermining, the dependepi, 

tionship 1)ehveen the condition and decision attributes. 

The siv,nificance of an in(liviclmt) attribute a i (1,10,1 the ,e1 1; %%il l, 1,. ,O4.( 1 14, 

1 110 (10P01111 '110Y bet \Veen 1? and /) is represented 1) sH411111( .111«* ,c(;t )'i\ ( II 

1)y 

= 1. iq I» 

S(;r(a. /)) reflects t he degree of increase or Ch.p,.11.iviir.‘ 
I) as a result of the addition of the at  a to /1. In piaci '', the .,t ionver 

the influence of the attribute a is on t 11'411n/11'51111) 1H'I 11, 4'11 I? .111,1 I). Ill, 161,10'1 

the value of the SOF(a. Ii. For example. for I he ('or relat ion ill I Able 1, 1. it IP 

11 /ake _mo(h I. Irams}. I) Irail«a 1. 11ten ,C(incy/. IL //) 0,(17. /)) 

= 0.07. S(;F(comprr.s..... I1. I)) = 0.30. Sl;niunt,( r. Il. /)) 0.00. ‘,'(;ri(e,/glil. It. I)) 

0.07. 

5.1.2 Criteria for the Best Reduct 

It IS quite often that an informat ion system has more I hail one 1,41i1, I , La, 11 

re(luct can 1w used instead of the whole group of at I ribines in the inivinal k. ,Ieni 
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5.1 Reduction of the Generalized Relation

In I lit* reduct ion o f t l ie  generalized relation the bash mle is played t >\ lu o  tun 

dam enta l concepts — a leducl and a core, hit u i l ive ly . <1 le d m l o f the genei a li .ed  

re lation is its essential part, which snllices to  deline all h.is'u <i>ii iepls m i  l in in g  in 

tin* considered data, whereas a core is in a certain sense its most im po i tan l pai t . l ie  

( l in in g  generalized relations consists o f removing Miperll itoiis pa i l it ions (etpiivalem <• 

re lations) or /  and superlluous a tt r i ln i te s  in such a *.ay that I lie set o f e lemental v 

categories in t he generalized relat ion is preserved. I l l  is pm< edme enahles m  to < iim  

ina 'e  unnecessary data from t lie generalized lelat ion. piesei \ ing o id \ lh.it p.ut o f  the 

data which is really useful.

5.1.1 Significant Value of Attributes

D i f f e re n t  a t t r i b u t e s  m a y  p lay  d i f ferent  roles in d e t e r m i n i n g  the  d e p e n d e n t  n la 

l i o n s h i p  b e t w e e n  t h e  c o n d i t io n  a n d  decision a t t r i b u t e s .

T h e  s i gn i f ica nce  o f  an  i n d i v i d u a l  a t t r i b u t e  a  a d de d  to  the  set If w i t h  ie, |»e«l  to 

t h o  d e p e n d  Micv b e tw e e n  I I  and I )  is repres en ted  by s ign i lu  a m  <• I’. i r l m  > ( / /  g iven  

by

F C F ( u .  I F  I ) )  =  /.•(/»' -I- { < > } . / ) )  /•■( I F  D )

S C ! F ( a .  I F  I ) )  ref lects t h e  degree  o f  increase o f  d e pe ndency level  b e t w e e n  / /  and  

I )  as a result  o f  t h e  a d d i t i o n  o f  t h e  a t t r i b u t e  u  to  I F  In p i a c i b e .  t h e  s t ion i ' e i  

t h e  influence* o f  t h e  a t t r i b u t e  a  is on t h e  r e l a t i o n s h ip  b e t w e e n  I I  an d  I ) ,  t in h i i d a i  

t h e  v a lu e  o f  t h e  S C ! F ( a .  I F  I ) )  is. |*or ex t , 1 *. for I lie ca r  relat ion in I a b le  1.1. iI I I  

{ M u  h i  j i i o d i  I . I ' ' a  n . s }. =  { m i l t  a  h i  ) .  I hen S( / /■'(r i / l .  I F  D ) 0 .07 .  > 7 1 !• I t h  . f i l m  <. I I .

=  0.07. S C I F I c o n i p r t . s . , .  I F  D) —  Obiti. > Y !  F ( f > o t i ' t  r. I F  D)  0.00. ^ 1 1 F i  i n  n / h l . I F  ! > )

0.07.

5.1.2 Criteria for the Best Reduct

It is cpiite often that an in fo rm ation  system has mote than one le d in t .  I , . n h  

reduct can be used instead o f the whole group o f at 11'duties in the o iig in .d  ,v tem

07
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111 t 'le' 111,11; 1141, Pio( "hit e it how ( hanging the delwit(lett( \ the

otiginal s% stem. Su a mit mill question which teduct is the best. The selection 

depends on the opt imality ( I iterion ak,ociated with ail rib 11 es. If it is possible to 

dysign a cost rum I ion to al t Unites. 1 hen the .,elect ion can he nal based on 

otnbined minimum ( Fur example. in I he medic al domain. some 

diagnost plot elutes are mu( h more expensiN e I hall 01 Itets. R\ ,('le( ling I he leas 

4 \licji,,i\(, sr! ic s I 4  11 ) 1(1, ( 11 .1 1 ( Id b\ 1 .• 
i11111111 ( -.1 1 C(111( . 011'.*:1(1(Ii11)14' 

,̀ ,(1 iI  (an bit' d(( 01111)11S1101 Nl 11110111 decreasing the qualit of the diagnosi,.. In t he 

a 1 ell(11 of an  
at

 lbw fun( lion,. 1 he, (in t % ,„„„ t c, of informal lull to, ...,o,k,et t he

y('(111( k die ( officio, of the table 1Zi,0111. Two appluaches are possible III this ( ase. 

the our. the teduct with the minimum number of ail t lbw es :,elect ed. Iii the 

‘ne( owl apptom h. t he recluct NvItich has the least Inimbet combination-. of \ Atte:, of 

it, at t t jinn 0, is selecte(I. In t his l hesis we adopt 1 he criteria t hat the hest )(Anti is the 

one w hi( h has the mininnun number of at t ribut and if I !tete ate t\\o or mute rechicts 

niiIi Mal 11111111)0r of ilttrihuteS. then the 114111(1 N1 .11 II I lie 'Past 1111111ber of 

(()1111)111:111011• of Vid110;, of it, at t is selected. 

Discernibility Matrix 

hi 1hi ,  s.,111)wel i ,ni. we e a modified delimit iou of a discernibility matrix based 

)11 

li 4

/1 . I *si 

11gd 

rotbdil y mat rt.r. we can (u1111)11W the tore of I lie iiirormat ion 

Definition 5.1 I discernibility matrix of (' „,, t, di jhud 

O. 

41 .r,. .r, E lhr tquiralt ne«.1(1., of I) 

;•••-L drift- ant «ItticaIriter b 

I he ent r contains the at t ributes wimse values are not identical on both 

r and .r r, belong to different classes of U. that is. represent different 

Ioneepf •. I, ln other word,. in, , represents t he complete information to cli, singnish 
1 1 , i,„ ..,‘ •milietric. we oo• heed to compote t he

• 1 

(IS 
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iii l l i .  <l<'< Mon making 1 :: ■ w ithout .hanging t Ik * dependenc \ relation in the

o iig im d So a natural <|iiestiou is which icduct is the best. The selection

depend" on l l ic  o p t im a l i ty  u i le r io n  associated w it l i  a ttr ibu tes. I f  it is possible to 

mission ,i cost fun. l ion lo  a t t i i lm lo s .  I lien I Ik* selection can In* na tm a llv  hascd on 

tin- combined m in im um  < o>l c r ite i ia . l or example, in l l ie  medical dom ain, some 

diagnostic p io .edm es are m i i . l i  more expe iis i\e  than otheis. B \ selecting the least 

. \p cn s i\e  l i  lies ol the lests icpieseuted b\ 1 h<1 m in im um  . ost le d u . t .  considerable 

saving .an  be <iri omplislied w ithout decreasing the cpialitv o f  the diagnosis. In the 

absence o f an a t l i i l n i le  < ost function, the otilv ' ' . i i i i rc  o f  in fo rm ation  to  select the 

red in I is I he contents ol the table j/. ia!)||. 1 \vu apptoaches arc' possible in th is  case. 

In the liist one. the leduct w ith  the m in im um  num ber o f a t t t ib u le s  is selected. In the 

se. oii.l appiour h. the reduct which has the least imm bei o f  com b ina tion" of’ \alues of 

its at t l ihu te^ is selected. In t his t hesi" we adopt t lie cr ite r ia  t hat tin* best leduct is th e  

one whi. h has the m in im um  number o f a t tr ibu tes  and il ’ the ie  ate two or mote reducts 

w ith  same m in im a l number o f a ttr ibu tes, then the reduct w ith  the least num ber o f 

combinations of cables o f its a tt r ib u te "  is selected.

Discern i hi I ity M a tr ix

In I h i" subsection, we give a modified de l in it ion  o f  a d isce rn ib i l i tv  matri.x based 

on |Sk IBM ]. I sing a <//>. < nub i l i l f i  niah i.r. we ran < om pute  t lie core o f  t he in form a l ion

s\ stem cusp

D e f in i t io n  5.1 I d i s c e r n ib i l i t y  m a t r i x  o f f ’ in . 1 / ( 0  =  { m , /* i h f i n n !

a "

{0 .r,..r € t lx  ■''Oritf t (/uiralt net da * *  o f  I )
'

{. t  C  : ,/(c. . r , ) ^  f i e .  .!•_,)} G <l i j j a r n t  f q u i r a ln i r f  da**<* o f  I )

I he entiw in, contains the attribute's whose' values are not identica l on both 

r <md .r t ,r . r, belong to different classes o f / ) . that is. .r,..r, represent different

loncep ts l.  In other word". i n, ,  reprc'seut" the complete in fo rm ation  to  d istinguish 

i . . r .  l / i  S'1 -- (,•« i is sym m etric , we on ly  need to com pute the* entries in,, for 

I ■ j  ■ i n.

()S
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1 2 . i 

1 

!oo :, f bki1J2eg (cl.g deg dg 1,11,121g 
• lb< rig -olor ‘11.1.47, 1 , fg ,. ..I•A ., I,F, .1 di ):. I,., 
1 ' 11.1, 4 Ii.,il v 1f 1 to Coot 1 I I 
1 1 Or I t I, 1.11, 1:r net ..de •.l i. did-, 
I: th, de: ihk ti le ittet t, r •.e Or ott lo t 
I ' beef oolr of Id: IA , k I f t.it .1,,11.1... I 
11 Or rf lor tild: 1 (II hale I o 4 1.4:e I 

I

‘k,ht et 111101, I tokr_:rrootrl 4. . ‘.1 ,1‘..,1 Mf I tt hi 

Tal)le 5.1: 1)iscernibility mat rix for the generalired ( 'elation 

Exami)le 5.1 For I he generalixed eat 'elation in I able 1. 1. the (li,leinihilit‘ mat 

is computed ill fable 5. 1. (Suppose the at t Wine he de, at t 

the other at t ribute, are condition at ri but e,) 

5.1.3 Core and Discernibility Matrix 

The ('01.4. is 011(1 of the most important concept of a 11411p,li \ ( 4 di ' I ids I hi .

CuMnil()11 alt ribtlle s Of all I he redttet a. So a cote (au he in,ed a., a 

reduct. .1 ('ore has a very close (.()iine( ion \\ii la the diseeinibilit nial ij\. I rt MI I h.' 

(11:, (V111.11)11.11 1V(' c MI ( ()MI)III (' the t  4 /1111( ' infIn Mtn Ird 1 .(1 

OH I he folloNving obner‘ation. (Note: a (u1e of an intim mat ion - \,i ell! 04 ' (1) I ti ) 

For = {I.. . 1. 1 /1. . = ' 1J /). .1/( ,c) = {ru }. for an, t' •. Co )/l/ 

iff their exist, i. J. I <,1 < r < rr such that rtl, , 

For example. examine the (Ikeernibilit matrix I I r. 1 kit I hi . 141'11C1 /11.1/ 1'Il • .11 

relal ion in Table 1.1. rum.' = {a} awl mi - {I }. ,o I he (ore ol he al I i 

{Mak( _mod( I.1 ran.,} . 

Compute the best redact or user minimal attribute subset 

Hie gen( nil problem of finding all iediu 1, i, inkohilde 

It I'. usually not necessary t o find all the !cubit 1 11e 11,4.1 i- mote Hifi it , tr d lil 

(if) 
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i i '  t j 1 !

i_  i I i

i l l  i o n '  i  \ 1 1 k e j n o d H  b < 1 1 d i - p l  i< • d  I d> ><<i d .  < . n,  j . t  < « j «  » i * t 1 . .i k, ». ■ .» ht

Table I: l)is('<*rnil>ilit y  m a tr ix  lor the i«oiieruli/e>l car total ion

E x a m p l e  5.1  For the aenerali/ed cat le la t ion  ill I able 1.1. I ho di-a ei n i 1 > i li I \ m a l i i x  

is co tnp ti lo t l in I able •"). I . (Suppose I In* a l l  l ibul e "m ileage is i In1 de< isioit a it i i I > 11111. 

the  o i l ie r  a t t r ib u te s  are cond it ion  a t t r ibu tes )

5.1.3 Core and Discernibility Matrix

The  Core is out' o f  the most im po rtan t  concept o f  a roii}*h se i. \  < <»i<■ has the

com m on at t ri bates o f  all t he reduct s. So a coie < an be used as a basi i < > < om  pul e a 

reduct. A core has a very close connei l ion w ith  the discei n ib i l i t  \ m a l i i x .  I io m  the 

dis< (Mil i hi lit \ mat ri.\. we < an e.tsib « om pul e t lie t oi e ol t lie in lo i mat ion lent ha .<d 

on t he fo l low ing  observat ion. ( Xol e: a < oi e ol an in lo i mat ion - \ si cm ma\ lie em pl \ ) 

For S' =  { / ' .  . 1. \ \ f ) .  .1 =  f ' U / C  . \ I ( S)  -- \ w  } . for a n , e * ( ' . < <  < ' ( > I U t C . I > \

i f f  there exists /. j .  1 <  / <  / <  // such that in,, -- {< j.

For exam ple, examine t lie disc e rn ib i l i l  \ m a l i i x  labh • ~>.\ lot I lie yenei ,d i/ed < ai 

relat ion in fab le  1.1. in k, i =  { a } and in 11 . - { / } .  so I lie o n e  ol t he at 11 i lm m - i 

{.1 /  ah( . inod<1.1 i'(in.s}.

C om pute the best reduct or user m in im al a ttrib u te  subset

I l ie  oenc ral problem o f  f in d in ” all leduc ts is unsobahle  7.ia!)l .b u t  in mo i .

it is usually not necessary to find all I lie led in  t s. I he uo i i-  o fien m om  inn i e n <1 in

Of)

1 1 2 * i
1

1

.X bf f i b d S d 2 e f i < e f £ ‘i<-R df i b d l d . ' U
t b<  el fc t l . M i J . U ’ fs t .  f * „ . | . s .1 d l d . ’ . U

]■ i l « l <  f i  I x i  1 t.  d f t l> I f . d i e t

11 t l x  > t l x  d t  v i l> d f l .  d x  d l d . t
1 : t l x  t i c i l l u  ii l e - i de l I '  e ». e t l x  .11 « f
1 • b  ( v i t l x  d i d : t i d f l< df l l x d l d . . l
11 i t x  o f Ik  d i d . ’ t < d l u d e I . d i d : *  i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



finding, !lie best ledin I \tit ll tespecl to his pi oblem. tiwreoNer some user usually litmws 

belie! about the de1kion task and may prefer to emphasize some all ributes in the 

11e1 ision making plocess dllcl %%ant to ill( hide theS(' iit I !HM. aloes in the final decision 

t ides. Based on the dependein !elation and I he significant able:, of attributes. it is 

\e1\ eas\ and rill( lent to find a -best - recluct or a -minimal- attribute subset (called 

miiirnmi wit/bid( ...,ubs( I) in( It'd( be attributes the use! enwliasized and 

lids t lie same ilis«.t as all the at  in the original relation. In the latter 

ase, t he result ma\ ut ma\ not be a re(Iuct. If t lie at t ributes the Ilse!' is ettil)hasizing 
ate superfluous ‘\ it It respect to I). then the result is not a redact but still has the 

same dis«Thibilit\ to discern the obje( ts as the original information system. 

I 'ere ‘‘e piescut our algot it Inn to construct the -best - mduct or the user -min-

imal- al tribute subset b\ using core as 1 he starling point . I be algorithm is \ er -

, iniple and stiaight lot ‘‘ aid. If the user does not lime preference for ail attribute. 

hen I lie algoi it lint just finch,  the best roltn IA inch consists of I110,,(' di l 'Willies Wit I I

signirn ant \ allies in each slop. If the user prefers some particular M-

I 1 ibut es. 1 lien out alu,ot it lim finds Ike user minimal alt Filmic subset includes 

die at tributes I In 11'4'1 (.1111)111.1•Itt'S V‘11110l11. losing ill101111a1. 1011 11'0111 the 

otigmal information system. 

Algorithm 5.1 (Reduct Algorithm:) l'ompulc 1h( 1)(6/ (Trine/ or 11.6(1' minimal 

ritlribul( ..ttlom I. 

Input: ( i t I II(' 1(14-101(`‘ilill gellerall/ed !Vial .1011 I?' (ii) a set of attributes .-111 for 

rcLition Hf . k (Lissified into condition attributes r. and decision attributes I) 

(lil t the (Oil' CO of .1/i' cootputed from the discernibility matrix of WO may be 

cull)! I I Ile at tribute ,,et 11:, er prefer 1 0 empnasize (1 'A may be empty. ...1 

enipt that means the user does not have preference for any at t ribute) 

Output. .\ "et of .11 1 r ibu le'' /11;I)1'
Nlet hod 

Step 1: - 1 . 1: 

St el) 2: If? = Ili — /fh:Of 

Stop 3: find at tribute a in V? \vide!) bas the maximal value .s'(;na. HEM'. D). 

70 
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finding 1 hi' best icfI ik  I w ith  i<‘s|>f*f1 to his p iobiem. moreoversonic user usually knows 

belt ci ,i boii l l lie d iv is ion  I ask and may prefer lu  emphasize some a ttr ibu tes  in the 

dci ision making pi or ess and want to i 11< hide t l ie s e a t t i ib u te  \a ll ies in the final decision 

mles. Based on the dependent \ le la tion and t lie significant \ allies o f at tr ibu tes, it is 

\ e i \  eas\ <nid eilic ient to  find a "best”  reduct or a "m in im a l"  a t t r ib u te  subset (called 

t/.-w i m in im a l  (i l i i t lm l t  .-ytib.xl) w h it l i  in t lude  the a ttr ibu tes  the usei emphasized and 

has i lie same dist ei n ib i l iu  as all the a ttr ibu tes  in the orig inal re lation. In the la tte r 

( ase. t lie  result mav oi mav not be a reduct. I f  the a ttr ibu tes  the user is emphasizing 

aie superfluous w i i l t  respect to ] ) .  then the result is not a reduct but s t i l l  has the 

same dis< ei i i ib i i i l  \ to disc <u n t lie objec ts as t he orig inal in format ion system.

Here we pieseiit our a lg o i i t l i in  to construct the "best” reduct or the user "m in 

im a l"  a t t r ib u te  subset bv using core as the s tart ing  point. The a lgor i thm  is \e ry  

simple and stla ight foi waid. If  the user does not ha\e  preference for am  a tt r ibu te ,  

then the a lg o i i t l i in  j iM  finds ihe best red in t which consists o f those a tt r ibu tes  w ith  

the largest signifii <uit values in each step. I f  the user prefers some part icu la r a l- 

11ibules. then oui a lg i» i ithm finds the user m in im al a t t r ib u te  subset which includes 

the a ttr ibu tes  the usei emphasizes w ithout losing an\ essential in lo i mat ion from the 

o iigm a l in form ation  svstem.

Algorithm  5.1 (Reduct A lgorithm :) ( 'om/jul t  Iht  Insl  r rduc l  o r  ti*< r  m i n i m a l  

n l l n l i i i l i  m i b x i .

In p u t, :  ( i)  I lie insk-ielevant generalized relation l l 1 ( i i )  a set o f a t t r ibu tes  A H  for 

relation IV. w l i ’n h  is i lassified in to condit ion a ttr ibu tes  ( ' .  and decision a ttr ibu tes  D  

( i i i l  the (o ie  C O  o f  A H  computed from the d isceru ib i l i ty  m a tr ix  o f  IV { ( ' 0  may be 

einpt.v ) ( i \  I the a t t r ib u te  set ( M  usi'r prefer *o empnasize ( C A  may be empty, i f  ( A  

is emplv. that mi'aiis t in '  user does not have preference for any a t t r ib u te )

O u t p u t .  A set o f  a t t r ibu tes  HI !  D C  

M e t  h o d

S te p  I :  H I ' !)( - C O c C l .

S te p  2: \ H  I H - H H D C

S to p  3: bind a t t r ib u te  n in \ H which has the m ax im a l value S(, 'C(a.  H I ! D C .  D).

70
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Step 4: If there are several at 1 rilmtes a, fi..1   ill( with the same nia\imal ‘41111e 

.CT; I',((1. l?1: DI I)). choose the' at  , Nvhich the 1(s&st nunibei t,l witibind 

Lion values wi t II those attribute's in /?/42/)/ 

Step 5: /?/.:/)(' = /?/.:/)/. 1/1'- {a,} (l- I  nil 

Step 6: If II"( /?/:/.)1". 1)) =1. then terminate. 01 Itemise go to Step 3. 

The best reduct of the f2,eueralized car relation in 'Fable 1. 1 is 1/a /..4 

trans} using this algorithm. ()11 the ()the! hand. if Ilit n4,e! wdal 44. to iind 

effect of a car's \\Tight on 1 lw mileage and pr(sfei It1 emplia,iie I lit• at i i Unite lei 

in the cleriv(-scl rules. then the algoritInn can find the use! minimal at tiilnite 

{Mai,•( _mod( 1. wiigh/} l ie '4, 4.1)(•( ial clown( e. I Iii 

this case, the result happens to be a reduct ). \Ve can lin(' the best ledin t I 

minimal attribute hubset in .V I x O( .V' X') in I he ‘vor,i t d,e. where \ i i, I he 

titt.number of at  ill the generalited relation 1)" and is the in 1wt ul I  lit

is not big in the generalized relal iun /;'. 

5.2 An Attribute-Oriented Rough Set Approach to Discovor 

Decision Rules 

In this section an example is used to illustrate the procedine of the ail 'Wine 

oriented rough set approach to (reale decision Mlle, Flinn u,eneiali/ed relat ion. Slip 

post' ‘ve liaeo a collection of Japanese and .1 meri( r1 ( \\ II h I he al l l Ihilli plate Haw 

ber (plate#). Make_nlodel, colour. wili(1)(.1 ()I' (.\ I i ii(lci (cyl). (.111!,i11(. 

(displace). compression ratio (compress). power. (11 arans). 

weight of the ear and mileage depicted iii [able 5.2 and I he t utu (Ill 11.1(1,111 1i \ 

lfle for the rat• relat ion. the concept hierarch\ tree for the at It done '\Like 

depicted iu F it Ire 5.1: 

flIoncla_ci Vic. I loiyhl..acitra 11OH(la atTOrd 1 1011(la 

{Toyot aicrcel Toyot a .cantry I ovot 

{Nlazda_323. Nlazda_62(i \Iambi 939} \lazda 

{Toyota . Ronda . .... Mazda .1apan(Cal 
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Step 4: If there ;ue several a t t r ibu tes  a, (i = l  in) w ith  the same m ax im a l value

S C E ( a .  R E  DC. D).  choose the'at t r ib u te  a, which h as the least imm bei ol <ombina 

t ion values w ith  those' a t tr ibu tes  in RC.Dl .

Step 5: R E  D C  =  R E  D C  U R } .  .1 />’ =  ) / « -  {</,} (U  I  m)

Step 6: If / \ (  R E  DC. D )  =1 . then term inate, ol heruise o*» to Step

The  best reduct o f the generalized car re lation in Table 1.1 is { Mal:t t inultl .  <om- 

])/'(»■. //y/z/.s} using this a lgor ithm . On the othei hand, i f  t in  usei wants to hii<I the 

effect o f  a ca rs  weight on the mileage and prelei to emphasize the a id  ibu ie  u 'u q h l  

in the derived rules, then the* a lgor i thm  can find the usei m in im a l a t l i i b u le  subset 

{ M<ik( .modi  I. display, traits, i r d y l i t } which satisfv the usei's special p ie fe iem e. t in  

th is  case*., the result happens to  be a reduct). We can lind l lie best leduct <u usei 

m in im a l a ttr ibu te1 subset in A j * 0 ( . \ '  ■ A-/) in the1 worst case, where \  | is the 

numbc'r o f  at t r ibutes in the generalized relat ion / / 'a n d  A ' is l he uutnbei ol tuples in 

R \  r .sually  A '  is not big in the generalized relation R ' .

5.2 An Attribute-Oriented Rough Set Approach to Discover 
Decision Rules

In this section an example1 is used to i l lus tra te  the proceduie o f the a id  ibu ie  

oriented rough set approach to create decision tides f io in  ge i ie ia l i /ed  leh il ion . Sup 

pose1 we haee a collection o f  .Japanese and A meric a < ai s u it h I lie at 11 ibules p l.i ie  unit i 

her (p la te # ). M ake.m odel. colour, numbc-i o f  < \ l indeis |e y l  j. engine displac ement 

(displace), comprc'ssion ra t io  (compress), power. t \ p e  o f t lansm isdon  l l . ra n s ) .  

weight of the car and mileage depicted in la b le .V J  ami theconcep t l i i e i .m ln  ta 

ble for the1 car re lation, the1 concept hierarcliv Irc'e loi the at l i  ibu ie  "M ake model" 

depicted in h i*. ire o. I :

( I lo n d a .c iv ic .  I lcmda.acura  Honda accord ) r Honda

{T o yo la . te rce l Toyota .cnm rv} e lovo la

{M azdaJJ2T M azda.f i ‘2(i  Mazda !)■{!)}  ̂ Mazda

{ loyo ta  . Honda  Mazda } Japanf f 'a i  j
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"I able 5.2: Car relation. 

{ Ford_escori . Ford_prol)e  Ford_t aunts } C Ford 

{ ClievroIrt _con rite. Chevrolet _camaro Chervolet _corsica } C Chevrolet 

(1)odge_stralt h. 1)odp,e_daytona  1)odge_dyttasty } C lodge 

{Ford. 1)odge. .... Chevrolet } C: l'S:1(('ar) 

Papan(('ar). .... FS:\(('ar)} c :\iiy(Nlake_model) 

{0..800 C Light 

{801.. 1200} C Medium 

{ 1201 ..1600} C I lea vy 

{Low. Medium. High} C \Veiglit 

()tit objr( tkr is to learn the decision rule xvhich tell ‘‘'hicli features Of a car really 

delermilie the mileage. Hie request is specified as follows: 

learn decision rule 

for .11d«iy( 

from Car_nlation 
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V  \  »r' I zodRC K  11 t on Rieen 1 2 M e d i u m M e d iu  m m e d iu m til m u i r«o m e d i u m
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m u 1 <dd u«u-t i i i r b U * k i 2 M e d i u m M e t h u m m e d iu m m m u | 0 '« ) m e d i u m

u «>;7« I Om !g< J |V | v)h t>l 1 HR*’ \ 2 M e d i u m M e . h u i u m e d iu m m i  n n 1 ! " 0 m« <1111111

* \  1 ’ * ’ • ' It* * »<*!*•! « «<l%**f t* f‘ l K  Is x 2 '  H i i l l Hrxh t  MW tti m u ! 1 Ml 1 m e d iu  m

I able V2: Car relat ion.

{ F o nL e s ro r l. Fort Lp robe  Ford J aunts } C Ford

{ Chevrolet _cor\ette. Chevrolet .camaro Chervolet .Corsica } C  Chc'vroh't

{ Dodge .s tra it  It. Dodge .day tona   Dodge .dynasty } C  Dodge

{Ford. Dodge Chevrolet } C FS A (C ar)

{Ja |)an (C ar) ( ’S A (C a r) }  C A n y (M a k e jn o d e l)

{0..S00} C  bight 

{SOI.. 1200} C  M edium  

{1201.. 1600} C  Heavy 

{Low. M('d ii in t. 11 ii>h }■ C Any( W e igh t)

Out obje< t i \ e  is to learn the decision rule which tell which features o f  a car really 

determ ine I lit' mileage. Lite request is specified as follows:

leani decision rule 

for M i l t  ayi  

from C a r . r t l a l i o n
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.1.iiiaincin 

Honda 
Civic 

Honda To)ota Nlarda 
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Toyota 

/ 

Mazda 
323 

Cho cadet 

N1a7,10, (Awl %tact 
939 Corvette 4'.,. 

Chet Ohl 1)1Id t• 

Stealth 
I hrilgi• 
1.11141,1 

Figure 5. 1: ('(nicept hierarch\ t tee for make model 

Luton. 

Nc)tice Ill learning re(west. the concept 16(1.11( 16es and 1111(".hulti .11e 114,1 

Specifie(I. I I1US 1 1. .ie (I(,:au.,II ones \yin INO I. 

FirS1 t 11:,(`I' learn;.ng request is I ransfel red to SQL. ‘vIii( ll e\t ial Is the 41411,1 holm 

the relation (Car_relation) and the tesull is obtained ,l , slio‘\ ti ill lable -).2. 1 hen 

We apply the generalizttioll a11011111111. and ‘‘1. p,et the genet ali/ed table •1101111 ill 

Tabl(s 1. 1. 

the generalizat ion process. the rough set method is pet lot mod (al the 1,,en 

eraliz('d relation tal)le I.I. First the core ()I' the ail ' Witte, ( output ed hi( andi 

di:IC(911i bilil mat rix. t hen t he best educt ii t in' uset minim at t I dour ,111) .. 1 III I he 

tt t ributes can be cc)nst ruc led Ill,(.', tin' iedin I algoi II hut. 1 he 'edit( ! ion of 1 lie 

generalize(1 relation Is perfcrrin('d 1) 'vino\ ill;.!, those at I I LiJIIII %‘ hi( II ale Ii ii 

in the roduct the user mininted attributes subset and t lilts 

relation. 'faking "mileage- as the decision at tribute. \\,e e \amine 11,11% to appl‘ the 

reduct or user at  subset of t ( ioa k\ pc( 1 to 

"mileage- to reduce I he generalized relation but her. 

Strategy 1 (find the desired redact or user minimal at tribut (”, and reduce 

the generalized relation) 

:\Ig()rith 111 :). 1. \\'e (-all find I he 1)(",1 114111(1 { .1/1/L'i //web/. (4)///p/1 /vitt 

01' any user minimal attribute subset based oil I lie 11w1 plefeleii«., ( 111 I

iti)()Ve. 0111. lint lie riser 111.111111liii di 1 -,111)m.1 11011.1 twill( (11',/)Iaii, 

IY1110. ighil iiithe 115(1' has parliculdr ;ibout I lit ,II I I ll )111 ( ti' ,

IlIe l'edlICI 01' the user minimal at11111110 , 1%(' t an IIill( A e I liwst. 

NVI11CI1 are 1101 III Ilie re(l' IC1 or die I1',e1 IEIIIIIiII,tl di l l nte ,i11)-4 I t ii(Ult li,110,111w 
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AN?Y4Mitkt"'tn«HU,h

J.ipatfuat)

ro \ olnMoiuia

Honda Honda Toyota Toyota
Civic Accord Tercel I'n^oo

('hotwilct
\ \

M arda C Ju*i\o lrt O tn \o lc l  lh»di;r
( orxetto (Nu^n-a S tealth  IhmnMx

Told

I ' o i i l
1*'m oi l

Koid 
I ' . i i i i  i i*

Figure 5. I : ( ’oneept h ierarc ln  I ree for make model

Notice in th is  learning request. t l ie  coin opt hieiai< hies ,in<I 1111<-^h>>1 <I aie not 

specified, thus the default ones w il l  he used.

First t he user learning request is t ransfei red to S Q L  whi< Ii e \ t  i,u I s t lie dal,i bom  

the re lation (C a r .re la lio n ) and the lesult is obtained as shown in lab le  V2. I hen 

we app ly  the generalization a lg o i i t l i in .  and we get the o<■ 11e 1 ,d i/ed la lde  a how n in 

Table 1.1.

A f te r  the genera li/a t ion  process, the rough set method is peiloimed on tiie yen 

eralized re lation table 1.1. First the core o f t lie a l l i ib u te s  is lomputed t h i < • u t > 11 the 

d isce rn ib i l i tv  mat ri.\. t lien t lie best leduct oi theusei n i in in ia l -it 11 ibu te  m b  > i o l l l n  

a ttr ibu tes  can b<' co ns tn u te d  b\ app ly ing  the tedin t a ig o i i lh m . I lie iedu< l ion  o f the 

generalized re lation is performed furthei b\ rem oving those a l l i ib u te s  u h i ih  ,ne not 

in the reduct or the user m in im a l a ttr ibu tes  subset and thus d n i |d i l \  tin veue ia li/ed  

re lation. Iak ing  "m ileage" as the decision a t t r ib u te ,  we e\amine how to app!\ the 

reduct or user m in im a l a l t r ib i t te  subset ol the lo n d i t io n  a l t i ib u ie ,  w ith  o |»• ■< t to 

"m ileage" to reduce' the' generalized relation I’m t her.

Strategy 1 (find the desired reduct or user m in im a l  a t t r i b u l e s  a n d  re d u c e  

the generalized relation)

I sing A lg o r i th m  5.1. we can find the best reduct [ M a l i  umthi . t nm/ in  ss. h ' in< \  

or any user m in im a l att r ibu te  subset based on I lie use i’s piefeiene e. t in  t In example 

above, our a lgo r i thm  finds the user m in im a l a l l i i b u to  subset { \l<il,i mo<ltl.

Iran.*, w t iyh i }  i f  the user has particu la r interest about I lie a l t i i b u l r  i n  n /h l  i. W ith  

the  reduct or the user m in im a ] a t t r ib u te  subset, we o u i  iem o \e  those a i t i ih n ie  

which are not in the reduct or the usei m in im a l a t t i ib u te  subset w ithou t < haiimne
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Mikt .1,,,,I, 1 4 ,,st•Pt...• t !dn. mileage 
— TLTIMI AI 'II) \11.011 \l 

: • % 111. 1)11 \l \JAM AL MFLAII'M 
1 1 MLI..11 's.I AI '1a MEL/II \I 
I •A 
lAl'AN 

HIGH 
III , di 

MANI Al, 
\IA\  I Al. 

Meal 
HIGH 

IAPAN m1,14I M MANt Al. 111611 

lable .;.:3: Reduced table ‘vith best redact 

11 tkeattiode I (It•pltt II.111. Yl.ight ttitteage 
MI.--- 77t7-NI AllatII \I t -A \IF Die \I Al 1'

1 • N MUI,IT \I \IA`. 1 Al \11:1,II \l NII...1,11 \l
I .A -\1.\1.1. \I' 14, \IFIMI \I NIPL/11 \I 
I , A MIDI' \I \IA \I AL LIGHT fil(:11 
JAP1`. •MAL1 \JAM Al. LII,311 HIGH 
IAI'V\ \1F1 11 Al MANI Al. NILL/11 AI HIGH 
lAt'AN -NIALL \IA\I AL \IEI,lI \I HIGH 
I -A -MALL MEDI, M AILLt11 M 111(.11 

Table 5. 1: Reduced table with user minimal attributes subset 

I he dcpclidi,11( I eldt
1011....,11ip bet \\e, 1 Iho Ault t he (.011(1114in at tributes. The 

ppuelalized ( at relation in Table 1. 1 is further reduced. resulting in Table 5.3 using 

the best reduct and Table .5. 1 using the user minimal attribute subset l'esPectivel‘• 
(In our later discussion. we only discuss Table 5.3) 

Strategy 2 (combine the similar tuples) 

In the reduced table. as shown in Table .5.3. in the same class. two tuples can be 
(„,,, ii• of t he condi, i„„ „, tributeti difr(.1, in (mi, one atIlibto(,.. 

I I I poi Id), 

It) 

iith /TO 

Pith 

111 [.\ I itSa]. If t he data values appearing ill 

t (01111411(41 t tildes .( (Aer all I he possible \ allies of the at t ribute in t he corresponding 

t! net ali/at ion ltierarch‘. then this attribute should be dropped from the t tiple. v()1. 

(•,:wildv. hi Table 5.3. the class with in/hag( = .1/(dium. the first tuple 

1 1 101. Al' l'(). NI 1,1)11'NI} and third tuple \lE1)It'\l} 

0111 differ compi.( .s.,. then these two tuples can be combined into fl'SA. (1 I 1(III. 

\I E)ll*N1). NIE1)11.NI 1. which can be further simplified to {USA. . 

NI 1.;1)ll*N1 }. After examining the distribution of the values for each attribute. the 

reduced table Table 5.3 is further simplified to Table 5.5. 

St rat egy 3 (Transform the tuples in the reduced relation into decision rules 

for each class) 

it 
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M .ri iod< 1 e I XotZl •< m ile age
* - A 
J '  \
I \
1 *• A
l A I 'A S
J A I 'A N

H I ' . H  A I  T O  
M  !• *>>11 \1 M A M  AI . 
M K I d l  M A*  '1 w
h m h  m a m  a i , 
H I o M  m a m  a i .
M l . M l  M 1 M A M  A L

m i . n n  m
M H i M ' M  
M U M !  M 
H I ' I H  
m a n  
I IKU 1

Iable 5.5: Reduced table w ith  best reduct

M i fce-Ji iexie i e i i » p l ' \ t r a n ' WJgtl t m i l e a g e

1 - A  
' * \
1 -A  
I " A  
J A I ' W  
) \ ) ' \ \  
f A l 'A N  
1 - A

M f h l l  M 
MI- I*M M 
' M A I .  I. 
M l . M I  M 
' M A L I  
M F b l t  M 
' M A L L  
' M A L L

A t  l u  
M A M  A I  
\ r i o  
M A M  A L  
M A M  A L  
M A M  A1. 
M A M  A L  
M K D H  M

M K I >I t ' M 
V V A A l  M 
M l * m i  M 
I . K i H T  
L U .H T  
M i . b l t  M 
M i ’ b M  M 
M h L H  M

M K D H  M 
M k b i l  M 
\ I F b ! l  M 
H K U I
h k ; h 
111(111 
III-, i l l  
H I o H

Table 5. I: Reduced table w ith  user m in im al a tt r ibu tes  subset

the dependent s le ln t io itsh ip  between the mileage and the cond it ion  a ttr ibu tes . The 

geueiali/.ed «ai relation in Table 1.1 is fu r the r reduced, resu lt ing in Table 5.5 using 

the best reduct and Table 1.1 using the user m in im a l a t t r ib u te  subset respec t ivoh . 

( In  our la ter discussion, we only discuss lab le  5.5)

Strategy 2 (combine the sim ilar tuples)

In the reduced table, as shown in 'lab le  5.5. in the same class, two tuples can bo 

( onih ii led in to  one i f  t he \allies o f  the condit ion at t r ibutes d iffer in on l\  one at t r ibu te : 

I h i 'co rresponds  l o t i  io</o,-Tm/ m h r r o l  rah  in [Mic8d]. I f  the data values appearing in 

t lie combined t uples < o \e r all I lie possible \alues o f t he at t r ibu te  in t he corresponding 

g< ne i.d i/a t ion  h ie rarc ln . then th is  a t t r ib u te  should be dropped from the tup le . For 

example, in lab le  l .d .  the class w ith  >i)il((ifi< =  M i d i i m i .  the’ first tuple’ { I  SA. 

I I IC I I .  A I T O .  M F D H 'M }  and th ird  tup le  { I S A .  M K D H ’ .M. A C  T O . M F D l l ’ M }  

on l\  dif le i in a n n / i n  then these twp tuple’s can be combined in to  ( I S A .  (111( 111. 

M K D H M ) .  A I ’ IT). M F .D l l ’ M } .  which can be fu r the r s implif ied to  {1 ’SA. . A L T O .  

M l i D l l  MJ-. Afle’r exam in ing  the’ d is t r ib u t io n  o f the value’s for cvuli a t t r ib u te ,  the 

iv d iu v d  table’ Table’ 5.5 is fu r the r s implified to  'lab le  5.5.

Strategy 3 (Transform  the tuples in the reduced relation into decision rules 

for each class)
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1 -\ 111 1 111 M 
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'fable leduced table ;trier runll►i111Itiull

According to Table 5.5. \V(' can deli\ e the follow in:; decision rides ro t the 

wit h .111dium or = fi 'fill ivsPeri lvelY: 
(1)1 .1' (Make_mo(Iel=1.S.\ A tran.!,=.\1- 1‘()) V (Nlake_iiiodel l 'S.\ N11.;1111 

Hun (mileage=NIKI)101) 

(2) i (compress=111(;11 A irans--=MANI'.\1.) V ( \lake int)(1(.1 .1.\I) \ 1\ 1 11111: NI \\I \I 

Hun (mileage=11R111) 

For example. rule ( I ) can be interpreted as: Ira c ar is made in I . 1̀' I N‘ 11 1i Otriornatir 

tran.Nrni.S.',10// . 01' Iliad(' 111 1 . ,C.1 Wit iii(diunt 111( .11 111c /Mit (14/i 01 tin' 

car IS ti)«/intii. 

In summary. we present the algorit lint below: 

Algorithm 5.2 DilD(ri .1u .11tribui( -Oriroh d Rough ,5(I .11)inumh pp, / Hi/ mug 

D(cision Mars in nalnbam s 

Input: (i) .1 set of task-rely\ ant data I? (a,surne (hat t are obtained 1,\ .1 I1'1111i(r11 

query and ate stored in a relation table). a vela) ion or \ n \vjlh d (4. dt i rddil 

= ( I < t < It — I ) and decision at I I) (ii ) a ',el ul con( ( 'pt hietat( 

/I,. where II, is a hierarchy on the at tribute c,. if avai lable: (iii) he la,- I hi eshold 
value T 

Output. A set of decision rules for each class or D. 

Method 

Step 1. AlIributr-orirml«1 induclion. (Generalizio ion Algoril ) 

Step 2. Find th( l(:51 riduct or ti.,( r mimmal attriblar mtbm ir,pri lo 11 

(Reduct Algorit Inn). 

Step 3. Ihduc( lltr d«n(rali:«1 ma.II ian by II wormy Ihn.s( Oh limit ., ia nit no! 

in the r«hict or ust-r minimal aliributrs .+ub.,rI.

Step 4. Combinr Almitar tapk..4 in IIH ruhllid t(lation. 

I') 
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M  i k c . t i i o d H < o m p i r « ' 1 1 u i ' n u l l  i>,<
l \ - A A t  l \ > M l  I »11 M
I -  \ M l  1 - I t  M M l  I ' l l  M

H P  • ! ( M \ \ t  \ L H h  A I
f \ P  W M W I  M I t h i H

Table Reduced table a lte r com bination

Accord ing  to Tabic o.o. we can d e r i \e  I lie fo llowing decision rules Ibi 111« ■ c.11 1 lass 

w ith  m i l t  apt =  M  ( ( l im i t  or m i l t  apt =  IDph  respect ively:

( 1) i / ( Make_model =  l S . \A t r a n s = A l  1 ( ) ) V ( Make . m o d e l  I SA \  < o m p i e s s  M I D I !  \ l  I

I Ik  11 (m i le a g o = M K l)H 'M  )

(2) i f  (e o m p ro s s = [ I I ( ! l l  A t r a n s = M A N l  ’ A b )  V ( Make model . lA I ’ W  \  l inns M W I  \ l  1

t l x  11 (m i lo a g e = l lK i I I )  

f o r  example, ru le ( I ) can be in terpreted as: I f  a < ar is made in I S I w it Ii t iu lomul i t  

t ransmission . o r  made in / SA  w ith  nnd iu in  ( tnnprt ssion. then the un i t  opt o f  the 

car is i n t t l i a n i .

In summary, wo present the a lgor i thm  below:

A l g o r i t h m  5.2 D B D t r i  A l l  A t t r ibu te -O r i t  nit d l l tniph St I Appm a i  It J01 I t n i n i n i i  

Deris ion Uni ts  in  Databasis

I n p u t :  ( i)  A sc't o f task-re|('\ant data /((ussum e I hat the \ are obtained l>\ a i iT i t io n  

<|uery and ate stored in a relation tab le), a relation o f a i i l \  n w ith  <1 set o f at 1 r ibui< s 

( '  =  {<•,} ( 1 < / < / )  — ! ) and decision a t t r ib u te  I) ( i i )  a set o f  «oii««'pl h i.• t , 11 < hies.

I I , .  whore / / ,  is a hierarchy on the a t t r ib u te  <■,. i f  available: ( i i i )  the 11,is tluoshold 

value T

O u t p u t .  A set o f  decision rules for each class o f  I).

M ethod

S te p  1. A l l r i l n i l t - o r i t n l t d  induction.  ( ( icncralizal ion A lg o r i th m )

S te p  2. Find  Iht  bt si r t d u r l  or  list r  m innn t i l  a lh  ihult  siihsi I in lh  i t  spit I to I)

(Reduct A lg o r i th m ) .

S te p  3. l i t  f lu f f  Iht tjt l i t  ral izt tl r t l t i l i on  bp rt niovintf Ihost t i l l n i n th s  11 h uh  n u  not  

in the r t d u r l  or  u s t r  m in im a l  t i l t r ibu t ts  subset.

S te p  4. Combin t  s im i la r  It ipl rs in Iht r t t lu r td  i t l t ih on .

To
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Step 5. Trausfor 111 flu Mph, Ihr r(d)r('«1 raldion into de'ci,ion rah., for (ads chm, 

5.3 Computing Maximal Generalized Rules 

In [ZiS93]. Ziarko and Shan proposed a decision matrix to conmtue the minimal 

t ides hum a (le( ision 1 ablc. Based Oil their ideas. \\'(' propose a method w.ltich can fincl 

all the maximal generalised rules from databases by integrating attribute-oriented in-

din !ion with decision ma t rix, It is shown tha t finding all l b,. maxima' generalize(' 

rules is reduced to the problem of simplifying a group of associated I 3oolean expres-

sions. Below .V(' first u,ixe the (1C1111.11 ions of maximal generalized rules and decision 

matrix. and then discuss I he algorithm 1)1 3 Nlaxi. 

5.3.1 Rules in Information System 

.\s discussed in Chapter I. a relational database Illay be considered as an infor-

mation system in which columns are labelled In attribute, row, are labelled by the 

objects and the entry in column p and row ( has the value p(c 'Hie collection of all 
"Ides const it u t es a set of training sample. Also. one of the attributes. say d E 

k considered to be the learning target . or decision attributes representing the "con-

cept - or -concepts- to be learned. The concept is simply a particular value 1:1 of 

the at tribute d. The object of learning is to find a discriminating description of the 

subset 11;i1 of objects with the aloe of the attribute d equal to I that is as simple 

as possible. i.e.. to learn the description of the set 

It:II= te I : (40 =I:I I 

rho ..,01 I , will  he referred to as the target class (concept ) or the set of possible 

cases. 
For a value 1,1 of t he decision attribute (I ( which is t he -concept - we intend to

'Carl!). d ruler rOl' defined as a set of attribute-value pair 

= {(((it = 1;1).0,2 = = Vi„)} 

76 
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S to p  5. Transfoi in I Ik  l i tph*  in l lu  ruhicuI  n  hit ion into (hc i* ion n th *  f o r  nt rh  chi** 

tit I).

5.3 Computing Maximal Generalized Rules

in [XiS'Kf]. Ziarko and Slum proposed a derision m a tr ix  to compute the m in im a l 

niles I’lom a decision table. Based on their ideas, we propose a method which can find 

all the maximal generalized rule's from databases by in tegrating a ttr ibu te -or ien ted  in 

duction w ith  decision m atr ix . It is shown that f inding all t I v  m axim al generalized 

rule's is reduced to the problem of s implify ing a group o f associated Boolean expres

sions. Below we first g i\e  the* definit ions of maximal geneialized rule's and derision 

m a tr ix ,  and them discuss I lie1 a lgorithm DBM axi.

5.3.1 Rules in Information System

As discussed in Chapter I. a relational database may be' considered as an in for

mation system in which columns are labelle'd In attribute's, rows are’ labedle'd by the 

objects and the’ entry in column /i and row c has the value /)(e ). The collection o f  all 

tuples constitutes a se't of tra in ing  sample'. Also, one of the a ttr ibu te ’s, say d € A. 

is conside'red to be> the* h'arning target, or decision a ttr ibu tes reprc\senting the1 "e'on- 

ce'pl" or "conce'pts to be’ learne’d. The' concept is s im p ly  a particu la r value \ f’/ o f 

I lie at I ribute’ </. The' object o f h'arning is to find a d iscr im ina ting  description o f the 

stibse’l JI,/1 of obje'cts w ith  tlie* value o f the a t t r ibu te  r/equa l to K / t l i a l  is as simple 

as possible’. i.e.. to le'arn the' dc'scription o f the set

{e £ (  ' . ( ! ( ( ) — 1,/}

file' sol \ i w il l be' re'fe'iTe’d to as the' target class (conce'pt) or the set o f  possible 

case's.

fo r  a value’ I,/ o f the* eh’cision a t t r ib u te 'd (which is the "concept" we intend to 

learn), a rule' ;■ for \ i s  de'lined as a set o f at t ri but ('-value pair

I — { ((/, | — \ , | ). (<11> — I (J )  (dm — I m ) }

7()
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such that 

.1, = ((id. (1,2. (I,„) .1 

and 

.supp(r) = {( E (" : .14( ) = 1; 1 c: I1 rl

where 1,. = ( ;1. 1;2- ;i )• 

That is. a rule is a combination of values of mflne .11 1 t ihnit, hai I I1t , ct ttl' ,ill 

information vectors matching this combinat ion is ( ont (1111(41 iii the set of infol mat ion 

vectors \\it h the value of decision attribute equal to 1 r. 1 radii iol I 1. Ilit •
rub U 

denoted as a logical implication 

r. : (ad = ) A (a,2 = 1,2) A ... A ((I,„ I ,„) ((I 1 ,1 ) 

The set of at I ributc.-value pairs occurring oil  the len hand ',id(' or I l it' hilt r 

relerrc , (1 

to as rt11(, c011(111 lull part cor1(1(1.). and the right hand I . (le( di 1).11 1 

(l( c(r). thus a rule can be simply expresst.(1 as eimd(t.) .s II flM ) is ( idled 

rid( suppori. tyltich contains all the objects III the IIIII\ else I \‘'11( al l, 'II I \ .11 i it 

match 

he rule c.cmclii ions r. 

5.3.2 Maximal Generalized Rules 

\Ve Sal' ‘\'O x1.1.  1 \kit l'(' l)0(.1 to II(' same ( on( epi 1 ,r are (01111)(11.'1(1e i t 

eit her cond(ri )C con(1(1.,) 01. con(l(r i ) (.(m(I( ). hi fa( I , t lie sei t,l l id(, is pal 1 'tall \ 

ordered with rc.garcl to the relat ion of inclusion. 

Definition 5.2 .1 maximal gromili:(11 rut( 0, loionuol h mi HI of 111, pus1/0110 

Ord( r«1 ruk s(1. 

The maximal generalim-cl rules minimize the nunibei ul t ( ondit It,ll , and al, iii 

a sense' better because their conditions art. non-redundant 

\Ve use 1?1' L to denote the collection of all maximal geneiali/e(I t ide lot the 

(lecision 1 
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suc’li I hilt

,\, =  (a,!-*!,!- (.’. . I )

and

si ipp(r)  =  { ( £ ( ' :  , l , . ( 0  -- I', } C | l , |  (.V_M

whcrn \ ; =  ( I ji - \ ]> ......W,).

'That is. a rule is a com bination  o f values o f some at 11 Unites mu Ii I ti.it t in  set o l 'a l l  

in fo rm ation  vectors m atch ing I his cot nl *i t ui I ion is < out .lined in I lie set ol' in lo i mat ion 

vectors w ith  the value of decision a t t r i ln n e  equal to I i. I rad i l io n a lK .  the rule i is 

denoted as a logical im p lica t ion

r  : («,| =  1 ii ) A  («,_> -  \ ]>) A  ... A  (</,„ - 1 ) M i /  \ , i )

The set  o f at I r ibute-value pairs occurring o n  the l e f t  Icmd s i d e  o f  I l i e  i i i l e  / is 

referred to  as rule condit ion part <ond(r) .  and the light hand s i d e  is a d e c i s i o n  p.ni 

d( c( r ) .  thus a rule can he s im p ly  expressed as ct>nd{r)  > >hi \v) .  *npp{i  ) is c a l l e d  

ruli  support,  which contains a l l  t lie* o b j e c t s in I l i e  u n i \ e l s e  / w h o s e  at 11 i lm i e \ . d n e  . 

match the rule conditions r.

5.3.2 Maximal Generalized Rules

We say two rules r \ . r >  w ith  respect to I lie same concept 1,/ arc- co inpaiabb- d 

e ither cond(r  i ) C  cond( r> ) or cond( / - | ) Z1 roud(  /■.,). In fac I . I l i e  set o l  t nb -> is pai l ia l l \  

orderc'cl w ith  regard to the relation o f inclusion.

D efin ition 5.2  .1 iHii.rimnl ( / t in r id i : i  d i i i l i  i.s ii n i i iun i i i l  t h i nt  nl o f  t in pn i lndh i  

o rdf  red rule s i t .

The m ax im a l generalized rules m in im ize  1 he uuinhei o f i nle c ondit ion , .uid .m in

a sense bette r because the ir  conditions are non-re 1 1

We use I I I ' I ,  to denote the- collection o f  all m axim a l gene ia li/ed  m b ',  bn (In 

decision

11
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5.3.3 An Algorithm to Compute the Maximal Generalized 

Rules 

0111 algot it lint «mtput es t he maximal generalized rules as follow: for large dat al)ases. 

1i pst . t he t 1 duo e of ient (41 induct ion algorit Inn is applied. .1ft er t he generalizat ion 

oc t ho tough set 11101 hod is performed on the generalized relation. The deci-

sion mat t ix for the de( ision of I IR' (ICCi i011 111161)11ft are roust ruct ed and the 

generalized rules are computed from them, 

Decision Matrix 

L'ot the wk.( led decision attribute E .1 and its particular value 1:j. We %%ill FOCUS 

On the collect ion of objects ( (the concept). for which (I(() = he set I1;,I. 

Ilefull al tempting to find (list riminating rules for 1 ill 1011115 of of her at t ribuirs 

belonging to 1 -- we 1‘ill :-11111111illiZV all the attribute-value pairs distinguishing 

objects belonging to 11;11 and I . — 11;i1 ill the matrix format defined as follows. 

Definition 5.3 /.( ( 1 (I( )iol«my objul 141orill ing lo I = I.2. .... rd( 11:11) = 

p oful Ill r , Er --- I = — = 'l'ilt lu matrix 

0.11 (I).11„1,,, , i.s drlio«1 

1).11,,, f(a.rth ,)) : ,) a(r ,)} 

l'he set /).1/,., contains all pairs ‘vhose values are not identical on both (, and 

In other words. /).1/,,, represents the complete information needed to distinguish 

, and ( 1. l'he distinguishing at t ribut es for different combinations of i and ./ can he 

represenk‘d in the form of a matrix /).1/ 

Example 5.2 Suppose alter data generalizko ion. we have a simple car genetalized 

who ion in la 1)10 7).(i. Iii Order to make our explanation simple. we intro(hice the 

numerical representation or the reduced Corm by replacing the symbolic value with 

1111111eriCill 11111111101% OXi11111)1e. lilt the .1tak( _mod( I. 0 stands for USA. I for Japan. 

similar ,,ilbst it tit ions apply to other at tributes. ( Note that the skittle number in differ-

ent columns denotes different symbolic value, e.g.. 0 in column .1/ denotes I 1 while 

78 
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5.3.3 An Algorithm to Compute the Maximal Generalized 
Rules

Oni algot il Inn < omputes t lie inax iina l jjoiKTaIix<*<| rules as follow: for large databases, 

f i is i .  I lie .it11 ibu ie  o iien led  induction  . i lgo r it lm i is applied. A f te r  the  generalization 

pi mess, the lough set method is performed on the generalized re lation. The  deci

sion m a l i i x  for the decision values o f  I he decision a t t r ib u te  arc' < oust met c»cl and the 

m ax im a l generalized rules are computed from them.

Decision M a tr ix

|-oi the- sc'lei ted dec ision a t t r ib u te  </ t  .1 and its pa r t icu la r  value' I '/. we w il l  focus 

on the collection o f objects < (the* concept), for which d( t )  =  I.’/, i.e.. the set 

Ueforc a t te m p t in g  to lind disc r im in a t in g  rules for | l , j |  in terms of o ther a ttr ibu tes  

belonging to 1 -  {d} .  wo w il l  s u m m a iiz e a l l  the a ttr ibu te -va lue  pairs d is t ingu ish ing 

objects belonging to and / ’ — in the m a tr ix  format defined as follows.

D e f in i t i o n  5 .3  l . t l t ,  d tn o h  (tin/ object h< lonyiiM} to j \ ’y j . i . < i  — 1 .2...... ( 'a r< l ( \ \ ’,i\) =

p <md It I < t <z I -  \\ .i|. j  — 1 .2  ru rd (C  — | \ i / | )  =  Tht d a iM o u  mat r ix

D M  -  ( D M , . '•s d t j i m d  a*

DM,. ,  =  { ( r / . r t ( f , ) )  : <'{<,) #  / ) }

lh< • set DM,. ,  contains all pairs whose values are not identica l on both ( ,  and 

t ,. In other words. DM,. ,  represents the complete in fo rm a tion  needed to d is tingu ish 

c, and <,. I hc* d is tingu ish ing a ttr ibu tes  for different com bina lions o f  i and j  can be 

represented in the1 form o f  a m a tr ix  D M  =  [ D M  .

E x a m p le  5 .2  Suppose1 after data generalization, we have a s imple car genetalized 

ic l. i t ion  in lab le  ”>.(). In order to make our explanation s imple, we in troduce  the 

ii i im eric . i l  representation of the1 reduced form by replacing the sym bo lic  value w ith  

numerical number, l o r  ex; , ’ *. for the M  ak( j n o d t  1. 0 stands for I S A .  I for .Japan, 

s im ila r substitu t ions apply to other a ttr ibu tes . (Note that the1 same num ber in d if fe r

ent columns denotes different symbolic value, e.g.. 0 in co lumn M  denotes I S. 1 while

78
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N ni ii7Nlotlel ( ompr 4 • poAo t 
I , A III(;II III , .II 
I •A \HIM Al Alp I .11 m 
E -.A 111k;11 I . ,11 
I ,A 1111‘;11 Au, oil At 
I , ,N VII. NI Al III , ,II 
I -A \W on At 111(,11 
I :•A III(:11 111.11 
1A PAN ill(ill I k OW 
jArAN \11:1)11 Al ‘11,1,II Al 
JAPAN Illtjll 111, ,111 
1APA % MEN' Al I 4)Al 
JAPAN littill M1, 1)11 Al 
I 'A 1l1(:11 All III ^I 

Al I t ,

111%1 11 
\1\\ 1

Al .0,1 Al 

Table 5.(i: simple generaliied car !vial iun 

Table 5.7: Niumlical repieseiii al Id I able 5.5 
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1 i k r - M m l H t O I I ip K  - |K»A< f M i i i - tmb
l l b i l l h m h ~  A ' 1 ‘ - M l

' A M i  n n  \ j Ml- I 'M  M M A ' i  \ l M l
' A m e n 1 I -u M \  M  \ l M l
' A 11 It i l l Ml- I 'M  M V  1 « M l
' A Mi-  1 > 11 M i l l *  >11 \ M M  \ l M l
'  A m l i l t . 11 M h » M l
. 'A Hl< i l l h i -  .n M \  M  M ll l>
A I*AN m e n l . »\v M \ M  \ i I IP
A PA \ M P. I 'M  M Mt-.MM M M \  M  W I l l -
A PAN H I t  i l l I I I * . I I M \ M  A I I l l -
A PA s M K b l l  M 1 M \ M  \ l m
A P A S i i  u  ;n M V M M  M M \ \ I  \ l l i l t
' A m e n M l  M l  M M \  N ' \  1 HI-

Table ").(j: A simple ^enerali/cd ear relation

‘ '>>1

I'ableo.T: Num erica l rep iese i i l  at ion o f la b le

70
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I ) 41, I , 
(1.73

(1' I ) 61 

I I 
11 PI ori 

12 t' I I 1 ,̀ 11. 
1. 

(1f Op (4.01 1'1 (r1 4%1 04 u ' 01 1\1 04 i'l 0) —FN1 01 4( 01 (N101 II' 0) 11' 01 11 0) 
11'01 el 111 IVO/ IV Ili 4') (I) 

il d %/I I ' I1 II' 11 I\1 01 I\1 n1 I 1 1 14' 11 tg0/ 11' II /%1 11I I4 II , / 
(.,17,1 IV -0) I< 0) itf 0) 41' 2) 1701 ( 4 ' 01 i \I 0) 4)' 24 I 21 

il' ti 
4 \ ft(t 1 p 11 01 711 01 (1 ' 01 1\101 I'l 11 1 r 0) in 04,44 0) —Fa 0) I 4 0) —770) 

('1 (,) 44, 1) 11 0 1 
1%1 01 1, ' 11 11' 111 1\1 01 11' 01 1 ...1 01 I(' 1 / ( go 0) )1, 0) co (1) 4,,, 0 (<,0) fr 0 (pm 
M.-0T r7-1) IT 0)771 —1-Ci u) (t' 0) 1A 0) i< II rl 0) (\1,0) 11'01 (NI 0) (( I ) 4t 11.41',01 (1' 01 

I I 01 4'1' 01 (1' 0) ('1' 01 

Table 5.8: 1)ecision mat rix fort he class Inileage=NIE1)101 

(I in column denotes ///(;//. it is easy to distinguish from the context ). Table 7).7 
1,,m,,,eius t ile numerical form of the information about cars given in Table In

this representation .1/ is an abbre\ iat ion of -Nlake_moder. (' for -compress-. and so 

on. Two ext la index columns 1. j are added to number 
1110 

object belonging to the 

target class. /////4 (if/4 0 (i.e.. mileage=N1 1..1)1[NI) and its complement tespectively. 

Tablv 5,S is a decision mat rig derived for t he decision class mit/ ag( = .1/ I; l)/1 '.11. 

Each t ell (i.j) in this matrix a collection of at t ribute-value pairs distinguishing row 

/ of I he target class from row j of its complements. 

Decision Matrix and Maximal Generalized Rules 

In this 5111)mq t ioh . \V(' will present t he basic met hod ho compute the maximal 

geneualited rules from a decision matrix. 13efore discussing the main result . we will 

int roduce the following notation cited from [ZiScl:I. IISCZ9.1aI. 

Let , we will use I he symbol let . L, to denote the set of all maximal 

generaliied rules \vhose condit ions match the feat tires or object ( i. that is 

= E : .1,4( ,) = 1,1 

Clearly, II' the collection of rides 1117., is known for each c, E (1'41 then all the 

\ 'mai generali/ed rale:, for target decision IV/ can be obtained by taking the union 

lit '1, = U 

so 
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11 •>}

t < jTT l'“

( \-  i )

W  \ i n
c li
t j rr o“,

1.- I ’ I I !<• r
I M  0) I I '  0 )  Cl <1) I M  Oi f  Oi 

I C  Ol Cl  0 |
I M  ' ))  I ' l  I I I ( M  01 |< 0 |

i c in  i r  in
( M  01 ( C  0 )  
Cl oi

( C  0 )  Cl  0)

I M  ' i t  C  I I  1C I I (M Ol I M  HI  C  11 i t '  I t iM  o i  i c  i i l \ l  111 l< I I I I  I I
I M  H| ( \ !  oi (i- oi 

I C  . 1
IM 0| I C  J! ( Xl .0) (C 0| (M O )  ( I ' . ' l I P  ->l

i m m  < r , i  i ci ui i < l  oi i i  - oi
Cl 0)
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11 III

I M  HI  C  l |  Cl  0 ) ( ‘i f .01 ( i 'O i  
I T  i l l

(M  0) (< I I  
I P  0 ) | T  o i

(> l ) . ( C . O )  ( ' l '  0 )

' la  I i 1 < * ."j.S: Decision m a tr ix  for the class m i le a g e = M K D H ’ .M

0 in column ( '  denotes I I  K i l l ,  ii is easy to distinguish from the context). Table .">.7 

iepiesenls the numerical form o f the in form ation  about cars given in Table o.fi. In 

this represent ation M  is an abbre\ iat ion of "M ake .m ode l" .  ( '  for "compress", and so 

on. I wo e x l ia  index columns i.j are added to number the object belonging to the 

target class, n n h t i i j t  — 0 (i.e.. m i leage= .\ IM I) l l  .M) and its complement iexpectivelv.

Table o.S is a decision mat ri.\ derived for I he decision class mil< <t(j< =  M  I'l D l l '  M . 

Knelt te l l  ( i . j )  in th is m a tr ix  K a collection o f  a ttr ibu te -va lne  pairs d is t ingu ish ing  row 

/ o f  I lie target class from row j  o f  its complements.

Decision M a tr ix  and M axim al Generalized Rules

In this subsection, we w i l l  present the basic method to  com pute  the m axim al 

genein li/ed rules from a decision m a tr ix .  Before discussing the main result, we w il l 

introduce the following notation cited from [Z iSM . I ISC */,9laj.

I.et c, e |K/|. we w i l l  use the symbol Rl ' L ,  to demote the set o f  all m ax im a l 

generalized rules whose conditions match the features o f object c ,. that is

I I I ' I . ,  =  {,■€ R l ’ L M e , ) =  *;•}

Clearly, il the collection ol rules R l ’ L, is known for each c, 6 |1’/| then all the 

m axim .i l generalized rules for target decision j \ ’/ 1 can be*obtained by tak ing  the union

n r  I. = ( J  m i. ,
i
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('onsequently. in N% hat follows %ye limits 1)11 l ilt' 1).1.I, ill 1 he met itini to ,,mplite 

maximal generalized rules matching an arbitrary object 1 d. 

For the given decision mat rix /),I/ and lixed decision 1,Illle I f, let it, 

Cartesian imodti('t = /).1/d • /).1/,.! • /).ii t, of ',el, of rihnte 1.ill1e• 

COnSt 11111 ing the components of the decision matrix I) I/ «ai1aine41 in the It

Since some components of the lectors belonging to ma\ be 'demi, .41. 11111

consider I he associated set 

= } 

\Otero ill is a set of all distinct components contained in the ectoi 1. 

The elements of are all rides for 1 I j since the‘ mat( li at least one ()hie, I Flom 

object (4) and do not match dn.\ of I lie ()hied!, hel(Pligilly, I() the 4 (m11)1( .111(10
of (1 - -11:11). The rules in i', are part ially oiderol he inchi,ion "1.0 ion ‘‘ it h 

t he set of mininutl elements in I hi. denoied a, .1/IX,. 

Theorem 5.1 (ZiS93) Each maxima/ gulf rali:«1 totoptatil tlt 

ci.sion matrix 1).11 i., ttl.so Iiiirrirnul in Ihr .,t1 of rill I I 4 1 and ra, It ism,' 

fir rali:t rill( ii, a « Haw .41 

The al)()ve thec)rent stales that. in essence. /// 111 , \\lc!e h prac e 

means that the decisitni mat rix can be used to lind maximal geneiali/4 14,1 

the tiirgo c()nc(pt I sinmle, systematic pro( e(Iure 414 s4 ()bed 1,1' ('1 4 ,4 11 tor II A 

to 1)11.)1111ce 1 11(' 111/1X111141 generalized vales III the set 1.4,1 t he wool. plea e I d It l I 4, 

[ZiS9:;]. 

The maximal generitlize(I rules in I lw set ,111.\,  4 an .0, t ompined Mudd \, i104 

}In ass()ciated I 3c)oleati function called the de( is ion 1.1111( 1 .101, \ail Il .1, 1111)11441 I lit 

idea of the (lis('entil)ility function introduced iIl (S1;1{91 1. I he de, i•i.)11 hilt. /s, 

constructed out of the r()‘\' i of t he deckion mat Fix. I hat k. /) ILI. I) I/,2. . /1 I/„ 

lininally treating each }it I ril)tite-value pair 0c4 in 1 bigIII ( 4anponent 1).11, , .1' .1 I14,4)14 an 

varial)le and then t)rming conjtun lion of dis11111( l ion of Oil 4 4 41 P41111 III 
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C o i is fq i in i l  ly. in u hat follows wo focus on l lio basis o f  ( lie met hod lo  < o in p n lc  all  

m axim a l generalized rules m atch ing  an arl> ilrnrv o li jec i <, < |l ,].

I’b r  I lie given decision m a lr ix  P M  and lixed decision \a lue  \ lei us to i is ide i I lie 

Cartesian p rodn r l /•’, =  P. \l,y « DM,> \  ... ■ P M , ,  o f  sets of a l l  r i b u t e \a lue  p a i i s  

const it lit i nj* t lie components o f t lie decision m a tr ix  P M  (o i i l . i ined  in the io,\ /.

Since some components o f  the \o d o rs  belonging to I ]  ma\ be ideui'u.d. we w il l  

consider the associated set

M

w hen ' { / }  is a set o f all d is t inct components contained in the \oe io i I.

The elements o f art* all rules for j \  d since lho \ in . i l ih  at least o i ie o b je i l  l io m  

| l ',i| (i.e.. object c ,) and do not match an\ o f I lie objects belonging to t lie i on ip leu ieni 

o f  | l  ( I ' — | l ,’/|). The  rules in /■’, are part ia lly  oi dered In I lie inclusion "Lit ion w ith  

the set o f m in im a l elements in th is denoted as M I X , .

Theorem  5.1 (Z iS93) l u i rh  maximal  t/t in ru lh i  <1 n ih  m I ’, t am/ ml t t l  fmn i  Iht tit 

cision mat r ix  l ) M  is also m in im a l  in Iht st I o f  al l  r t i l ts f o r  | l ./ |  ami t t nh mu.i m m l  

<j( in rali~t (I rah  /w | l . / |  is m in im a l  in a << r la m  I

The above* theorem states tha t,  in essence. I l l ' L ,  \ I I \ ,  w li i i  It in p r a c t i c e  

means that the decision m a tr ix  can be used to l ind ail m ax im a l geni ia l i / i  d iid< l-a 

the  target concept ] \ j / | .  A simple, systematic pro< ediire <h si l ibed l .cei  < an be u .< C, 

to  produce* the m ax im a l genc'ralized i. iles in the set I',, I oi the p ioo l.  plea e n l n  io

[ZiS‘):i].

The m ax im a l generalized rules in tie* set M l <an be (o m p u led  In im p li lv  ing 

an associated Boolean function  called t l ie  de< ision function whi<h A in piled Ic, t in 

ie|e*a o f the  e liscern ib ility  function in troduced in [S k IO I  j . I lie dec i , ion  (him l ion II, i 

const ructe*d out ejf the row i o f  t In* decision m a tr ix ,  t hat is. ( P  \ l , t . P  \ f , . . .. I )  \ f ,  j In 

fo rm a lly  trea t ing  each att l ibu te-vah ie  pairoce l in in g  in component P M, ,  a a Booh an 

variable and then fo rm ing  Boolean conjunction o f d is jo in l ion  . ol t to component

s i
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belonging to each set D:14, (.1 = I That is. 

nu DA 
where n and U are respectively generalized conjunction and disjunction operators. 

Example 5.3 Based on the decision matrix given in Table 5.8. we can coast rue( the 

following decision function for row I 

/31 = ((T, O))A((M.0)v (P. o)v('t'.0))A“ 11/.0)V(C.0)V( PMV(T.0)) A ((,1/.11)V 

(T, 0)) A ((M. 0) V (C. 0) V (P.0) v ('r. 0)) A ((M.()) v (P.0) V (T. 0)) A (( P. 0) v ( T. 0)) 

By applying the dist ribut ion and absorpt ion laws of Boolean algebra. each decision 

function can be expressed in a simplified form of a disjunction of ( onjwiet k 

expressions. 

Example 5.4 The decision function /31 given in Example 5.3 can be easily 

to /31 = (T.0). 

This corresponds to the rule: 

trans = AUTO --> mil(age =MNDIUM 

Directly from the Theorem 5.1, we can derive the general procedure for computing 

all maximal generalized rules for the given target, decision. The procedure requites 

the construction of the decision matrix for each target decision in ior i compaation 

of rules. The key steps to compute the rules are summarized in algorithm (1)11Nlaxi). 

Algorithm 5.3 DBMaxi: Compute Mt maximal grin raliz«1 rah s 

Input: a relational system 11 

Output. the maximal generalized rules 

Method 

Step 1: Extract the generalized relation 11" from It ((ieneralization Algorithm) 

Step 2: Compute the decision matrix for the current decision category in 1r 

Step 3: For each positive case (i = 1 , p) compute t he set of all maximal 

generalized rules .1!!N1 matching this case by evaluating and shn pli fly ing (using the 

absorption law) the associated decision function /3i. 
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belonging to cadi set DMi} ( j  =  1 . 2 .......y ). 'l'lia t is.

a , = nu
j

where n  *ind |J arc respectively generalized conjunction and d isjunction operators.

Example 5.3 Based on the decision m atrix  given in Table 5.S. we can construct the 

follow ing decision function for row 1

B\ =  ( ( T , 0 ) ) A ( ( . < l / . 0 ) V ( R 0 ) V ( 7 \ 0 ) ) A ( ( . 4 / . ( ) ) V ( r \ 0 ) V ( / J. ( ) ) V ( 7 ’. ( ) ) ) A ( ( A / . ( ) ) V  

( 7 ’. 0 ) )  A  ( ( jV/ .O)  V ( C .  0 )  V  ( / J. 0)  V  ( 7 ’. 0 ) )  A ( ( i \ / . 0 )  V  ( l \  0 )  V ( 7 ‘. (1)) A ( ( / A 0)  V  (7*. I)))

By applying the d istribu tion and absorption laws o f Boolean algebra, each decision 

function can be expressed in a sim plified form of a disjunction of m in im al < onju iu I i\<* 

expressions.

Example 5.4 The decision function IJ, given in Example 5.3 can be ras ih  sim plified 

to /?, =  (7 ’. 0),

This corresponds to  the rule:

Ivans =  A U T O  - »  m il to  go =  M  /v 1)1 U AI

Directly from the Theorem 5.1, we can derive the general procedure for com puting 

all maximal generalized rules for the given target, decision. 'The procedure requires 

the construction o f the decision m atrix  for each target decision p iio r to com putation 

o f rules. The key steps to compute t he rules are summarized in algorit hm (DB-Maxi).

Algorithm  5.3 D B M a x i:  Co in pa ir  I In m axim al gom rali::i<l r t i l is

Input: a relational system II 

Output, the maxim al generalized rules 

M ethod

Step 1: Extract the generalized relation IT from H, ((jenera lixa tio ii A lgo rithm ) 

Step 2: Compute the decision m a trix  for the current decision category in IE 

Step 3: For each positive case e,-,(? =  1 ,2 ,...,/;) compute the set o f all maximal 

generalized rules .1//.V, matching this case by evaluating and s im p lify ing  (using the

Hi.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Step 4: Compute the union UM /N, of maximal generalized rule sets to find all 

maximal generalized rules for the current decision category. 

The cent ► al component of the above algorithm is the simplification of the decision 

functions associated with the positive cases of the information table. For example, to 

conipute the maximal generalized rules for the decision class milcagc = .11E1)11'31, 

decision functions have to be created and simplified for row 1-6 in Table 5.8. As can 

lw verified from Table 5.8, the simplified functions yield the following complete set, of 

maximal generalized rules for mileage= MEDIUM: 

(I) If trans = AUTO then mileage = MEDIUM 

(I) If make_model = USA(car) A compress = MEDIUM then mileage = 

MEDI(' Al 

(3) If make_model = A(car) A power = LOW then mileage= MEDIUM 

(4) If compress = MEDIUM A power = HIGH then mileage = MEDIUM. 

Similarly. we can find the maximal generalized rules for mileage = HIGH:

(5) {Icon/press = IIIGHApower = H I GH Atrans = MANUAL then mileage= 

HIGH 

(6) If make_model = APAN(car) then mileage = HIGH 

(7) If compress = MEDIUM A power = LOW then mileage = 111G11 

5.3.4 Complexity of Maximal Generalized Rules 

In this subsection we give a quantitative analysis of the possible number of maxi-

mal generalized rules. Suppose after data generalization, there are N' tuples with K 

at tributes  left. Por a particular learning task, the number of positive tuples is n and 
so the number of negative tuples hi N' — n. Then we can construct a n x (N' n) 

decision mat rix, for each entry of the decision matrix, there are maximal K terms be-

cause t hat is t he maximal number of different attributes number between the positive 

and negative tuples. Each row of the decision matrix corresponds a set of maximal 
generalized rules, so the maximal number of maximal generalized rules from each row 

is 10"- ". there are total n row in the decision matrix, so the total number of possible 
maximal generalized rules are n x KN'-'". As a example, if we have :30 tuples with 
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S tep  4: Compute the union U.V//A', o f maximal generalized rule sets to find all 

maximal generalized rules for the current decision category.

The cenlml component o f the above algorithm  is the sim plification o f the decision 

functions associated w ith the positive cases o f the inform ation table. For example, to 

compute the maximal generalized rules for the decision class mileage =  M E D I U M .  

decision functions have to be created and simplified for row 1-6 in 'lab le  o.S. As can 

be verified from 'lab le  5.8, the simplified functions yield the following complete set o f 

maximal generalized rules for mileage =  M E D I U M :

( I )  I f  Iran# =  AUTO  then mileage =  M E D I U M

( I )  I f  make .model =  USA(car)  A compress =  M E D I U M  then mileage =  

M E D I U M

(8 ) I f  makejnodel. =  USA(car)  A power =  LO W  then mileage =  M E D I U M

(4) I f  compress =  M E D I U M  A power =  I I I G H  then mileage =  M E D I U M .

Sim ilarly, we can find the maximal generalized rules for mileage — H IG H :

(5) I f  compress =  I I  IG H  Apower =  H I G H  Alrans  =  M A N U A L  then mileage =  

H IG H

(6 ) I f  makejnodel  =  J A P  A N  (car) then mileage =  H IG H

(7)  I f  compress =  M E D I U M  A power =  LOW  then mileage =  H I G H

5.3.4 Complexity of Maximal Generalized Rules

In this subsection we give a quantita tive analysis of the possible number o f m axi

mal generalized rules. Suppose after data generalization, there are N '  tuples w ith I< 

attributes left. For a particular learning task, the number o f positive tuples is n and 

so the number o f negative tuples is N 1 -  n. Then we can construct a n x (A r/ -  n) 

decision m atrix , for each entry o f the decision m atrix , there are m axim al K terms be

cause that is the m axim al number of different a ttributes number between the positive 

and negative tuples. Each row o f the decision m atrix  corresponds a set o f m axim al 

generalized rules, so the m axim al number o f maximal generalized rules from each row 

is there are tota l n row in the decision m atrix , so the to ta l number o f possible

maximal generalized rules are n x I \ tX'~n. As a example, i f  we have 30 tuples w ith
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5 attributes and 10 positive tuples, then the possible maxima: generalized rules are 

9.536E+14. From a practical point of view, we are not able to compute all these 

possible maximal generalized rules even using the fastest computer. llence in or►ler 

to define a tractable algorithm. we will need to -prune- the set ()I' possible maximal 

generalized candidate rules considerably. We believe that using a good rule men -

sure can help considerably when we are trying to learn rules from data. .1 feasible 

algorithm should learn the best set of rules rather than exha►►st.ive learning all the 

possible rules. It is one of the topics for our future research. 

84 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 

5 a ttr ibu tes  aw l 10 positive tuples, then the possible m ax im a l generalized rules are 

9.536E+1-1. From a practical point, o f view, we are not able to  com pute  all these 

possible m ax im a l generalized rules even using the fastest computer. Hence in order 

to  define a tractab le  a lgor i thm , we w il l  need to "prune" the set o f possible maxim al 

generalized candidate rules considerably. We believe that using a good rule mea

sure can help considerably when we are t ry in g  to  learn rules from data. A feasible 

a lgor ithm  should learn the best set o f rules ra ther than exhaustive learning all the 

possible rules. I t  is one o f  the topics for our future research.
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Chapter 6 

Multiple Sets of Knowledge Rules and 

Rough Sets 

The importance of redundancy for coping with noise in communications is well 

known [ShW64]. Recently, the subject of Multiple Sets of Knowledge Rules (MSKR) 

(also called multiple knowledge bases) and multiple experts have received considerable 

at tention [KoN93, Ng1392]. Some of the arguments raised in support this approach 

i►►clude: (1) in cases where expertise is diffused and a true expert in the domain of 

interest can not be identified, combining the insights of "competent people" could 

improve the application; (2) large complex domains which are generally not mastered 

by a single individual, requiring the use of multiple experts to ensure comprehensive 

coverage; (3) the acceptance of expert systems in the business world requires the 

consensus of organizational "experts", therefore, it is necessary to incorporate multi-

ple experts into Expert Systems (ES) the contributions of several experts; (4) large 

classes of problems could be more easily solved if we move away from the notion of 

a single expert as the basis of ES to the broader based on "community of experts" 

premise for ES applications ENgB92j; (5) to improve the classification accuracy in the 

presence of noise data in the database. 

The i►►formativity of the knowledge bases with redundant rules seems to he much 

better than without them. Redundant rules can be trimmed off and an "usual" 

knowledge base is obtained as a downgraded version. Since the user can define the 

number of redundant rules, the preference function and other parameters, this enables 
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Chapter 6

M ultiple Sets of Knowledge Rules and 

Rough Sets

The importance o f redundancy for coping w ith  noise in communications is well 

known [Sli VV6-1]. Recently, the subject o f M u ltip le  Sets o f Knowledge Rules (M S K R ) 

(also called m ultip le  knowledge bases) and m ultip le  experts have received considerable 

attention [KoK93, NgB92]. Some of the arguments raised in support this approach 

include: ( I )  in cases where expertise is diffused and a true expert in the domain o f 

interest can not be identified, combining the insights o f “ competent people” could 

improve the application; (2 ) large complex domains which are generally not mastered 

by a single ind iv idua l, requiring the use o f m u ltip le  experts to ensure comprehensive 

coverage; (3) the acceptance o f expert systems in the business world requires the 

consensus o f organizational “experts” , therefore, it  is necessary to incorporate m u lti

ple experts into Expert Systems (ES) the contributions o f several experts; (4) large 

classes o f problems could be more easily solved i f  we move away from the notion of 

a single expert as the basis o f ES to the broader based on “ com m unity o f experts” 

premise for ES applications [NgB92]; (5) to improve the classification accuracy in the 

presence o f noise data in the database.

The in fo rm ativ ity  o f the knowledge bases w ith  redundant rules seems to be much 

bettor than w ithout them. Redundant rules can be trim m ed off and an “ usual” 

knowledge base is obtained as a downgraded version. Since the user can define the 

number o f redundant rules, the preference function and other parameters, th is enables
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a thorough extraction of most valuable rules. The efficiency oft he learning algorit Inns 

remains practically the same when using redundant knowledge [Gann)']. 

At this point it seems essential to understand how and why redundant knowledge 

or multiple knowledge rules help. First, empirical tests (Kon91, KOK931 indicate that 

redundant knowledge is more helpful if it is as accurate and reliable as possible and 

at the same time as different from the other knowledge as possible. This also seems 

plausible in real life. Adding a novice is probably counterproductive and adding an 

expert whose knowledge is too similar to some other members will only giNe more 

importance to the previous expert. Another problem is the cooperation between re-

dundant knowledge. Indeed this might be a more difficult problem than to determine 

whether to add another redundant method or rot. Similarly. it, is very diflicult, to 

analyze the cooperation between experts. 

Several strategies for using multiple experts in ES development, have been pro-

posed. Garvey et al [GI,F81] feel that conflicting the knowledge of s( Nerd specialists 

who are more competent in specific contexts with a mechanism to choose aniong the 

opinions of experts. Boose [Boo86] has proposed an approach for combining the ex-

pertise 01 several individuals by utilizing a common grid via the Expertise Transfer 

System (ETS). Others have approached the problem from the point, of view of an 

autonomous attempt to obtain consensus among the experts during the knowledge 

acquisition phase. Gragun and Steudel [GrS87J have proposed an algorithm for trans-

forming a rule-base into a decision table and splitting the table into context-groups 

for analysis. However this approach is limited with regard to rule-set, integration and 

validation early in the life-cycle because it focuses on rule-base debugging. Based 

on these considerations, we propose a rough set approach to construct imiltiple sets 

of knowledge rules. The concept of rough set, offers a sound theoretical foundation 

for multiple sets of knowledge rules. Multiple Knowledge Base Systems can he for-

mulated precisely and in an unified way within the framework of rough set, theory. 

The method we propose here is more general and flexible: (I) it advocates the Ilse of 

inductive-learning techniques to discover knowledge rules from the collected data in 

databases; (2) it can deal with development situations where more than one domaiti 

expert is used; (3) it can be used to merge two or more rules based K13 into one 
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a thorough extraction of most valuable rules. The efficiency o f I he learning algorit Inns 

remains practically the same when using redundant, knowledge [Clamt)2 |.

A t this point it seems essential to understand how and why redundant knowledge 

or m ultip le  knowledge rules help. First, empirical tests [KonOI. K oK M ] indicate that 

redundant knowledge is more helpful i f  it. is as accurate and reliable as possible and 

at the same tim e as different from the other knowledge as possible. 'Phis also seems 

plausible in real life. Adding a novice is probably counterproductive and adding an 

expert whose knowledge is too sim ilar to some other members w ill on l\ g i\e  more 

importance to the previous expert. Another problem is the cooperation between re

dundant knowledge. Indeed this m ight be a more d ifficu lt problem than to determine 

whether to add another redundant method or not. Sim ilarly, it. is very d ifficu lt to 

analyze the cooperation between experts.

Several strategies for using m ultip le  experts in ES development have been pro

posed. Garvey ct al [GLF81] feel that conflicting the knowledge o f s< >eral specialists 

who are more competent in specific contexts w ith  a mechanism to choose among the 

opinions o f experts. Boose [B0 0 8 6 ] has proposed an approach for combining the ex

pertise oi several individuals by u tiliz ing  a common grid via tin* Expertise Transfer 

System (ETS). Others have approached the problem from the point o f view o f an 

autonomous attem pt to obtain consensus among the experts during the knowledge 

acquisition phase. Gragun and Steudcl [GrS87] have proposed an algorithm  lor trans

form ing a rule-base in to a decision table and sp litting  the fable in to context-groiips 

for analysis. However this approach is lim ited w ith  regard to rule-set, integration and 

validation early in the life-cyde because it  focuses on rule-base debugging. Based 

on these considerations, we propose a rough set approach to construct m ultip le  sets 

o f knowledge rules. The concept of rough set offers a sound theoretical foundation 

for m u ltip le  sets o f knowledge rules. M u ltip le  Knowledge Base Systems can hr* for

mulated precisely and in  an unified way w ith in  the framework o f rough set theory. 

The method we propose here is more general and flexible: ( I )  i f  advocates the use o f 

inductive-learning techniques to discover knowledge rules from the collected data in 

databases; (2 ) it  can deal w ith  development situations where more than one domain 

expert is used; (3) it  can be used to merge two or more rules based KB in to one

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



comprehensive 

In this chapter we discuss the connection of rough set theory with multiple knowl-

edge rule sets and present, an algorithm which uses the decision matrix approach to 

co►istruct multiple sets of knowledge rules. 

6.1 Multiple Sets of Knowledge Rules 

In I he decision making process, the Knowledge Representation System (KRS) 

must, represent and generate a way of making decisions concerning the object class. 

The process of rule general ion is an important part of data analysis in a knowledge 

base system. Different algorithms and approaches will generate different minimal 

decision trees or sets of decision rules (the different knowledge bases) which may 

or may not use the same condition attributes from the KRS. The word "minimal" 

means that each expert employs only the information necessary to represent the 

example data (or training data) without any loss of essential information. Depending 

on the criteria, one knowledge base can be more useful than another which employs 

diPrent information. 

considering all the reduct tables of the experts in a KRS, the KRS can 

generate multiple sets of knowledge rules because it usually has more than one expert 

and t here arc many knowledge bases associated with each expert. The KRS could be 
partitioned into sub-systems based on the decision attributes. Each expert uses only 
he necessary condition attributes without changing the dependency relationship of 

the original KRS. A struct tire of the MSKII, system is shown in Figure 6.1. 

KB II

KRS 

I Export]

KB • • • I • KB 

Figure 6.1: Structure of multiple sets of knowledge rules 

In a KRS, it is possible that some condition attributes are superfluous, so it is 
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comprehensive KB.

In this chapter we discuss the connection o f rough set theory w ith  m u ltip le  knowl

edge rule sets and present an algorithm  which uses the decision m atrix  approach to 

construct m ultip le  sets o f knowledge rules.

6.1 Multiple Sets of Knowledge Rules

In the decision making process, the Knowledge Representation System (KRS) 
must represent and generate a way o f making decisions concerning the object class. 

The process o f rule generation is an im portant part o f data analysis in a knowledge 

base system. Different algorithms and approaches w ill generate different m in im al 

decision trees or sets o f decision rules (the different knowledge bases) which may 

or may not use the same condition attributes from the KRS. The word "m in im a l" 

means that each expert employs only the inform ation necessary to represent the 

example data (or tra in ing data) w ithout any loss o f essential in form ation. Depending 

on the criteria, one knowledge base can be more useful than another which employs 

different information.

By considering all the reduct tables o f the experts in a KRS, the KRS can 

generate m ultip le  sets o f knowledge rules because it  usually has more than one expert 

and there are many knowledge bases associated w ith  each expert. The KRS could be 

partitioned into sub-systems based on the decision attributes. Each expert uses only 

the necessary condition attributes w ithout changing the dependency relationship of 

flu* original KRS. A structure o f the MSKR, system is shown in Figure (h i.

KB KBKBKB

E x p e r t

KRS

E x p e r t

Figure 6.1: S tructure o f m u ltip le  sets of knowledge rules 

In a KRS. it is possible that some condition attributes are superfluous, so i t  is
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very important to identify the essential subset or Hourodundao dit Immo:, (radii' ) 

that determine the decision task. 

6.2 A Decision Matrix Approach for Constructing Multiple 

Sets of Knowledge Rules 

One can use different algorit Inns and systems to generate se‘ end different knuwl

edge bases from a given knowledge representation system. and embed these I,nou ledge 

bases into a expert system to form a multiple set of knowledge rides [S111191.1 InS9-11. 

Different knowledge bases are taken into account in I he problem soI ing phase. This 

method does not have an incremental learning capability. When new informdi ion is 

expected to become availa:,le on a knowledge representat lint I. it has regener 
ate the knowledge bases from t he new ly organized knowledge repr,,sent„ t iul , 5 ‘ :4011 .

The process of regeneration can be costly when tile knowledge representation s' hien' 

is large. For knowledge discovery in a dynamic ern ironnu,n'.. it ‘vonld be 1)11,1(1;11)1v 

to accept new information incrementally. without needing to regenerate from Si rslIi Ii 

In Chapter 5, we presented a decision matrix approach to compute all maximal 

generalized rules from a database. In this section the met hod is expanded nother. 

Our extended method has an incremental learning capal)U4 and can be used to 

compute all maximal generalized decision rules and the retina sets of a folowledge 

representation system S. It provides a way to generate the simplest set. Or decision 

rules, while preserving all essential information. The approach prc.sente,1 here is has{ ql 

upon the construction of a number of Boolean fllnc t ions front decision matrices. 

To make our explanation straightforward, we assume some notational mie.entions 

as used before. That is, we will assume that all positive and negative objects are 

separately numbered with subscript, i (i.e., i = and j (i.c., 1 ,2. ...p) 

respectively. To distinguish positive from negative objects we will use supers( ripts 

and ti V, for instance, objr versus obji'v for the class "V" and class ", V". 

Recall the definition of the decision matrix ili(S) = in Chapter 5. The 

set contains all attribute-value pairs (attributG,valru) which are not identical 

between objr and obj;"'. In other words, 14,, represents time complete information 
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very im p o r ta n t  to  identify  the essential subset o f  iionredimduut a ttr ibu tes  t factor) 

that determ ine t he decision t ask.

6.2 A Decision Matrix Approach for Constructing Multiple 
Sets of Knowledge Rules

One can use different a lgorithms and systems to generate several different know l

edge bases from a given knowledge representation system, and embed these know ledge 

bases in to  a expert system to form a m u lt ip le  set o f knowledge rules [S h l l l l  l. l  IliSl) I]. 

Different knowledge bases are taken in to  account in the problem solving phase. This 

method does not have an incremental learning capability. When new in form ation  is 

expected to  become available on a knowledge representation sv stem. it. has to rogener 

ate the knowledge bases from the newly organized knowledge representation svslem. 

The process o f  regeneration can be costly when the knowledge representation svslem 

is large. For knowledge discovery in a dynamic environm ent, it won hi be preferable 

to accept new in form ation  incrementally, vvithoul needing to regenerate from s< ra t< h.

In Chapter o, we presented a decision m a tr ix  approach to com pute  all maximal 

generalized rules from a database. In this section the method is expanded furl her. 

O u r extended method has an incremental learning capab il i ty  and can be used to 

compute all m ax im a l generalized decision rules and the red net. sets o f  a knowledge 

representation system S. It. provides a way to generate the simplest, set o f  decision 

rules, while  preserving all essential in form ation . The approach presented here is based 

upon the construction o f a number o f Boolean functions from decision matrices.

To make our explanation s tra ightforward, we assume some notntiona l ( oie.enl ions 

as used before. T h a t  is. wo w il l  assume tha t all positive and negative objects are 

separately numbered w ith  subscript, i  (i.e.. i =  1. 2, ...7 ) and j  ( i .e.. j  ~ 1, 2 ..../;) 

respectively. To d istinguish positive from negative objects we w il l u.sc* supers* r ip tx V 

and ~  V.  for instance, obj) '  versus ob j~v for the class “ VM! and class l‘~  V ‘\

Recall the defin it ion o f  the decision m a tr ix  M ( S )  -  ( M t>J) in C hapter 0. The 

set M i j  contains all a ttr ibu tc -va lue  pairs (a t t r ib u te , value)  which are not identical 

between obj} '  and ob j~v . In other words, M tJ represents the complete in form ation
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distinguishing objl from obj;" . 

The set of ntaximal generalized decision rides 1/3d for a given object objr (i = 

1,2,-7) is obtained by forming the Boolean expression 

Br = A V 

where A and v are respectively generalized conjunction and disjunction operators. 

The Boolean expression called a decision function Br is constructed from row i of 

he decision mat rix, that is (.1/, i .M,2 Vip). by formally treating each attribute-value 

pair occurring in the component as a Boolean variable and then forming a Boolean 

conjunction of disjunctions of components belonging to each set (j = 1, 2, ...,p). 

The decision rules 11311 are obtained by turning such an expression into disjunctive 

normal form and using the absorption law of Boolean algebra to simplify it. The 

conjuncts, or prime implicants of the simplified decision function correspond to the 

maximal generalized decision rules. By treating each of the classes as a target, concept, 

a set of maximal generalized decision rules can be computed for each of the classes. 

Similarly, by treating the complement of the class -V" as a target concept. a set of 

decision rules can be computed for each object, of the class ", 1/" using the same 

approach. 

Once all the decision rule sets 1,311 have been computed. a set of all maximal 

generalized decision rules lltrL(11;i1) for the concept It d"i corresponding to the decision 

value Vd (11:4 = {obj E 013.1: d(obj) = Vd.d E D,Vi E L,/}) is given by 

RUG(MI) = U11311 = —11 

For computing the set of reducts of a knowledge representation system, we will 

introduce tlw concepts of the phantom decision function tv and the redact function 

['lawn. A phantom decision function hi is a Boolean expression defined by the 

conjunction of all Boolean expression VS/ij of row i in the given decision matrix, 

where VS4., represents the disjunction of the only attribute names (does not contain 

t he value of at tributes) of the component A1,j. So that we have the following formula: 

/31 = n v 111,E u = 
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distinguishing obj}' from objj'’ .

The set o f maximal generalized decision rides |/ i, | for a given object obj}' ( i  =  

1, 2 . ...7 ) is obtained by form ing the Boolean expression

tf!' =  A V M v
j

where A f iid  V *«r<* respectively generalized conjunction and disjunction operators.

The Boolean expression called a decision function B} is constructed from row i  of 

I lie decision m atrix, that is by formally treating each attribute-value

pair occurring in the component MtJ as a Boolean variable and then forming a Boolean 

conjunction o f disjunctions of components belonging to each set Mjj ( j  =  1, 2 ,...,/)).

The decision rules \B}'\ are obtained by turn ing such an expression in to disjunctive 

normal form and using the absorption law of Boolean algebra to s im plify it. The 

conjimcts, or prime implicants of the simplified decision function correspond to the 

maximal generalized decision rules. By treating each o f the classes as a target, concept, 

a sel o f maximal generalized decision rules can be computed for each o f the classes. 

Similarly, by t reating t he complement o f the class "V "  as a target concept, a set of 

decision rules can be computed for each object o f the class V'" using the same 

approach.

Once all the decision rule sets \B}’ \ have been computed, a set of all maximal 

generalized decision rules R U L(\\ j\ )  for the concept | l j |  corresponding to the decision 

value V'/ (|l '/| =  { obj € OBJ  : d(obj) =  V,i,d € D, V,i € VAL,i})  is given by

m//,(|K/|) = U l fl;'l (/ = I.2 ,...t )

For computing the set of reducts of a knowledge representation system, we w ill

introduce the concepts of the phantom  decision function B } '  and the redact function
+  - .

l''ni:D{\')‘ A phantom decision function B}  is a Boolean expression defined by the 

conjunction o f all Boolean expression ViV/,j o f row / in the given decision m atrix , 

whore V.l/,^ represents the disjunction of the only a ttribu te  names (does not contain 

the value o f attributes) of the component M,j .  So that we have the following formula:

/};' =  A V ' V v  u = i . 2  p )
j
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Informally speaking. a phantom decision function Ay is a similarity of a decision 

function except for the elements of Boolean expression without the %aim, or attributes. 

One can directly derive the result of a phantom decision 1.11110'10H iv From the result 

of a decision fund ion /31. it. just eliminates the values of at tributes in the prime 

implicants of the result.. 

The reduct function PnED(v) is a I3oolean function coastrneted 1) he conjunction 

of all phantom decision function in I he decision matrix. So t hat we ha% c, I he 

following equivalence, 

P'nED(v) = A fir 

or 

(i = I.2. .... -1 ) 

Plumy) = AO V AO = 1.2. .....y: = 1 . p) 

The set of reducts, denoted as RE D(N1), is obtained by performing the mut. 

tiplications and applying t he absorption law of Boolean algebra over the Boolean 

expression Finw(m,D. The conjuncts. or prime implieants of the result of the redurt 
function, are the whole set of reducts for the target concept. VI in a given knowledge 

representation system. 

A minimized knowledge rule sets corresponding to a reduct is a set. of decision 

rules which is fully coma(' by the attributes of a reduct. The cover means that 

all the condition attributes used by the decision rules is also the attrilmles of the 

reduct table. 

Let RUtplux = r2, ..., rk} be the set, of all maximal generalized decision rules 

generated by the decision matrix method and let, RED VIE Di , RP 02..... RED,1 

be the set of attribute reducts. A minimal knowledge base referred to (HE l);

RED) is denoted by Rtihm„,•(/?Eni) and defined as 

RV L7. 234 RE Di) =U{Cond(rk)C C owl( RE Di) 

where C ond() is the set of attribute names. 

Example 6.1 Figure 6.2 depicts two decision matrices obtained from the knowledge 

representation system given in Table 6.1. Each cell (i, j) in a decision matrix is a 
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Inform ally speaking, a phantom decision function B\ is a sim ilar'll v o f a decision 

function except for the elements o f Boolean expression without the \ nine o f at I riln ites. 

One can d irectly  derive the result o f a phantom decision function I l f  from the result 

o f a decision function B f . it. just elim inates the values o f a tlr iln ile s  in tin* prime 

im plicants o f the result.

'I'he reduct function EiuiD[V) is a Boolean function constructed by the conjunction 

o f all phantom decision function B) in tin; decision m atrix. So that we h«i\e the 

following equivalence.

I'mcmv) ~  A A' (/ = 1.2 -j)
/

or

Frnsmv) =  A(A V My) = 1 > - T- ■i = 1 • -...
• J

The set o f redacts, denoted as R.ED(\V,i\), is obtained by perform ing t h e  mill 

tip lications and applying the absorption law o f Boolean algebra over t h e  Boolean 

expression Fiu:D[\vd\)- The conjunct.s. or prime im plicants o f the result o f the redact 

function, are the whole set o f redacts for the target concept I,'/ in a given knowledge 

representation system.

A m inim ized knowledge rule sets corresponding to a reduct is a set o f decision 

rules which is fu lly contra! by the attributes o f a reduct. The fu lly rover means that 

all the condition a ttribu tes used by the decision rules is also the a ttributes o f llu* 

redact table,

.let RU Lmax =  { / ’i , i'k} be the set o f all maximal generalized decision rules 

generated by the decision m atrix  method and let HR I)  — { I IE D \ ,  R EDt... .. R B I) ,}  

be the set. o f a ttr ib u te  redacts. A m inim al knowledge base referred to I l l ' l l ), {RED-, c 

RED)  is denoted by RUl<maAR EDi)  and defined as

R.Ul/mnx(R B D j)  =  \J {C o m l(rk) C ConrKREIh) : rk <= />V 

where Cond( ) is the set o f a ttr ib u te  names.

Example 6.1 Figure 6.2 depicts two decision matrices obtained from l lie knowledge 

representation system given in 'Pablo 6.1. Each cell ( i . j )  in a decision m atrix  is a.
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U/!.% S II '', C' CLASS 
old, 0 0 1 0 0 
obj2 1 0 2 I I 
ob j 3 I 1 1 0 0 
obj,i 0 2 1 I I 
objr, I 2 1 0 1 
obh 1 0 1 0 0 
obj; 1 2 2 1 1 
008 0 () 2 1 1 

Table 6.1: A knowledge representation system. 

j I 2 3 4 5 
i 08.! obj  obj,1 obis obj-.• obits 
I obji (S,0)(E,1) 

(C.0) 
(11.0)(C,0) (S,0)(11.0) (S,0)(11,0) 

(E.1 )(C.0) 
(E.1)(C,0) 

2 obj3 (I1.1)(1:.1) 
(0,0) 

(S,1 )(ILI ) 
(0,0) 

(11,1) (11.1 )(E,1 ) 
(0.0) 

(5,1)(11,1) 
(E.1 )(C.()) 

3 objr, (E,1 )(C,0) (5,1)(11,0) 
(0,0) 

(11.0) (I1,0)(1%,1) 
(C.0) 

(S.1 )(E.1 ) 
(C,0) 

(a) ,1 dein/non n atrir for class '0' 

j I '2 3 
i OH./ obji 0633 objc 
1 obj2 (S,1)(E,2) (11,0)(E,2) (E,2)(C.1 ) 

(0,1) (0,1) 
2 °b,., (11.2)(C.1 ) (S.0)(11.2) (SW2) 

(0,1) (C,1) 
:1 obis (S,1 )(11,2) (11,2) (11,2) 
4 obj; (S.1)(11.2) (11,2)(E,2) (11.2)(Ea) 

(E,2)(C,1 ) (0,1) (0,1) 
5 obj (6,2)(C,1 ) (S,0)(11,0) (S,0)(E,2) 

(1:,2)(C,1) (0,1) 

(I)) A decision malrir for class 'I' 

Figure 6.2: Decision matrices for Table 6.1 
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on./ S II !•; C CLASS
f>hj i 0 0 1 0 0
obji 1 0 2 1 1
objti 1 1 1 0 0
obj,, 0 2 1 1 1
objr, 1 •2 1 0 1
<>bjc, 1 0 1 0 0
objr 1 2 •2 1 1
<>bjs 0 0 •2 1 I

Tabic (5.1: A knowledge representation system.

j 1 2 3 ■t 5
i O l i . l obji obj, i obji, objr objs
I obji (-S.O)CB.l)

(C.0)
(II.O)(C.O) (S ,0) (II ,0) (S,0)(H,0)

(E .orc.o)
(E .l )(C.O)

•_> obji ( I I .1 ) ( l i, l)  
(C.0)

(S ,l)( l l .l)
(C.0)

( l l . l ) ( l i. i  )(!•;, i ) 
(C.0)

(S . l) ( l l . l )
(B.IKC.O)

:t objr, 0v.l)(C.O) (S.l)(H.O)
(C.0)

(H.0) (ii,o)(i:;, i)
(C.0)

(S,l)(Lv.l)
(C.0)

(a) A decision m ntr ir  fo r  elms 'O'

j 1 2 3
I OH.I obj i obj 3 objs
1 objj (S ,I)(E ,2)

(CM)
(ll,0)(lv.2)

(CM)
(U.2)(C,1)

objs (ll.2 )(C .l)
(C .l)

(S.0)<H.2)
(C .l)

objs (S ,l)(ll.2 ) (H.2) (11.2)
l Obj7 (S ,l)(ll,2 )  

( iv.e)(c , i )
(H.2)(E,2)

(C .l)
(1!.2)(E.2)

(C .l)
r. objs (E|2)(C,1) (S.0)(H,0)

(E.2)(C,1)
(S,0)(lv,2)

(C ,l)

(b ) A decision m n tr ir  fo r  class 7'

Figure 6.2: Decision matrices for Table 6.1
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collect ion or at ribute-value pairs distinguishing row i of'tlie target ( lass from ohm; 

.1 of its complement. 

Based on these decision matrices we can obtain I he rolliming dveisiou rum I ions 

13:' = I, 2. 3) froin the class "0" derision matrix and similarly. we can eloala 
(i = I. 2. ...5) from the class "1" decision matrix). 

Class "0" dOeiSi011 

13°= ((S,O)v (E, 1) v (C,0)) ((11m) (rm)) ((5.0)v (um)) ((sA)v (11,0) v(II) (coo)) 

A((g. I) V (CM)) = (('.0)) V ((mon (1;.1))v wi3O A (('m)) 

= wit v (E.1) v ((',0)) AUS, I)v (11.1)v (CA)) A((11,1))A (E,I)v (coo 

M(.5.1)v(//.1)v(K.i)v((',t)))=(11,1) 

= ((1;. 1) (c.0)) ((S.I)v (11,0)v (('.1)) A ((no)) ((11,1)) V ( b.% I) v (cm)) 

AUS, I) (N,I)v (C.0)) = 0(11,0)A (8, )) v ((11.0) A (corn 

The U IBPI corresponds to all the maximal generalized decision rides 7, for the 

class "0" or the knowledge representation system shown in Table 0,1: 

(S = 0) n (C' = 0) -4 (('l,,iSS =1 01) 

(II = (1) A ( = I) -4 (('LASS = I 0') 

(II = (1) A ((' = (1) .4 (CLASS 1!..• /

(II = 1) -4 (('lAss 0') 

Similarly, we can obtain the set of all maximal generalized decision rules l'or the 

class "1": 

(B= 2) -+ (CLASS =1 I') 
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collection of a ttribu le -va lue  pairs distinguishing row / o f the I argot class from lo lu tim

j  o f its  complement.

Based on these decision matrices we can obtain the following decision filia tio n s

B f  (i =  1. 2, *d) from the class *'(V* decision m atrix  (and sim ilarly, we can obtain Jif

(i =  1. 2, from the class "1" decision m atrix ).
Class "0" decision functions:

B? =  ((.*). 0) V (K. I ) V (C, 0)) A ( ( / M )  V(f-,U)) A ((S.IJJV ( / / ,» ) )  A ((.S.O) V ( / / . I I )  V l £ .  | )  V ( ( ’,<!))

A((/J. I ) V (C .0 )) =  ((.x.O) A (<".«)) V (( / / . ())  A (/•;. I )) V <(//.!>) A {(". II))

h 9 j =  { { / / ,  i ) v { / i . i ) v ( r . o ) ) A { ( . s - . ) ) v ( / / . i ) v ( r . » ) ) A { ( / / . i ) ) A ( ( / M ) v ( / : . i ) v ( r . i i ) )

A « S. I ) V ( / / ,  I ) V ( 1C. I ) V (C'.O)) = ( / / , ) )

B j  =  <(/v- J) V (C'.O)) A ((.*5.1) V ( / / ,0 )  V (C'.O) A ((//.»»)) A ( ( / / .U) V ( I ) V ((*.«>))

A((,S. I)  V (/;. 1) V (C'.O)) =  ({ / / .( I )  A H i.  I )) V ( ( / / , ( I) A (C'.O))

The U |/ i,()| corresponds to all the maximal generalized decision rules H I'I .  for the 

class “ 0”’ o f the knowledge representation system shown in Table (i.l:

(A* =  0) A (C =  0) (CLASS = '  O')

( / / = « )  A ( /•;=  I I ^ I C U W s ’ O')

( / /  =  (I) A (C  =s (I) -> (C l.ASS = '  O')

{11 =  \ ) - i  (CLASS = '  O')

Sim ilarly, we can obtain the set o f all m axim al generalized decision rules for tin- 

class “ 1” :

(1C =  2) -+ (CLASS  = ' I')
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(C = 1)-4 (('LASS =1 11) 

(// = 2).4 (('LASS =1 11) 

Now, let us compnt e the redact function for the class '01" and class "0". such that 

1.1(1$11ili) (I = t.2.3) 

=((sAc) v o/An,v(1/Ac.)),(11)AwiAtov(//Ac))= vimo v(Iip.c)
ow,„„ =AliJ (.1= J.2.3,4,5) 

=((B)v(C))A((//)v(C))A(//)A((//)v(R)v(C))A(Mv(c))=(//AP)v(//AC) 

So that we can obtain the sets of redncts for the class ''0" and the class 

iwinm= vig.iicj: HED(I)= (IIE,I1C) 

•• 

We have the set of rechwts RED = {11E.11(1 %silk respect to tlw decision 
at tribute. According to the above definition. the minimized knowledge bases corre-
sponding to reducts E" and "ll.C" on the class "0% and to reducts E" and 
'`/f. C'" on the class -1" are the following sets of decision rules extracted from all 
maximal generalized decision rules: 

'Ph( maximal ynerwli:ed decision rules for ;and -11.E" on the eloss It" is 
= 0)A(/>= I) -* (CLASS =101) 

(II = 1).4 (CLASS =10') 

Mr maximal firnemlivd decision roles for !Mud 0.1I.C" on the class -0" is 
= 0)A(l.'= 0) -o (CLASS =10') 

(11 = I) -4 (C LASS =1 0') 

TIn maximal guff rali:rd decision rides for retitle! -11.E" on the class -I" is 

(E = 2) -f (CLASS =' V) 

(II = 2) -4 (CLASS =' I') 

'Ph( nuLrimal generali:cd decision rules for reduct on the class -1" is 
(c= 0.4 (CLASS =1 11) 

(// =2).4 (CLASS =' I') 
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[ C s  l> ->  (CLASS = '  l")

( I I  8  2) - t { C L A S S  = '  I ')

Now, let us compute tin* redact function for the class '‘ 1*’ and class "0". such that,

I ' i ,  h im ,  =  f \  H"  ( / =  I , .».:>)

=  ((.S' A C)  V {It A / i)  v ( / /  A C . )) A ( / / )  A ( ( / /  A l i )  V ( / /  AC’)) =  { / /  A 1C) V ( / /  A C )

/'///;/;(.) = / \  /‘d 0 = l.a.3..l,5)

=  ( ( / i ) V ( C ) )  A ( { / / )  V (C)) A < / / ) A {<//) V ( /•)  V (C ))  A {(/£?) V (C’l) =  ( / /  A /?) V [ I I  A C)

Ho that we can oblain tlie  sots o f redacts for the class "0" and the class " I ” , 

mum = {in:.lie j; iuw(\)= (im.nc)

We have I h** sel o f redacts I f  ED  =  { HE. 11C} w ith  res peel lo  the decision 

a ttribu te . According to the above defin ition, the minimized knowledge bases corre

sponding to redacts ul l .  E" and " II . C ” on the class ‘*0'', and to redacts "'11. PP and 

" l l . C "  on the class "1“ are the following sets o f decision rules extracted from all

maximal generalized decision rules:
'Phi maxim at //niiralized /Incision rules fo r  reduct “I I . 1C" on the class “0" is

[ i i  =  o) a  (/•; =  i)  -> {c l a s s  = '  o')

( / / = ! ) - *  {CLASS  = '  o')

Tin maximal yi nr rulical ilfcision rules fo r  m l  net “l l . C "  on the class "0” is

( I I  =  0) A {C  =  0) -*■ [CLASS  = '  o')

( I I  =  I )  -> [CLAS S  = '  O')

Tin maxi mid i i i i k nilicnl ikeision rules fo r  raluct “I I .  I V  on the class “ I ’’ is

[K  =  2) [CLAS S  = '  I ' )

[ I I  =  2) - r  (CLASS  = '  I ')

Tin maximal (iciicralhal decision rules fo r  reduct “l l .  C*' on the class “ t ”  is

(C =  l ) - >  (CLASS = ' l ' )

( I I  = 2 )  - » (CLASS  = '  |')

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•uo!sspuad inotpm paimtlaid uopnpaidai JaqpnA •JOUMO iqbpAdoo aut to uo!sspued ithm poonpaida 

Vfi 

omi ito!pu ((!) !sw(t hiamptioD tuaaallll, 1119 sind tio!pu lualkm!tiba 

s.)111.1 tow .1(1 em woilm ilOMpUOD (19 pauptiapi aq UR3 sapuoi 

40:010 mi. Jo q0(1,c; 00,111.1, .4404101 olipopsoul oicluinui JO sof11,1 alp 2up.iattl puu salsa 

Jo ss.,1101,11(101(1,,w, pl.,1YO1 qmidisi.suodui ollid uo sosuao.; 1J •poillow x1.q lu ut.A (sapid 

11(11.1 ))1v');(1) 4•)111.1 ridlialM011}1 Aunt; ;mu ox,cimin •iciltr)Dutualiptiu acipasop of ti uold 

flu ow; uo1l.)01, 110 posio; sI 1,011100; sm.!, :[7.60N] potilau; 01(11l Hoist:n;(1 (17) 

v1i.plum(1.)4 yogi ipu.) 10.1 1,,,limmoli,11;; ;pop salmi Sall:3011a lt11111..10V11? 

11. out !Hp clt vim 10.1 v)(11! ibliwolit [moms) itumpooD puu 

qz:cotiisi 
110411 .01! Olt i11111X11 Ititl 11.),11.11 11 5,10410) 1M1 1 '140111,1 .7 JO /1,' 51101'11.1)110J x111 0.1.11. 111(1 

.11111,‘ ., !mut Hu) gii0p!!)11(.) .1(1011g Jo puoiNII! i),tmim (6sito>11 Hitittuoj aA!int 

ill!A% ion,' ill!, .9 0 .11;11010.1(1 .;;;; ipno .10A :tionmuNtlioa imsiduti 0A1eN (i;) 

116110N] so 10,1 JO .1J(11111111 Itfi11t, X1:111 1111..11 ssup 

11 01111 1).411. ;t4H1,, d.,1111 1N111. W111. 11111,1 1 V '14Nitla .1110 .10.1 N;,10,1 0111.1 11J11:4 (F.) 

'10(11111H 1(181.)1'   110!1ng1.1191) ?Ii!litisal mil JO ssup ,cipoleut 

mil 111 g! put! I).01 SI)M11115111 .  .1.0,‘07 

lull ; $:0111.1 J0J qd,ulultuu, 10.1.).‘0.> Jo sopuonbo.;: i :ilopluip ;sip Jo (I ) 

.141),11 s las .T41111111 .10; s,Ooltals JuoJ wail; •,i11;;03,111,) 

.sup;;;;.).; gosu(l .Ailoprolo; ,);(11. ;;;;;;; JO slulspil) Juvittio.) 01 moll JO itialgo.id 

'.10%.;%‘01; .11:010>11 uoolmwssup um) 1101lowssup 

Iodumul0; ii.1111,1(10.141(lv .11 oti!).)!moto! Jo NPlosaid!ipilit pm; pamotis N.-outs 

\silly 11(i1;1, ) •( .111%) ;wpm./ X.I.),‘ .)(1 01 p.),uoml ,a)lim spue .11(T;pap 11!1111 

.111; 1111,100 0 1 10111.91110 ►11.1111 0.11! ti1101.9,)01) .111 1 1)1111 5.1111,1 11!.1.1.1.1S 11 pamssup s! 0.4(10 

0110 ill' . )1111  1 '.))111411.1(1.1)41 Joi1.)(1 II! II!, NO111.1 apill.l1011:1 01(11. 1111111 JO S.10,11S111: 

.)11 i 11111111( 11114 ),) 11'll 1 Ii111. (1011 ‘. 4104)1 ' (1(1 111)1: JO  110111L4)1 . :4:41t1.) .)l)1 .10 .1 No/I11,1 a),(
31)01M011)1 

JO 

1./q 1)P.)1q111. 4:0111,1 4/111.01,%10101 141g 40!111101 11111.141102 01 S1 101)1 0111 .50111.1 

oWl),), M( ,11,1 Jo glos ;mu ist10.) 01 pollitmi lb 1)0111.1S.LI(I .),%1 •1101.1;),15 1S11 If 

soptu Jo slas aidpinw JO uoputtpqmoo E•9 

6.3 Combination of Multiple Sets of Knowledge Rules

In Iasi section. we presented a meiliod to constrnet multiple sets of know.edge 

rules. 'Plte idea is to generate multiple set of knowledge rules iu.sio.nl of one set 

of knowledge rules for the classilicntiou of new objects, hoping ili.ii combining the 

answ<M's or multiple knowledge rules will result in belter perform.uue. Tv pit ally one 

object is classified with several rules and the decisions are then toiuhiucd to obt.i’m the 

final decision. 'Phis strategy proved to be very ellicient [('cHNX, (ianS!). (‘111!)I]. Mam 

studies showed that such multiple sets of knowledge rules if appropriately (ombined 

during classification can improve the classification accuracy (Kok'!i:l|, However. the 

problem of how to combine decisions of multiple knowledge bases remains.

Currently, there are four strategies for combining multiple sols of knowledge rule:

(1) Sum of distribution: I‘Yo(|ueneies of covered training instances Ibr all rules I hat 

cover a given testing instances are summed up and the iiistame is classified in the 

majority class of the resulting distribution [CIB9I. HunbOj.

(2) Voting: Bach rule voles for one class. A training instance is classified into a 

class with maximal number of votes [KonOIJ.

(.’I) Naive Bayesian combination: for each class the probability is <nh ulaled with 

naive Bayesian formula [Kon89] where instead of simple conditions (attribute value 

pairs) the conditions A, of /.• rules, that covers a given testing example are used

[SmCif)2j:

WM i .-W = W) n^jTy

.Smyth and Goodman [SmGf)2] slightly modified I lie above formula as their ITIH 'U', 

learning algorithm generates rules which are generated for each class separately.

(4) Decision Table method [NgB92]: This method is based on decision table ap

proach to describe mathematically, analyze and merge knowledge rules fptodm lion 

rules) via matrix method, ft focuses on rule inconsistency, logical incompleteness of 

rules and merging the rules of multiple knowledge bases. Three types erf iinonsis 

tencies can be identified: (a) condition inconsistency where two or more rules have 

equivalent action parts but different condition parts; (b) action iinonsisUn<y two
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or more rules have logically equivalent condition parts but different action parts: and 

(c) dynamic -during processing of the rule-base, rules may develop any of the above 

types of inconsistencies. It consists of two phases: in Phase I, a 0-i decision matrix 

is prepared and analyzed separately for each expert. The incon.sistencies discovered 

are resolved by the knowledge engineer before the rule-sets are merged in Phase II. 

In Phase 11, the rule-sets are merged and analyzed. Problems identified at this level 

are discussed and resolved in a group setting. 

The above four strategies are complementary to each other. each has its strong 

and weak point depending on the domain. A deep analysis and comparison of these 

strategies and developing new methods for combining multiple sets of knowledge rules 

are one of our current, research topics, 
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or more rules have log ica lly  equivalent cond ition  parts b u t d iffe ren t action  parts: and 

(c) dynam ic 'd u rin g  processing o f the  rule-base, rules m ay develop any o f the  above 

types o f inconsistencies. I t  consists o f tw o  phases: in  Phase I, a 0-1 decision m a tr ix  

is prepared and analyzed separately for each expert. The  inconsistencies discovered 

are resolved by the  knowledge engineer before the rule-sets are merged in Phase I I .  

In Phase II. the rule-sets are merged and analyzed. Problem s iden tified  at th is  level 

are discussed and resolved in a group setting .

The  above four strategies are com plem entary to  each o ther, each has its  strong 

and weak po in t depending on the dom ain. A  deep analysis and com parison o f these 

st rategies and developing new methods fo r com bin ing  m u lt ip le  sets o f know ledge rules 

are one o f ou r current research topics,
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Chapter 7 

Implementation and Experiments 

To test and experiment on the database learning algorithms developed in the 

previous chapters. an experimental database learning system. DBROUGH 11111(1)1a. 

HCH93b. HSCZ9-1}. has been constructed and some interesting experiment:, peeve been 

conducted in the learning system. 

7.1 Architecture 

DBROUGH is a descendant of DBLEARN [CCI191. I1CC92a1. The architec-

ttu•e of the system is shown in Figure 7.1. The system can discover different kinds 

of knowledge rules from relational databases. including characteristic rides, discrim 

ination rules, decision rules. maximal generalized rules. data t rend regularities and 

multiple sets of knowledge rules for the discovery task. The system takes SQL like 

database learning requests and performs different algorithms to fi nd different t ides. 

The background knowledge is stored in a concept hierarchy table. The provided con-

cept hierarchies can be adjusted dynamically according to database statistic:, and 

specific learning requests. 

DBChar: Find the characteristic rules for the target class 

DBC1ass: Find the classification rules of the target class with other classes 

DBDeci: Find the decision rules for the decision attributes 

DBMaxi: Find all the maximal generalized rules 

DBTrend: Find the data trend regularities for the target class 
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C hapter 7 

Im plem entation and E xperim ents

T o  test and expe rim en t on the  database learn ing  a lgo rithm s developed in  tin - 

previous chapters, an experim en ta l database learn ing  system . DBROUGH [ l lu ( '9 la .  

HC H 93I). HSCZ94]. has been constructed and some in te res ting  experim en ts  have been 

conducted in the  lea rn ing  system.

7.1 Architecture

DBROUGH is a descendant o f D B L E A R N  [CC’1191. IIC C ’92a]. T he  n rc liite r-  

tu re  o f the  system  is shown in F igure  7.1. The  system can discover d ifferent, k inds 

o f know ledge rules from  re la tiona l databases, in c lu d ing  characte ris tic  rules, d isc rim  

in a tio n  rules, decision rules, m ax im a l generalized rules, data trend  regu la rities  and 

m u lt ip le  sets o f  know ledge rules fo r the discovery task. T he  system lakes SQ L like  

database learn ing  requests and perform s different, a lg o rith m s to  find d iffe ren t rules. 

T he  background know ledge is stored in a concept hierarchy tab le . T h e  provided com 

cept h ierarchies can be adjusted d yna m ica lly  according to  database .statistic:, and 

specific lea rn ing  requests.

DBChar: F ind  the  characte ris tic  rules fo r the target, class

DBClass: F ind  the  classification rules o f the  ta rge t class w ith  o th e r classes

DBDeci: F in d  th e  decision rules fo r the  decision a ttr ib u te s

DBMaxi: F ind  a ll the  m ax im a l generalized rules

DBTrend: F ind  the  data  trend  regu la rities  for the ta rge t class
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User Learning 
Request Result 

DBROUGH-Interface 

Database 
Data 

Generalization Program 

Attribute-Oriented 
Induction 

Reduction Program 

Rough•Set Reduction 

Concept 
Hierarchies 

Rule Generation Programs 

1. Characteristic Rules (DI1Char) 

2. Classification Rules (DBClass) 

3. Decision Rules (DBDeci) 

4. Maximal Generalized Rules (DBMaxi) 

5. Multiple Knowledge Bases (DBMkbs) 
6. Data Trend Regularities (DBTrend) 

Figure 7.1: The architecture of DBROUGH 
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User Learning
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HierarchiesAttribute-Oriented

Induction

DBROUGH-Interface

Reduction Program

Generalization Program

1. Characteristic Rules (DBChar)
2. Classification Rules (DBCIass)
3. Decision Rules (DBDeci)
4. Maximal Generalized Rules (DBMaxi)
5. Multiple Knowledge Bases (DBMkbs)
6. Data Trend Regularities (DBTrend)

Rule Generation Programs

F igure 7.1: The  a rch itec tu re  o f D B R O U G H
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DBMkrs: Find multiple sets of knowledge rules for the target. class 

In order to constrain a knowledge discovery process to generalization on a par-

ticular set of data using a particular set of background knowledge, learning should 

be directed by specific requests. A database learning request should consist of (i) a 

database query which extracts the relevant set of data, (ii) the kind of rules to he 

learned, (iii) the specification of the target class and possibly I he cont rusting classes 

depending on the rules to be learned, (iv) the preferred concept hierarchies, and (v) 

the preferred form to express learning results. Notice that (iv) and (v) are optional 

since default concept hierarchies and generalization threshold values can be used if 

no preference is specified explicitly. 

In our system DBROUGH, the learning procedure is initiated by a user learning 

request. The learning request can be viewed as an extension to relational language 

SQL for knowledge discovery in databases. 

We have implemented DBROUGH using C under an Unix/Sybase environment, 

A high level interface has also been constructed with the assistance of UNIX software 

package LEX and YACC' (for compiling the DBROUGH language interlace) for the 

specification of learning tasks (either characteristic rules, classification rules, decision 

rules or maximal generalized rules and so on), conceptual hierarchies and thresholds 

as well as for communication with users in the learning process. 

The syntax of the language is specified in Table 7.1 using extended 131N where 

denotes one or more occurrences, Twyjet_Class_Namc, Contrwsi_Class_Nanu 

AttriVame, Concept_Hicrarchy_,Vamc are the corresponding names specified by mien), 

and Int.Yal is a constant 

<DBROUGH> 

<rule_type> 

<charact_rule> 

<class_rule> 

greater than O. 

:= learn <rule_type> 

:= <charact_rule> <class..rule> <decision_rule> 

<maxi_gen_rule> I <mkr_tule> I <datatrend_rule> 

:= characteristic rule for <Class_name> <DB.name> 

<Cond> <attr_list><tab_threshold> <con_hierarchy? 

:= classification rule for Target_Clas_Name vs 

{Contrasting_Class_Name} <DB_name><Cond> 

<attr_list><tah_threshold> <con_hierarchy> 
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DBMkrs: F in d  m u lt ip le  sets o f know ledge ru les fo r the t arget class 

In  o rde r to  constra in  a knowledge d iscovery process to genera liza tion  on a p a r

t ic u la r  set o f  da ta  using a p a rtic u la r set o f  background knowledge, lea rn ing  should 

be d irec ted  by specific requests. A  database lea rn ing  request, should consist o f ( i)  a 

database que ry  w h ich  ex trac ts  the  relevant set o f da ta , ( i i)  the k in d  o f rules to  be 

learned, ( i i i )  th e  specification  o f the  target class and possibly the co n tra s tin g  classes 

depending on the  rules to  be learned, ( iv )  the  preferred concept h ierarchies, and (v ) 

the  preferred fo rm  to  express learn ing  results. N o tice  tha t ( iv )  and (v )  are op tio n a l 

since d e fa u lt concept hierarchies and genera liza tion  th resho ld  values can be used i f  

no preference is specified e x p lic it ly .

In  o u r system  D B R O U G H , the lea rn ing  procedure is in it ia te d  by a user lea rn ing  

request. T he  lea rn ing  request can be viewed as an extension to re la tion a l language 

S Q L fo r know ledge discovery in databases.

We have im p lem en ted  D B R O U G H  using C under an U n ix /S ybase  env ironm en t.

A  h igh level in te rface  has also been constructed w ith  the  assistance o f U N IX  softw are 

package L E X  and Y A C C  (fo r co m p ilin g  the  D B R O U G H  language in te rlace ) for the 

specifica tion  o f lea rn ing  tasks (e ith e r cha rac te ris tic  rules, c lassifica tion rides, decision 

rules o r m a x im a l generalized rules and so on), conceptua l h ierarchies and thresho lds 

as w e ll as fo r com m un ica tion  w ith  users in the  learn ing  process.

T he  syn tax  o f the  language is specified in  Table  7.1 using extended B N  K, where { } 

denotes one o r m ore occurrences, Target.C lass.Natnc, C on tras t .C laaa .N ann , H d .N u n n , 

A ttr .N a m e ,  C oncep t.! ! i t ra rch i j .X an te  are the  correspond ing names specified by users, 

and In t .V a l  is a constant greater than  0.

<DB RO UG H> := learn <rule_type>
<rule_type> := <charact_rule> j <class..rule> | <decision_rule> |

<maxLgen_rule> | <mkr_tule> | <datntrencLruie> 
<charact_rule> := characteristic rule for <Class_name> <I)B„name>

<Cond> <attrJistxtab_threshold> <con_hierarchy> 
<class_rule> := classification rule for Target_Clas_Name vs

{Contrasting_CIass_Name} <DB_narne> <Cond> 
<attr_list><tab_threshold> <con-hierarchy>
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<decision_rule> 

<maxi_gen_rule> 

<mkr.rule> 

<datatrend_rule> 

<DB_name> 

<Cond> 

<attr_list> 

<attr> 

<attrs> 

<Class_Name> 

<tab_threshold> 

<con_hierarchy> 

<hier_name> 

:= decision rule for < Class_Name><DB_name><Cond> 

{<attr_list>}<tab_threshold> <con_hierarchy> 

:= maximal generated rules for <Class_Name> 

<DB_name><Cond><attr_list><tab_threshold> 

<con_hierarchy> 

:= multiple knowledge rule for <Class_name> <DB_name> 

<Cond><attr_list><tab_threshold><con_hierarchy> 

:= data_trend_regularities for <Class_name> 

<DB_name> <Cond><attr_list><tab_threshold> 

<con_hierarchy> 

:= from relation {Rel_Name} 

:= where Condition_Sentence 

in relevant to attributes <attr> 

:= <attrs>, <attr> 

:= Attr_Name 

:= Attr_Name J Attr_Name=attribute_value 

:= using threshold Int_Val 

:= using hierarchy hier_name 

:= Concept_Hierarcy_Name 

Table 7.1 Syntactic specification of DBROUGH. 

7.2 Experimental Results of Some Algorithms 

'lb test the effectiveness of our system DBROUGH, we present the experimental 

results of some discovery algorithms of DBROUGH on Canada's Natural Science 

and Engineering Research of Council (NSERC) Grants Information System and Car 
Relation as shown in Chapter 5, 
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<decision_rule>

<maxi_gen_rule>

<mkr_rule>

<datatrend_rule>

<DB_name>
<Cond>
<attr_list>
<attr>
<attrs> 
<Class_Name> 
<tab_threshold> 
< con _h ierarchy > 
<hier_name>

:= decision rule for < Class_NamexDB_name><Cond> 
{<attr_list>}<tab_threshold> <con_hierarchy> 

i =  maximal generated rules for <Class_Name> 
<DB_name><CondxattrJistxtab_threshold>  
<con_hierarchy>

:= multiple knowledge rule for <Class_name> <DB_name> 
<Condxattr_listxtab_threshold><con_hierarchy>

:= data_trend_regularities for <Class_name>
<DB_name> <Condxattr_listxtab_threshold>  
<con_hierarchy>

=  from relation {Rel-Name}
=  where Condition-Sentence 
=  in relevant to attributes <attr>
=  <attrs>, <attr>
=  Attr.Name
=  Attr.Name | Attr_Name=attribute_value 
=  using threshold Int.Val 
=  using hierarchy hier.name 
=  Concept.Hierarcy.Name

Table 7.1 Syntactic specification of DBROUGH.

7.2 Experimental Results of Some Algorithms

To test the effectiveness of our system DBROUGH, we present the experimental 
results of some discovery algorithms of DBROUGH on Canada’s Natural Science 
and Engineering Research of Council (NSERC) Grants Information System and Car 
Relation as shown in Chapter 5.
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code 
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Figure 7.2: Schema diagram for NSERC grants informal ion system 

7.2.1 NSERC Grants Information System 

The NSERC Grants Information System is a software package consisting of a 

database of information about the grants that are awarded by NSERC and a menu 

based interface to that database. It is intended to be used by individuals in " univer-

sities, government agencies and industry... to search for grants that are of 'm114.111;11' 

interest" [HCC92a]. 

The NSERC Grants Information System contains a database of information about, 

the grants that are awarded by NSERC. The central table in t he database has 10,087 

tuples with 11 attributes currently. TI  central table in the database is made or rows 

each of which describes an award by NSERC to a researcher. The values constituting 

each row specify the different properties of the award, including the name of t 

recipient, the amount of the award and so on. In the schema diagram rignre 7.2, 

nodes representing the properties of awards are represented by nodes linked to the 

"Award" node. In the schema diagram, tables are specified by rectangular nodes. 

The NSERC database can also be represented by the following relation-like scheina. 

Award(recp_name, dept, org_code, fiscal_yr, coin p_yr, area_code, H111011111" grant_code, 

ctee_cde, installment, discipline_code, project) 

Organization(org_code, org_name, province) 

Area(area_code, area_title) 

Grant_type (grant_code, grant—tide; pmt) 

Committee (ctee_code, cname) 
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F igure  7.2: Schema diagram  for NSERC grants in form a lio n  system

7.2.1 NSERC Grants Information System

T he  NSERC G rants In fo rm a tion  System is a software package consisting o f a 

database o f in fo rm a tio n  about the  grants th a t are awarded by N S E IK ' and a menu 

based in terface to  th a t database. I t  is in tended to  be used by in d iv id ua ls  in “  un ive r

sities, governm ent agencies and industry ... to  search for grants that, are o f p a rticu la r 

in te res t”  [HCC92a].

The  N SERC G rants In fo rm a tio n  System contains a database o f in fo rm a tion  about 

the  grants th a t are awarded by NSERC. The  centra l tab le  in the database has 10,087 

tup les w ith  11 a ttr ib u te s  cu rren tly . T he  centra l tab le  in the database is made o f rows 

each o f w h ich  describes an award by NSERC to  a researcher. The  values co n s titu tin g  

each row specify the d iffe rent p roperties o f the award, in c lu d ing  the name o f the 

rec ip ien t, the  am ount o f the  award and so on. In the schema d iagram  F igure 7.2, 

nodes representing the properties o f awards are repiesented by nodes linked to  the 

“ A w a rd ”  node. In  the schema d iagram , tables are specified by rectangu lar nodes.

T he  NSERC database can also be represented by the fo llow ing  re la tion  likesschema. 

Award(recp_nam e, dept, org.code, fiscaLyr, com p .y r, area.code, am oun t, g rant.code  

ctee_cde, in s ta llm e n t, d iscip line.code, p ro jec t)

O rganization(org_code, org.nam e, province)

Area(area_code, a re a .title )

G ra n t.ty p e  (grant.code, g ra n t.t it le , p in t)

C o m m itte e  (ctee_code, cname)
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Discipline (discipline_code, discaitle) 

The task-specific concept hierarchies (shown in Figure 7.3) are constructed by 

both domain expert and knowledge discovery tools based on the statistics of data 

distribution in the database. The most general concept is the null description (de-

scribed by a reserved word "ANY"), and the most specific concepts correspond to the 

specific values of attributes in the database. 

{0-20,000 } C 0-20Ks 

{20,000-40,000 C 20Ks-40Ks 

{40,000-60,000 C 40Ks-60Ks 

{60,000- C 60Ks-

{0-20Ks } C Low 

{20Ks-40Ks, 40Ks-60Ks C Medium 

{60h,-- C High 

{Low, Medium, High } C Any (amount) 

{0-15 C Operating-Grants 

{150-165 C Strategic-Grants 

{16-149, 166- C Other 

{Operating-Grant, Strategic-Grants, Other } C Any(grant_code) 

{23000-2:3499 } C Hardware 

{23500-23999 C System_Organization 

{24000-24999 C Software 

{24500-25499 C Theory 

{25500-25999 } C Database_Systems 

{26000-26999 } c AI 

{26500-26999 } C ComputingMethod 

{0-22999, 27000- } C Other_Discipline 

{Hardware, System_Organization, Software, Theory, Database_Systems, AI, Comput-

ing_Method, Other_Discipline} C ANY(discipline_code) 

{British Columbia } C B.C. 

{Alberta, Manitoba, Saskatchewan } C Prairies 

{Ontario } C Ont. 
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D isc ip line  (d iscip line .code, d isentitle)

'I ’lie task-specific concept hierarchies (shown in F igure  7.3) are constructed by 

both  dom ain expert and knowledge discovery tools based on the  s ta tis tics  o f data 

d is tr ib u tio n  in the database. The  most general concept is the  n u ll descrip tion  (de

scribed by a reserved word “ A N Y ” ), and the  m ost specific concepts correspond to  the  

specific values o f a ttr ib u te s  in the  database.

{0-20,000 }  C 0-20Ks 

{20,000-40,000 }  C 20Ks-40Ks 

{40,000-60,000 } C  40Ks-60Ks 

{60 ,000- }  C  60 K s- 

{0~20Ks }  C  Low

{20K s-40K s, 40Ks-60I<s }  C M edium  

{bO hs- } C  High

{Low', M ed ium , High }  C A ny  (am ount)

{0 -15  }  C O pera ting-G ran ts  

{150-165 }  C S tra leg ic -G ran ts  

{16-149, 166- }  C  O the r

{O p e ra tin g -G ra n t, S tra teg ic-G rants , O th e r }  C Any(grant_code)

{23000-23499 }  C Hardware 

{23500-23999 }  C S ystem .O rganization  

{24000-24999 } C  Software 

{24500-25499 }  C  T heo ry  

{25500-25999 }  C Database.System s 

(26000-26999 }  C A I 

{26500-26999 }  C  C o m pu ting -M e thod  

{0-22999, 27000- }  C O th e r .D isc ip line

{H ardw are , S ystem .O rgan iza tion , Software, Theory, Database.System s, A I,  C o m p u t- 

ing .M ct.liod , O tlie r .D is c ip lin e } C AN Y(d isc ip line_code)

{B r it is h  C o lum b ia  } C  B.C .

{A lb e rta , M an itoba , Saskatchewan } C  Prairies 

{O n ta r io  }  C  O nt.
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{Quebec } C Queb. 

{New Brunswick, Nova Scotia, Newfoundland, PEI } C Maritime 

{B.C., Prairies } C West_Canada 

{Ont.. Queb.} C Central_Canada 

{Maritime} C East_Canada 

{West_Canada, Central_Canada, East—Canada} C Any(province) 

Figure 7.3. A concept hierarchy table of the NSECH grants database 

7.2.2 Some Test Results 

Example 7.1 (DBChar) 

The learning task "learning the characteristic rule for the operating grants awarded 

to computer science discipline from relation alma', organization. and giyint_igin refer 

ring attributes: amount, province, with a table threshold value equal to IS by using 

concept hierarchy file disc, amount, prov, and grant—type" can he specified as Follows. 

DBROUGH 1> learn characteristic rule 

DBROUGH 2> for "CS_Op_Grants" 

DBROUGH :3> from award A, organization 0, grant—type G 

DBROUGH 4> where 0.org_code = A.org_code AND G.grant—order ="Operat-

ing_Grants" AND A.grant_code = G.grant_codc AND A,(lisexock ="Compiller" 

DBROUGH 5> in relevance to amount, province, prop(votes), prop(anionnt) 

DBROUGH 6> using table threshold 18 

DBROUGH 7> using hierarchy disc, amount, prov, grant type 

Notice that prop(attribute) is a built-in function which returns the percentage of 

the summation of the attribute value in the generalized tuple divided 1,y the summa 

tion of the same attribute value in the whole generalized relation. The type of the 

attribute must he "int" or "float". Votes is a special attribute which registers the 

number of tuples in the original relation which are generalized to one tuple in the 

final generalized relation. Prop(votes) returns the percentage of tuples covered by a 
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{Q uebec }  c  Queb.

{N ew  B runsw ick, Nova Scotia, Newfoundland, P 1C I }  C M a rit im e  

{B .C ., P ra iries }  C  W est-Canada 

{O n t..  Q ueb .} C  C cntraLC anada 

{M a r it im e }  C  East_Canada

{W est.C unada, C entraLC anada, East.O anada} C A ny(p rov ince )

F igure  7.3. A  concept h ierarchy tab le  o f the NSEOR grants database

7.2.2 Some Test Results

Example 7.1 ( D B C h a r)

T he  learn ing  task “ learn ing  the  characte ris tic  ru le  fo r the  opera ting  grants awarded 

to  com pute r science d isc ip line  from  re la tion  award, organization, and grant Jgpv  refer 

r in g  a ttr ib u te s : am ount, province, w ith  a tab le  thresho ld  value equal to  18 by using 

concept h ie rarchy file  disc, am ount, prov, and g ra n t-typ e ”  can be specified as follows.

D B R O U G H  1 >  le a rn  c h a r a c te r is t ic  ru le  

D B R O U G H  2 >  f o r  “ CS.O p_G rants”

D B R O U G H  3 >  f r o m  award A , organization 0 ,  g rant..type G

D B R O U G H  4 >  w h e re  O .org.code — A.org-codc A N D  G .g ran t.o rde r =  “ Operat-

ing_Grants”  A N D  A .g ran t.code  =  G .grant.code A N D  A .d i.scxode =  “ C o m p u le r”

D B R O U G H  5 >  in  re le v a n c e  to  am ount, province, prop(votes), p rop (am oun f)

D B R O U G H  6 >  u s in g  ta b le  th re s h o ld  18

D B R O U G H  7 >  u s in g  h ie ra rc h y  disc, am ount, prov, g rant_type

N otice  th a t prop(a ttr ibu te )  is a b u ilt- in  function  which re turns the percentage o f 

the sum m ation  o f the attr ibute  value in the generalized tup le  d iv ided  by the summa 

t io n  o f the  same attr ibute  value in  the  whole generalized re la tion . T he  typ e  o f the 

attr ibute  m ust be “ in t ”  o r “ floa t” . Votes is a special a ttr ib u te  which registers the 

num ber o f  tuples in  the o rig ina l re la tion  which are generalized to  one tup le  in the 

fin a l generalized re la tion . Prop (votes) re turns the percentage o f tup les covered by a
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generalized tuple in the final relation. 

A default attribute threshold value, 5, is used in this query. Finally, you have to 

type "go" on a line by itself. It is the command terminator in DBROUGH, and let 

D1311011011 know that you are done typing and ready for your command to be exe-

c:Ili ed. 

DI31101'011 first transforms the user learning request into High Level SQL query 

as below: 

w***.e)cs*x*xx****Ncxxxxx:exo:7.ptc*xx)iogx.:cxxxx***Nogxxx 

High level SQL query for task-relevant data 

select amounts, province 

from award A,organization O,grant_type 0 

where ( O.org_code = A.org_code AND G.grant_order ="Operating_Grants" 

AND A.grant_code = G.grant_code AND A.clisc_code ="Computer" ) 

As one can see in the High Level SQL query, "Operating_Grants" and "Computer" 

are high level concepts in the concept hierarchies and are not the primitive data in the 

database, so DBROUGH replaces them by the primitive data (concept) stored in the 

database by consulting the corresponding concept hierarchies. For example , "Com-

puter" (discipline_code) contains {Hardware, System_Organization, Software, Theory, 

Database_Systems, AI, Computing_Method, Other_Discipline}. Hence "Computer" 
in the query is replaced by the disc_code of the corresponding lower level concept, 

resulting in the primitive query for task-relevant data as follow: 

x**Ic************x******************************** 

Primitive level SQL query for task-relevant data 
...,:****.***.********,:***.******,s,**********.s<4.** 
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generalized tu p le  in the  fina l re la tion .

A defau lt a ttr ib u te  threshold value, 5, is used in th is  query. F ina lly , you have to  

type  “ //o”  on a line by itse lf. It is the com m and te rm in a to r in D B R O U G H , and le t 

D B R O U G H  know th a t you are done typ ing  and ready fo r you r com m and to  be exe

cuted.

D B R O U G H  firs t transform s the user learn ing request in to  H igh Level SQ L query 

as below:

* X X * X X X  X X X X J k * : * X X X X X

High level .SQL query fo r task-re levant data

select, am ount, province 

from  award A ,o rgan iza tion  0 ,g ran t_ type  G

where ( O .org.code =  A .org.code A N D  G .grant_order =  “ O pera ting_G rants”

A N D  A .g ran t.codc  =  G .grant.code A N D  A.disc_code =  “ C om pu te r”  )

As one can see in the  H igh Level SQL query, “ O pe ra tin g .G ra n ts ” and “ C o m p u te r” 

are high level concepts in the concept hierarchies and are no t the  p r im it iv e  d a ta  in  the  

database, so D B R O U G H  replaces them  by the  p r im it iv e  da ta  (concept) stored in  the  

database by consu lting  the corresponding concept h ierarchies. For exam ple , “ C om 

p u te r”  {discipline.code) contains {H ardw are , S ystem .O rgan iza tion , Software, Theory, 

Database.System s, A I, C 'om puting-M ethod , O th e r.D is c ip lin e }. Hence “ C o m p u te r”  

in the query is replaced by the  disc_code o f the corresponding lower level concept, 

resu lting  in the  p r im it iv e  query fo r task-re levant da ta  as fo llow :

P rim itiv e  level SQ L query fo r task-re levant data
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select amount, province 

from award A,organization 0,grant_type 0 

where ( 0.org_code = A.org_codc) AND ( 0.grant_order = 5 or (Lgrant_order = 10 
or G.grant_order = 15 ) AND A.grant_code = 0.grant_code 

AND (( disc_code >= 23000 and disc_code < 23500 ) 

or ( disc_code >= 23500 and disc_code < 24000 ) 

or ( disc_code >= 24000 and disc_code < 24500 ) 

or ( disc_code >= 24500 and disc_code < 25500 ) 

or ( disc_code >= 25500 and disc_cocle < 26000 ) 

or ( disc_code >= 26000 and disc_code < 26500 ) 

or ( disc_code >= 26500 and disc_code < 27000 ) ) ) 

Then DBROUGH extracts the task-relevant data from the MR(' grants infor-

mation system, after attribute-oriented generalization and rough set based rednc 

tion, the resultant relation is shown in Table 7.1. hence the characteristir rules for 

"CS_Op_Grants" is derived as: 

p, oicx)ic*********x*******x*:***********als********** 

The characteristic rule for"CS_Op_Grants" is: 
***,********.*****,..0,.. ic*), ,,*****.***...*****. 

For all x, CS_Op_Grants(x) --> 

( ( amount = 0-20Ks ) and ( province = [ Ont. , Queb. 1 ) [38.272%1) 

or ( ( amount = 201<s-401<s ) and ( province = [ Ont. , Prairies j) [18.107%j) 

or ( ( amount = [ 40Ks-60Ks , 0-20Ks J ) and ( province = 13.C. ) [ 8.642%]) 

or ( ( amount = 20Ks-40Ks ) and ( province = [ Queb. , 13.C. J ) [10.404%]) 

or ( ( amount = 40Ks-60Ks ) and ( province = [ Ont. , Prairies 1 ) [ 5.350%1) 

or ( ( amount = 0-201<s ) and ( province = [ Prairies , Maritime] ) [15.021%1) 

or ( ( amount = [ 40Ks-60Ks , 601<s- J ) and ( province = Queb. ) [ 1.235%1 ) 

or ( ( amount = 601<s- ) and ( province = [ Ont. , Prairies J ) [ 1 .646%1 ) 

or ( ( amount = 20Ks-401<s ) and ( province = Maritime ) [ 0.010%]) 
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select am ount, province 

from  award A ,o rgan iza tion  0 ,grant..type G

where ( O .org.code =  A .org.code) A N D  ( Cl .g ran t.o rde r =  5 or G .g ran t.o rde r -  10

or G .g ran t.o rde r =  15 ) A N D  A .gran t.code  — G .gran l-codo

A N D  (( disc.code > =  23000 and disc.code <  23500 )

o r ( disc.code > =  23500 and disc.code <  2-1000 )

o r ( disc.code > ~  24000 and disc.code <  24500 )

o r ( d isc.code > =  24500 and disc.code <  25500 )

o r ( disc.code > =  25500 and disc.code <  2(5000 )

or ( disc.code > =  26000 and disc.code <  26500 )

o r ( disc_code > =  26500 and disc.code <  27000 ) ) )

Then D B R O U G H  ex trac ts  the task-re levant data from  the N S K IU ' grants in fo r 

m a tio n  system , a fte r a ttr ib u te -o rie n te d  genera lization and rough set based reduc

tio n , the  resu ltan t re la tion  is shown in Table  7.1. hence the characte ris tic  rules for 

“ C S .O p .G ran ts ”  is derived as:

T he  characte ris tic  ru le  fo r “ C S .O p .G ran ts ”  is:

For a ll x, C S .O p .G ra n ts (x ) — >

( ( amount =  0-20Ks ) and ( province =  [ O nt. . Queb. j ) [38.272%)) 

or ( ( amount =  20Ks-40Ks ) and ( province =  [ O nt. , Prairies )) [18.107%])

or ( ( am ount =  [ 40Ks-60Ks , 0-20Ks ] ) and ( province =  B.C. ) [ 8.642%])

or ( ( am ount =  20I<s-40Ks ) and ( province — [ Queb. , B.C. ] ) [10.494%])

or ( ( amount =  40I<s-60I<s ) and ( province =  [ O nt. , Prairies ] ) [ 5.350%;])

or ( ( amount =  0-20Ks ) and ( province =  [ Prairies , M aritim e  ] ) [15.021%;])

or ( ( amount =  [ 40Ks-60Ks , 601<s- ] ) and ( province =  Queb. ) [ 1.235%] )

or ( ( amount =  60Ks- ) and ( province =  [ O nt. , Prairies ] ) [ 1.646%;] )

or ( ( amount =  20Ks-40Ks ) and ( province =  M aritim e  ) [ 0.010%;])
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amount, province prop(votes) prop(amount) 
0-201<s Out. 24.49% 3.88% 
0.201is Queb. 13.79% 2.92% 
201<s-401<s Ont. 12.76% 2.22% 
201<s-401<s Prairies 5.35% 9.69% 
401<s-601(s B.C. 1.23% 4.58% 
0-201<s B.C. 7.41% 4.24% 
201<s-401<s Queb. 5.14% 5.22% 
401<s-60Ks Ont. 5.14% 5.54% 
0-20Ks Prairies 8.23% 11.20% 
0-201<s Maritime 6.79% 4.61% 
201<s-401<s B.C. 5.35% 7.01% 
401<s-60Ks Prairies 0.21% 3.32% 
401<s-60Ks Queb. 1.03% 4.23% 
601<s- Out, 1.23% 10.66% 
601<s- Prairies 0.41% 4.99% 
201<s-401is Maritime 1.03% 6.37% 
601<s- Queb. 0.21% 3.78% 
601<s- B.C. 0.21% 5.54% 

Table 7.1: 'rhe final generalized relation 
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amount province prop(votes) prop(amount)
0-20Ks Ont. •24.49% 3.88%
0-20Ks Queb. 13.79% 2.92%
20Ks-40Ks Ont. 12.76% 2.22%
20Ks-40Ks Prairies 5.35% 9.69%
40Ks-60Ks B.C. 1.23% 4.58%
0-20Ks B.C. 7.41% 4.24%
20Ks-40Ks Queb. 5.14% 5.22%
40Ks-6QKs Ont. 5.14% 5.54%
0-20Ks Prairies 8.23% 11.20%
0-20Ks M aritim e 6.79% 4.61%
20Ks-40Ks B.C. 5.35% 7.01%
•lOKs-fiOKs Prairies 0.21% 3.32%
40Ks-60Ks Queb. 1.03% 4/23%
OOKs- Out, 1.23% 10.66%
flOKs- Prairies 0.41% 4.99%
20Ks-40Ks M aritim e 1.03% 6.37%
fiOKs- Queb. 0.21% 3.78%
60 Ks* B.C. 0.21% 5.54%

'I able 7.1: The final generalized relation
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disc_code grant_order amount voles 
Computer Operating_C;rants 201<s-401<s '62 
Computer Operating..Grants 401<s-601<s 25 
Computer Other 601<s- 7 
Computer Other 401<s-601<s 5 
Computer Strategic_Grants 601<s- 8 
Computer Operating_Grants 601<s- 6 
Computer Strategic_Grants 401<s-601<s I 

Table 7.2: The final generalized relation 

or ( ( amount = 60Iis- ) and ( province = 13.C. ) 0.002%)) 

example 7.2 (DBCLass) 

Similarly, the following learning request learns the disc rimhiation rule 1hal can dis-

tinguish the computer science grants awarded to Ontario from those av,arded to New 

foundland. 

DBROUGH 1> learn discrimination rule 

DBROUGH 2> for "Ontario_CS_Grants" 

DBROUGH 3> where 0.province = "Ontario" 

DBROUGH 4> in contrast to "Newfoundland_CS_Grants" 

DBROUGH 5> where O.province = "Newfoundland" 

DBROUGH 6> from award A, organization 0, grant_type Ci 

DBROUGH 7> where A.grant_code = G.grant_code AND A.org..code = 0.org_coth. 

AND A.disc_code = "Computer" 

DBROUGH 8> in relevance to disc_code, amount, grant_order 

Notice that both attribute and table threshold value are default, ones. All the 

concept hierarchy information required is stored in a default file concept 

*************x****)K******Y****7tw******).exwx:gsucigx.itx4f* 
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disc.code grant-ordor amount votes
Computer Operating.Grants *2()Ks-IOKs (52
Computer Oporating.Grants •lOKs-OOKs 25
Computer Other (iOKs- 7
Computer Other •lOKs-OOKs 5
Computer Strategic.G rants (fOKs- 8
Computer Oporating.Grants (50 Ks- (i
Computer Strategic.G rants ■l()Ks*(i()Ks 1

Tab ic  7.2: T he  fina l generalized re la tion  

o r ( ( am oun t =  60Ks- ) and ( province =  B.C . ) [ 0.002%])

Example 7.2 (DBCLuss)

S im ila r ly , the  fo llow ing  learn ing  request learns the d isc rim in a tio n  ru le  t l in l can dis

tingu ish  the com puter science grants awarded to  O n ta rio  from  those awarded to  New 

fotm dland.

D B R O U G H  1>  le a rn  d is c r im in a t io n  ru le

D B R O U G H  2 >  f o r  “ O n ta rio .C S .G ran ts ”

D B R O U G H  3 >  w h e re  0 . province =  “ O n ta rio ”

D B R O U G H  4 >  in  c o n t ra s t  t o  “ N ew found land .O S .G rnnts”

D B R O U G H  5 >  w h e re  0 . province =  “ N ew foundland”

D B R O U G H  6 >  f r o m  award A , organ iza tion  O , g ra n t-typ e  G 

D B R O U G H  7 >  w h e re  A .gran t-code  =  G .grant.code AND A.org .code  =  O .org.code 

AND A .d isc jcodc =  “ C om pute r”

D B R O U G H  8 >  in  re le v a n c e  to  disc_code, am ount, g ran t.o rde r

N otice  th a t bo th  a ttr ib u te  and tab le  threshold value are d e fa u lt ones. A ll tin* 

concept h ie rarchy in fo rm a tion  required is stored in a de fau lt file  concept

$  *  X5f« *  x  *  *  $  i f  *  *  $  x  'jf . *  *c x  *  *  $  *  *  y  £  x  x  x  x  x  * x  £  x  x  x  x  x  x  x  x  x  x  x  x  M  x  x  x
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The classification rule for"Ont_Grants" vs "Newfoundland_Grants" is: 
Oor,/111,1.0Yefi,,WACit*W*.eir)..,WP:WZMAIKKXXXVOCXXXVGJYPIXXXACWY:XXXXX 

For all x, Ont_Grants(x) 
( ( disc_code = Computer ) and ( grant_order = Operating_Grants ) and 

( amount, = 'OKs-101<s 40Ks-601is ) (34.387%) ) 

( ( disc_code = Computer ) and ( grant_order = Other ) and 

( amount, = 601<s- , 401<s-60Ks ) 4.743%) ) 
or ( ( disc_code = Computer ) and ( grant_order = Strategic_Grants 

Operating_Grants ) and ( amount = 60Ks- ) 5.534%) ) 
or ( ( disc_code = Computer ) and ( grant_order = Strategic_Grants ) and 

( amount = 'Ms-Ms ) ( 0.004%)) 

Example 7.3 (DBDeci) 

Suppose our objective is to learn a decision rule which tells which features of a 

car really determine the mileage. The request is specified to Dlift011011 as follows: 

1)131101.1(111 I> learn decision rule 
1)131?011G11 2> for Milcagn 

1)131i0IICIII :1> from Cat...relation 

Notice in this learning request, the concept hierarchies and the threshold are not 

specified, thus the default ones will be used. 

Dlill011011 first extracts the relevant data from the database system. the re-

sultant, table is shown in Table 5.2, then the attribute-oriented induction is applied 
to this table, and we obtain the generalized relation as shown in Table 4.1. Next 
the rough set method is applied to this generalized table and finds the best redact 

{Nlake.model, compress, trans}, so the generalized relation is reduced further by 
removing those attributes: cyl, door, displace, power, weight, resulting in Table 5.4. 

Combining the similar tuples in the reduced table, the reduced table Table 5.4 is 
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The classificfilJon rule for“ Ont_Grants” vs “ Newfound land .G rants” is:

I'br all x. Ont_Grants(x} <  —

( ( disc.code =  Com puter ) and ( grant.order =  O perating.G rants ) and

( amount =  [ '2()Ks-40Ks , dOKs-fiOKs j ) [3d.387%) )

or ( ( disc.code =  Computer ) and ( grant.order =  O ther ) and

( amount =  [ (iOKs- , dOKs-6(JKs ) ) [ d.7d3%] )

or ( ( disc_codc =  C o m p u te r) and ( grant.order =  ( S trategic.G rants ,

Operating.Grants ] ) and ( amount =  (iOK’s- ) [ 5.534%) )

or ( ( disc.code =  Com puter ) and ( grant.order =  Strategic.G rants ) and

( amount =  dOKs-GOKs ) [ 0,0fld%J)

ftsamplr 7.3 (DliDcci)

Suppose our objective is to learn a decision rule which tells which features o f a 

car really determ ine the mileage. The request is specified to  DBRO UG H as follows:

DBROUGH l>  le a rn  d ec is io n  ru le  

DBROUGH *2> fo r  Mileage.

DBROUGH 3> from Car.rclalion

Notice in this learning request, the concept hierarchies ancl the threshold are not 

specified, thus the default ones w ill be used.

DBROUGH first extracts the relevant data from the database system, the re

sultant table is shown in Table 5.2, then the a ttribu te -orien ted  induction is applied 

to th is table, and we obtain the generalized relation as shown in Table d . l.  Next 

the rough set method is applied to th is generalized table and finds the best reduct 

{Make-model, compress, trans}, so the generalized relation is reduced fu rthe r by 

removing those a ttributes: cgl, door, displace, power, weight, resulting in Table 5.4.

Combining the s im ila r tuples in the reduced table, the reduced tab le  Table 5.4 is
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Table 7.3: Decision matrix for tin' class mileage=IIR III 

further simplified to Table 5.7. From Table 5.7, we can derive the following rules: 

if (Make_mode1=USA A trans=AUTO) V (NIake_)nodel= I ISA A nii  )II!M ) 

then (mileage.M EDI UNI) 

if (compress=f11011 A trans=MANUA 1) V (Make_model=.IA PAN A 1 rails., MA \L)

then (mileage=1110f1) 
Example 7.4 (DBMaxi) 

DBROUGII 1> learn all maximal generalized rules 

DBROUGH 2> for illikage=111Gh 

DBROUGH 3> from Car_relation 

DBROUGH first gets the task-relevant data, then apply the au Made-oriented 

induction to obtain Table 4.1. After the rough set based data redly:00a, I he derision 

matrix as shown in Table 7.3 are constructed. 

By applying the distributivity and absorption laws of Boolean algebra, each deri-

sion Boolean function can be expressed in a simplified form of a disjuuctiou of adaimal 

conjunctive expressions. 

DBROUGH generates all the maximal generalized rules for 1,111. discovery task 

Mileage = HIGH as follow: 

(1) if (cyl = 4) & (displace = MEDIUM) k, (compress = 111(111) 
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Tabic 7.3: Decision m atrix  for the class mileage— 111( 211

further sim plified to Table 5.7. From 'Fable 5.7, we can derive the following rules:

i f  (M akejnode l=U S A  A  trans=A U TO ) V (MakojiiodolssUSA A  compress—M E D IU M ) 

then (mileage—M FD  IU M ) 

i f  (compress=HIGH A  trans=M A N U A L) V (M ake.m odelsJAU AN  A I ra n s -M A N U A I.)  

then (m ileage=HIG H )

Example 7.4 (DBMaxi)

DBROUGH 1> le a rn  a ll m a x im a l gen e ra lize d  ru les  

DBROUGH 2>  fo r  Xtilc.age=lIlGii 

DBROUGH 3>  fro m  Car.rclalion

DBRO UG H first gets the task-relevant data, then apply flu* a tlrilm le -o rien led  

induction to obtain Table 4.1. A fte r the rough set based data reduction, I he decision 

m atrix  as shown in Table 7.3 are constructed.

By applying the d is tr ib u tiv ity  and absorption laws of Boolean algebra, each deci

sion boolean function can be expressed in a simplified form of a disjunction o f m inim al 

conjunctive expressions.

DBRO UG H generates all the maximal generalized rules for the discovery task 

Mileage =  H IG H  as follow:

(1) i f  (cyl =  4) k  (displace =  M E D IU M ) k  (compress =  H IG H)
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then (mileage = 111011) 

(2) if (compress = 1110H) k. (trans = MANUAL) then (mileage = HIGH) 

(3) i f (weight, = LICHIT) then (mileage = HIGH) 

(4) if (cyl = /1) k (compress = 1110H) k (power = HIGH) 

then (mileage = HIGH) 

(5) if (Make_model = JAPAN) then (mileage = HIGH) 

(6) i f (power = LOW) then (mileage = HIGH) 

(7) if (displace = SMALL) k (trans = MANUAL) then (mileage = HIGH) 

(8) if (displace = SMALL) k (power = HIGH) then (mileage = HIGH) 

(9) if (displace = SMALL) k (compress = MEDIUM) then (mileage = HIGH) 
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then  (m ileage =  H IG H )

(2) i f  (compress =  H IG H ) k  ( tra ils  =  M A N U A L )  then  (m ileage =  H IG H )

(:i)  i f  (w e igh t =  L IG H T ) then  (m ileage =  H IG H )

(4) i f  (c y l  =  4) k  (compress =  H IG H ) k  (power =  H IG H )

then  (m ileage =  H IG H )

(5) i f  (Make_moclel =  J A P A N ) then  (m ileage =  H IG H )

(G) i f  (power =  L O W ) then  (m ileage =  H IG H )

(7) i f  (d isplace =  S M A L L ) k  (trans =  M A N U A L )  then  (m ileage =  H IG H )

(8) i f  (d isplace =  S M A L L ) k  (power =  H IG H ) then  (m ileage =  H IG H )

(9) i f  (d isplace =  S M A L L ) k  (compress =  M E D IU M ) then  (m ileage =  H IG H )
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Chapter 8 

Discussion 

8.1 A Comparison with Other Learning Methods 

Our learning procedure consists of two phases: data generalization and data re 

duction. Our method uses attribute-oriented induction for generalization. which pro 

vides an efficient way to generalize the database and greatly reduce the computational 

complexity. The efficiency of the attribute-oriented generalization can also be demon 

strated by analyzing its worst case time complexity. Suppose there are t►rples in 
the database which are relevant to the learning task, A attributes tin• each tuples, 

and H levels for each concept tree. the time complexity in the worst. case is ►►nalyzecl 

as follows. For each attribute, the time for substituting the lower level concepts by 

the higher level concepts is N, and the time for checking redundant tuples is ,V/00'. 

Since the height of the concept tree is II, the time spent on each attribute is at most 

H * (N NlogN). Obviously, the upper hound of the total time for processing A 

attributes is A * H * (N + NlogN). In general, A and II are much smaller than N 

in a large database. Therefore, the time complexity of ou t approach is O(NlogN) in 

the worst case, which is more efficient than the tuple-oriented generalization. 

In data reduction, suppose there are only N' tnples with A' attributes left in the 

generalized relation, to construct the discernibility matrix, it only takes O( N' r N') 

steps. To search the core attributes in a discernibility matrix, it costs 0( N' 

To find the reduct for the condition attributes, in the worst case, the complexity is 

.4' x0(A"x N'). Since A' is usually much less than N', the worst case in the reduction 
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and H  levels fo r each concept tree, the  tim e  co m p le x ity  in the worst, case is analyzed 

as fo llow s. For each a ttr ib u te , the tim e  for s u b s titu tin g  the lower level concepts by 

the  h igher level concepts is Ar, and the tim e  fo r checking redundant tuples is N lo g N .  

S ince the  height o f the  concept tree is / / ,  the tim e  spent on each a tt r ib u te  is a t m ost 

H  *  ( N  +  N lo g N ) .  O bviously, the upper bound o f the  to ta l t im e  fo r processing A 

a ttr ib u te s  is A *  H  *  ( N  +  N lo g N ) .  In general, A and 11 are much sm a lle r than  N  

in  a large database. Therefore , the tim e  co m p le x ity  o f our approach is 0 (  N lo g N )  in 

the w orst case, w h ich  is m ore e ffic ien t than the  tup le -o rien ted  genera liza tion .

In  data  reduc tion , suppose there are on ly  N 1 tup les w ith  A '  a ttr ib u te s  le ft in the 

generalized re la tion , to  construc t the d is c e rn ib ility  m a tr ix , i t  o idy  takes 0 ( N '  /  N ')  

steps. To search the  core a ttr ib u te s  in a d is c e rn ib ility  m a tr ix , i t  costs 0 (  x  N ') .  

To fin d  the  reduct fo r the  cond ition  a ttr ib u te s , in the worst case, the; co m p le x ity  is 

.4/ x O (A r/ x  Ar/). Since A '  is usua lly much less than N \  the  w orst case in  the reduction
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process is 0(A" x N'). 

Then we examine other learning methods. Most learning algorithms in the litera-

ture [DiM831 are tuple-oriented algorithms. A tuple-oriented method examines data 

in the database tuple by tuple and performs generalization based on the comparison 

of tuple values with the intermediate generalization results. Since the number of the 

possible tuple combinations is exponential to the number of tuples in the relevant 

data set the worst case complexity of the generalization process is exponential to the 

size of the relevant data sets. 

8.2 Search Space 

A concept tree ascending technique is the major generalization techniques used 

in both at .t ribute-oriented generalization and tuple-oriented generalization. However, 

the tuple-oriented approach performs generalization tuple by tuple. but the attribute-

oriented approach performs generalization attribute by attribute. We compare the 

search spaces of our algorithms with that of a typical method of learning from 

eawmples, the candidate elimination algorithm [DiMS3) 

In the candidate elimination algorithm, the set of all concepts which are consistent 

with the training examples is called the version space of the training examples. The 

learning process is the search in this version space to induce a generalization concept 

which is satisfied by all of the positive examples and none of the negative examples. 

Since generalization in an attribute oriented approach is performed on an individ-

ual attribute, a concept hierarchy of each attribute can be treated as a factored version 

space. Factoring the version space significantly improves the general efficiency. Sup-
pose theme are p nodes in each concept tree and there are k concept trees (attributes) 

in the relation, the total size of a k factorized version space is pk. However, the size 
of the unfactorized version space for the same concept tree should he ph'. 
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process is 0 { N '  x /V').

Then we examine other learning methods. Most learning algorithm s in  the lite ra 

ture [D iM83] are tuple-oriented algorithms. A tuple-oriented method examines data 

in the database tuple by tuple and performs generalization based on the comparison 

o f tup le values w ith  the intermediate generalization results. Since the num ber o f the 
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the tuple-oriented approach performs generalization tup le by tup le , bu t the a ttr ib u te - 

oriented approach performs generalization a ttr ib u te  by a ttr ib u te . We compare the 

search spaces o f our algorithm s w ith  tha t o f a typ ica l method o f learn ing f ro m  

examples, the candidate elim ination  a lgorithm  [DiM83]

In t lie candidate e lim ination a lgorithm , the set o f all concepts which are consistent 

w ith  the tra in ing  examples is called the version space o f the tra in ing  examples. The 

learning process is the search in th is version space to induce a generalization concept 

which is satisfied by all o f the positive examples and none o f the negative examples.

Since generalization in an a ttr ib u te  oriented approach is performed on an in d iv id 

ual a ttr ib u te , a concept hierarchy o f each a ttr ib u te  can be treated as a factored version 

space. Factoring the version space sign ificantly improves the general efficiency. Sup

pose there are p nodes in each concept tree and there are k concept trees (a ttribu tes) 

in the re lation, the to ta l size o f a k factorized version space is pk. However, the size 

o f the unfactorized version space for the same concept tree should be pk.
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8.3 Utilizing Database Facilities 

Relational database systems provide many attractive features for machine learn-

ing, such as the capacity to store a large amount of information in a tit ruct tired and 

organized manner and the availability of well developed implementation techniques. 

However most existing algorithms do not take advantage of these database facilities 

[CCH91). An obvious advantage of our approach over many other learning algo-

rithms is the integration of the learning process with database operations. Most of 

the operations used in our approach involve traditional relational database opera t ions, 

such as selection, join, projection (extracting relevant (lath and removing at I ribut es). 

tuple substitution (ascending concept trees). and intersection (discovering common 

tuples among classes). These operations are set-oriented and have been efficiently 

implemented in many relational systems. While most learning algorithms suffer front 

inefficiency problems in a large database environment [CC1191,11C( 192a.11CC92b1, our 

approach can use database facilities to improve the performance. 

8.4 Dealing with Different Kinds of Concept Hierarchies 

In our examples, all of the concept hierarchies are represented as balanced concept, 

trees and all of the primitive concepts reside at the same level of a concept, tree. 

Hence generalization can be performed synchronously on each at tribute to generalize 

the attribute values at the same lower level to the ones at the same higher level. 

However, we may encounter other kinds of concept hierarchies or we may encounter 

the case where the primitive concepts do not reside at the sante level of a concept, 

tree. 

Generalization of the Concepts at Different Levels of a Hierarchy 

The concept hierarchies may he organized as unbalanced concept trees. For exam-

ple, the left branch of a tree may have fewer levels of leaves than the right branch. In 

these cases, synchronous tree ascension may reach the same level at different. stages, 

which may result in an incorrect generalization at that level. A similar problem 
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trees and a ll o f  the  p r im it iv e  concepts reside a t the  same level o f a concept tree. 

Hence genera liza tion  can be perform ed synchronously on each a tt r ib u te  to  generalize 

the  a ttr ib u te  values a t the  same lower level to  the  ones a t the  same h igher level. 

However, we m ay encounter o the r k inds o f concept h ierarchies o r we m ay encounter 

the  case where the p r im itiv e  concepts do not reside a t the  same level o f  a concept 

tree.

Generalization of the Concepts at Different Levels of a Hierarchy

T he  concept h ierarchies m ay be organized as unbalanced concept trees. I'b r exam 

ple, the  le ft branch o f  a tree m ay have fewer levels o f leaves than the r ig h t branch, in  
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small circle large_circle 

gon 

triangle square hexagon 

Figure 8.1: An unbalanced concept tree 

may occur when the primitive concepts reside at the different levels of a concept tree. 

These problems can he solved by checking whether one generalized concept may cover 

other concepts of the same attribute. If one generalized concept covers a concept sev-

eral levels down the concept tree, the covered concept is then substituted for by the 

generalized concept, that is, ascending the tree several levels at once. 

Figure 8.1 shows an unbalanced concept tree. Based on the discussion above, as 

long as the attribute value "ellipse" has been generalized to "oval", those attribute 

values, "small_circle", "large_circle" and "circle". can be substituted by "oval" at 

once. 

This idea can be used for incremental learning as well. Relational databases are 

characterized by frequent updating. As new data become available, it will be more 

efficient to amend and reinforce what was learned from previous data than to restart 

I he learning process from scratch [HCC921. Our algorithms are able to be extended 

to perform incremental learning. When new data are presented to a database, an 

efficient approach to characterization and classification of data is to first generalize 
the concepts of the new data up to the level of the rules which have been learned, 

t hen the learning algorithms can be used to merge the generalized concepts derived 

from the old data and the new data, 
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Figure 8.1: An unbalanced concept tree

may occur when the p rim itive  concepts reside at the different levels o f a concept tree. 

These problems can be solved by checking whether one generalized concept may cover 

o ther concepts o f the same a ttribu te . I f  one generalized concept covers a concept sev

eral levels down the concept tree, the covered concept is then substitu ted for by the 

generalized concept, tha t is, ascending the tree several levels a t once.

Figure 8.1 shows an unbalanced concept tree. Based on the discussion above, as 

long as the a ttr ib u te  value “ellipse”  has been generalized to  “oval” , those a ttr ib u te  

values, “ sm all.c irc le” , “ large.circle”  and “circ le” , can be substitu ted by “oval”  at 

once.

'I'h is idea can be used for incremental learning as well. Relational databases are 

characterized by frequent updating. As new data become available, i t  w ill be more 

efficient to amend and reinforce what was learned from  previous data than to restart 

Hie learning process from scratch [HCC92], O ur a lgorithm s are able to  be extended 

to perform  incremental learning. When new data are presented to  a database, an 

efficient approach to characterization and classification o f data is to  firs t generalize 

the concepts o f the new data up to  the level o f the rules which have been learned, 

then the learning algorithm s can be used to merge the generalized concepts derived 

from  the old data and the new data.
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cquple w se ral 

two three four five six seven eight .. 

Figure 8.2: A concept tree with lattices 

Generalization of Concepts in the Hierarchies with Lattices 

In all of our previous examples, the concept hierarchies are trees, that, is, every 

node has only one parent node. For any concept, therefore, there is only one direction 

to perform the generalization. In some cases, however, the concept hierarchy may be 

a lattice. Figure 8.2 illustrates this case. 

As illustrated in Figure 8.2, the concept "two" can be generalized either to "cou-

ple" or "few". 1.oth generalized concepts should be considered. Our method is to 

put all possible generalized concepts into intermediate generalized relations when a 

lattice is encountered, and then perform further generalization on all those tuples. 

In this example, after the tuple containing attribute value "two" is generalized, two 

new tuples, containing attribute values "couple" and "few", respectively, should be 

generalized. For the concept "six", the same technique should he applied. As a con-

sequence, the size of the generalized relation table may increase at some stage of the 

generalization process because of the effect of a lattice. However, since the gener-

alization is controlled by the specified value, the generalized relation will eventually 

shrink in further generalization. 

8.5 Discovery of Knowledge by Conceptual Clustering 

Most conceptual classification algorithms in the literature [Mi58:I, Fi87a) are 

tuple-oriented algorithms. A tuple-oriented algorithm examines data in the database 
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la ttic e  is encountered, and then perform  fu rth e r generalization on all those tuples. 

In  th is  exam ple, a fte r the  tup le  con ta in ing  a ttr ib u te  value “ tw o " is generalized, two 

new tup les, conta in ing  a ttr ib u te  values “ couple" and “ few” , respective ly, should he 

generalized. For the  concept “ s ix” , the  same technique should be app lied . As a con

sequence, the  size o f the  generalized re la tion  tab le  may increase at some stage o f the 

genera lization process because o f the  effect o f a la ttice . However, since the gener

a liza tion  is contro lled  by the specified value, the  generalized re la tion  w ill even tua lly  

sh rink  in fu rth e r genera lization.

8.5 Discovery of Knowledge by Conceptual Clustering

M ost conceptual c lassification a lgorithm s in the  lite ra tu re  [M iS88, Fi87a] are 

tup le -o rien ted  a lgorithm s. A tup le -o rien ted  a lgo rithm  examines da ta  in the database
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tuple by tuple and performs generalization and classification based on the compar-

ison of tuple values with the intermediate generalization results. Since the number 

of possible tuple combinations is exponential to the number of tuples in the relevant 

data set, the worst case complexity of the generalization and classification process is 

exponential to the size of the relevant data sets. But our method uses a new method 

to classify the data set based on the common attribute values between different tu-

ples. At each iteration, a matrix is constructed in 0(n2 ) where n is the number of 

the tuples of the data set. According to the distribution of the values in the matrix, 

a suitable value is chosen which is a similarity measure for classification. 

The advantages of our method include: 

(1) Our algorithm can automatically find a hierarchy table without, assistance. The 

number of clusters and the levels of the hierarchy are determined by the algorithm; 

it, is unlike the famous CLUSTSER/2 in which the user must specify the number of 

final clusters and the initial seeds in the beginning. 

(2) Objects are not assigned to clusters absolutely. 

Our method calculates the similarity between each pair of objects, providing a 

more intuitive classification than absolute partitioning techniques. Our method ag-

gregates objects from bottom to top based on the similarity between them and if 

an object has the same number of common attribute value to two clusters, then the 

object is assigned to both clusters. 

(3) The threshold value has a big influence on whether or not an instance is 

admitted to a class. We can vary the threshold, get different hierarchy tables so the 

algorithm caa generate different sets of rules to meet the needs of varied applications. 

8.6 Reduction of Databases 

In DBROUGH, the learning procedure is initiated by a learning request submitted 

front the user. The query condition determines what data should be retrieved from 

the DBMS. This is accomplished by specifying which tables need to be accessed, 

which fields should be returned, and which or how many records should be retrieved. 

Learning task are those tuples which satisfying the query conditions and the speLified 
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Our method calculates the s im ila rity  between each pair o f objects, provid ing a 
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gregates objects from bottom  to top based on the s im ila rity  between them and i f  

an object has the same number o f common a ttribu te  value to  two clusters, then the 
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adm itted to a class. We can vary the threshold, get different hierarchy tables so the 

algorit hm can generate different sets o f rules to  meet the needs o f varied applications.

8.6 Reduction of Databases

In DBRO UG H, the learning procedure is in itia ted  by a learning request subm itted 
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the DBMS. 'Phis is accomplished by specifying which tables need to  be accessed, 

which fields should be returned, and which or how many records should be retrieved. 

Learning task are those tuples which satisfying the query conditions and the specified
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fields, which greatly reduce the search space of the data. Using rough set, theory, the 

minimal attribute set or reduct of the attribute in the databases can he computed 

and each reduct can be used instead of the whole attribute set without losing any 

essential information. By removing those attributes which are not in the reduct. the 

generalize table can be further reduced. 

8.7 Data Evolution Regularity 

One of the big challenge facing KDD is that the co►tent of data is constantly 

changing. There are a lot of algorithms developed to find rules fron► databases directly 

[FrP91, CeT93], but all these algorithms assume that the data and the data scheme 

are stable and most of the algorithms focus on discovering the regularit les abo►►t the 

current data in the databases. The re lity is that the contents of databases and 

database scheme may change over time and users are often interested in finding the 

general trends of data evolution to predict the future. So it is important to discover 

data evolution regularities in a dynamic evolving database. Since tl►e data for 1,1w 

future is usually not available at the current time; we have to learn the data trend 

regularities for the future data based on the current data in the databases. Machine 

learning technology should be adopted to extract such regularities in databases. In 

this section we use an example to illustrate how to expand the attribu►t.e-oriented 

rough set approach to learn data evolution regularities. 

One of the key issues to learn from data in a dynamic environment is how the 

relationships between the instance in different states are defined. In our method, we 

combine the concept hierarchy with the transition constraints to ►nodel the relation 

ship between the instances in different states. 

We say that an entity which is an instance of one class (called the source class) 

undergoes a transition when it becomes an instance of another class (called target 

class). There are two types of transition evolution and extension WAIN)), based 

on whether or not the entity undergoing the transition is preserved as an instance of 

the source class or not. In other words, an evolution occurs when the transition entity 

ceases to he an instance of the source class. For example, when an entity representing 
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[FrP91, CeT93], bu t a ll these algorithm s assume tha t the data and the data scheme 

are stable arid most o f the a lgorithm s focus on discovering the regularities about the 

current data in the databases. The re li ty  is tha t the contents o f databases and 

database scheme may change over tim e  and users are often interested in finding the 

general trends o f data evolution to predict the future. So i t  is im po rtan t to discover 

data evolution regularities in a dynam ic evolving database. Since the data for the 

fu tu re  is usually not available a' the current tim e, we have to learn the data trend 

regularities for the fu tu re  data based on the current data in the databases. Machine 

learning technology should be adopted to extract such regularities in databases. In 

th is  section we use an example to  illu s tra te  how to  expand the a ttr ib iito -o rien led  

rough set approach to  learn data evolution regularities.

One o f the key issues to  learn from data in a dynam ic environm ent is how the 

relationships between the instance in different states are defined. In our method, we 

combine the concept hierarchy w ith  the trans ition  constraints to model the relation 

ship between the instances in d ifferent states.

We say th a t an e n tity  which is an instance o f one class (called the source class) 

undergoes a trans ition  when it  becomes an instance o f another class (called target 

class). There are two types o f trans ition  evolution and extension [HaGOO], based 

on whether or not the e n tity  undergoing the transition  is preserved as an instance o f 

the source class or not. In other words, an evolution occurs when the trans ition  e n tity  

ceases to  be an instance o f the source class. For example, when an e n tity  representing
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name 4 e,. birthday employer salary dependents 
yarn M [rec. ., t9.4 tit:It. 20k 2. 
Janet I' Aug. 4, 100!: 13111A 53k 3 
Mary 1, June 23, 194: NT 00k 3 
Torn M July 17. 1003 Coy. 30k 0 

Jay M Oct, 24, 1970 MPE 40k Y 
Mark M Jan. 29, 1940 NOE 100k 2 

Table 8.1: Adult relation 

an applicant changes to reflect the acceptance of the applicant, it undergoes an evo-

lution; that is, it ceases to be an instance of the applicant and becomes an instance 

of the student. An extension is a transition with the negative of the additional condi-

tion associated with evolution. In other words, an extension occurs when the entity 

remains an instance of the source class with the negation of the additional condition 

associated with evolution. For example, when an alumnus with a Master's degree 

applies to the 1)11.1) program, the transition of the entity representing the alumnus 

into an instance subclass is an extension. 

Note that some of the transition events are triggered solely by time whereas others 

are triggered by other events in the dynamic system. To make our explanation simple, 

we assume only evolution occurs in our dynamic environment model and all the 

transitions are triggered by time. 

Consider a simple version of the social security database in some social benefit 

office in Canada as shown in Table 8.1, 8.2 (a), (b). Figure 8.3 is the concept hi-

erarchies for attributes age, salary and pension. Figure 8.4 is the corresponding 

concept hierarchy and transition network. Citizen may start as a child. When chil-

dren reach the age of 18, they become an instance of Adult. Later, at age 65, they 
retire (senior citizen) and eventually die, The transition from senior citizen to death 

is weak because some people may live older than 85 while some other may not. We 
use to represent weak transition. 

10- : children; {4-14}: teenages; {14-20} : young 

{20-20: twenties; {30-39}: thirties; {40-49}: forties 

{50-64}: latemid; {65-}: old 

{children , teenage* child_age; {young, twenties}: young_age 
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ii .in  r rex birthday employer *»l»ry dependent*
bum M IJCC. !>, I'JM StJK 70 k z
J in d F A u*. 4, I9C5 UN It 53 k Z
Mary F June 23, 1945 N T 00k z
Tom M July 17. I9C3 Gov. 3Ck 0

•U y M Oct. 24, 1970 M PE 40k 1
Mark M J in . 29, 1940 N’ GE 100k 2

Tabic 8.1: A d u lt  relation

an applicant changes to reflect the acceptance o f the applicant, it  undergoes an evo

lu tion; that is, i t  ceases to be an instance o f the applicant and becomes an instance 

o f the student. An extension is a transition w ith  the negative o f the add itiona l condi

tion associated w ith  evolution. In other words, an extension occurs when the e n tity  

remains an instance o f the source class w ith  the negation o f the add itional condition 

associated w ith  evolution. For example, when an alumnus w ith  a M aster’s degree 

applies to the Ph.D program, the transition o f the en tity  representing the alumnus 

in to  an instance subclass is an extension.

Note that some o f the transition events are triggered solely by tim e  whereas others 

are triggered by other events in the dynamic system. To make our explanation simple, 

we assume only evolution occurs in our dynamic environment model and a ll the 

transitions are triggered by time.

Consider a simple version o f the social security database in some social benefit 

office in Canada as shown in Table 8.1, 8.2 (a), (b). Figure 8.3 is the concept h i

erarchies for a ttribu tes age, salary and pension. Figure 8.4 is the corresponding 

concept hierarchy and transition network. C itizen may sta rt as a child. When ch il

dren reach the age o f 18, they become an instance o f A d u lt. Later, at age 65, they 

retire (senior citizen) and eventually die. The transition from  senior citizen to death 

is weak because some people may live older than 85 while some other may not. We 

use to represent weak transition.

{0 -4 } : children; {4 -14 }: teenages; {14-20} : young 

{20-29}: twenties: {30-39}: th irties; {40-49}: forties 

{50-64}: late_mid; {65-}: old

{children . teenages}: ch ild jige ; {young, twenties}: young-age
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name sex birthday school guardian 
Jane 
Janet 
Mary 
Peter 

John 
Frank 

F 
F 
F 
M 

M 
M 

Vct, 5, 1981 
June, 1, 1986 
June 6, 19/13 
July 17, 1979 

Feb 24, 1980 
Jan, 29, 1082 

No, 1 
No,1 
No, 2 
Bran 

MMM 
FCC 

darn 
Mary 
Toni 
Mark 

Jay 
Janet 

name re% birthday pr$111011 

Woope F ()et 5. i9J5 17k 
J.l000 M July 11, 1929 231( 
Rope 11111, 19113 COL 

aculoba M Aug :l, 1910 10k 
(141k M Feb. 23, Km 101. 

Table 8.2: (a) Child relation; (b) Senior citizen relation 

Person 

age=18 

Child Adult 
Den—

age=65 age=85
D

SeniorCitizen 

SeniorCitizen.pension=Adult.salary when retired * 65% 

Child.name=Adult.Name=SeniorCitizen.name 

age=current date-birthday 

Figure 8.4: The class hierarchy and transition network For people 

{thirties, forties, late_rnicl}: mid_age; old}: old_age 

{child_age, youth_age, mid_age, old_age}: Any(age) 

{0-20k}: low_income; {20K-34k}: low_middleincome; {35k-45k): midis:mine 

{46-65k}: high_income; {66k-}:very_high_income; 

{lowincome, low_miLincome, midincome, high_income, very_high_income }: Any(income) 

Figure 8.3: The concept hierarchy for age, salary, pension 

To discover data evolution regularities in the future, the evolving data should be 

identified first and be extracted from the database. For example, if t he city adminis 

trator wants to know the general situation about the senior citizen 5 years later, the

query may he submitted as below: 

DBROUGH 1> learn data evolution regularities for se/do/v.11/w/ S 

DBROUGH 2> .5 years later 

DBROUGH 3> in relevant to Salame„5,sex, S.pension 
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name lex birthday ichool guardian
Jane F uct. S, 19M No, 1 Sain
Janet F June, 4, 19*0 No, 1 Mary
Mary F June 0, 19*3 No. 2 Tom
Peter M July 17, 1979 (Iran Mark

John M Feb 2 t , 19*0 M MM Jay
Frank M Jan. 29, 1982 PCC Janet

name lea luitlul.ty |irtllliM l
Wu«i|,e F Del It, 1929 17k
J.W4III M July I I ,  1929 3.1k
H oir F Jan. 2*. 1913 COL

Codoha M A n* ,21, 1910 10k
Clark M Feb. 23, 1911 10k

(1 )  (l> )

Table 8.2: (a) C h ild  relation; (b) S e n io r c it iz e n  relation

Person

age=18 Dead
SeniorCitizenChild Adult

SeniorCitizen.pension=Adult.salary when retired * 68% 
Child.name=Adult,Name=SeniorCitizen.name 
age=current date-birthday

Figure 8.4: The class hierarchy and transition network for people

{th ir tie s , forties, la te_m id}: inidjage; {  o ld }: old_age 

{child_age, youth_age, mid-age, okLage}: Any(age)

{0 —20k}: lowJncome: {20K —34k}: low_niiddleJneoMie; { 35k-4-5k}: m id-income 

{46—65k}: highJncom c; {66k-}:ve ryJ iighJncom e;

{low in com e , low_midJncome, in idJncom e, high-income, ve ryJ iig li.incom e}: A iiy(incom e)

Figure 8.3: The concept hierarchy for age, salary, pension

To discover data evolution regularities in the future, the evolving data should he 

identified first and be extracted from  the database. For example, if  the c ity  adm inis 

tra to r wants to know the general situation about the senior citizen 5 years later, the 

query may be subm itted as below:

DBROUGH 1> learn data evolution regularities for seniorcitken S 

DBROUGH 2>  5 years later
DBROUGH 3>  in relevant to S.name, S.scx, S.pension
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natio. sex pension 
Woope F 17k 
JAson M ?3k 
Pose F GO 

Zodo1)4 3.1 40k 
CIArk M 10k 

Table 8.3: Instance of senior citizen 

'Me evolving data may have two kinds of attributes: stable attributes and evolving 

attributes. The stable attributes, in which the data values do not change over time, 

can be generalized by attribute-oriented induction in the same way as those discussed 

in Chapter 3. The evolving attributes, in which the data values change over time, can 

be generalized according to a generalized time slots when appropriate. For example, 

add dt 's salary keeps changing yearly and so we need to update the salary based on the 

to ne value. Once we get the value for the salary, then we can still apply attribute-

oriented induction. The data extraction procedure is performed in two steps (1) 

extract the target class entities based on the query; (2) examine the class hierarchy 

and transit ion network to check whether there are any source class entities which can 

transform to the current learning class as time goes by. For example, for the above 

query, t he first step is to extract all the citizens from the current senior citizen relation 
except those who are 80 years old (because we assume that a senior citizen dies at 85). 

Then we examine the concept hierarchy and transition network and find an Adult 

becomes a senior citizen when he reaches 65. Hence we have to look through the Adult 

relation and extract those adults who are older than 60 and derive the corresponding 
at tributes values. e.g. replace salary by pension. (We can assume that adult salary 

increases '1% each year, fi rst compute the adult salary when he retires, and then apply 
the procedure: seniorcitizen.pension=adult salary when retired 65 %). As a result, 
we get a set or task-relevant instances objects as shown in Table 8.3. After we get 
the task-relevant data, the data generalization and data reduction procedure can be 

applied in t he same way as discussed in previous chapters and interesting data trend 
regularities can he found [1ICX94]. 
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n»m r l e x l irn iio n
VVoopc I-' ~ m
J M
lto»r V r,ok

Coriofi* M 40k
C'Ufk M 10k

Table 8.3: Instance o f se n io r c it iz e n

The evolving data may have two kinds o f attributes: stable a ttribu tes and evolving 

attributes. The stable a ttributes, in which the data values do not change over tim e, 

can be generalized by attribute-oriented induction in the same way as those discussed 

in Chapter 3. The evolving attributes, in which the data values change over tim e, can 

be generalized according to  a generalized tim e slots when appropriate. For example, 

adu lt’s salary keeps changing yearly and so we need to  update the salary based on the 

tim e value. Once we get the value for the salary, then we can s till apply a ttrib u te - 

oriented induction. The data extraction procedure is performed in two steps (1) 

extract the target class entities based on the query; (2) examine the class hierarchy 

and transit ion network to check whether there are any source class entities which can 

transform to the current learning class as tim e goes by. For example, for the above 

query, t he first step is to extract all the citizens from the current senior citizen relation 

except t hose who are 80 years old (because we assume tha t a senior citizen dies at 85). 

Then wo examine the concept hierarchy and transition network and find an A d u lt 

becomes a senior citizen when he reaches 65. Hence we have to  look through the A d u lt 

relat ion and extract those adults who are older than 60 and derive the corresponding 

attributes values, e.g. replace salary by pension, (We can assume tha t adu lt salary 

increases d% each year, first compute the adu lt salary when he retires, and then apply 

the procedure: seniorcitizen.pension=adult salary when retired * 65 %). As a result, 

we get a set o f task-relevant instances objects as shown in Table 8.3. A fte r we get 

the task-relevant data, the data generalization and data reduction procedure can be 

applied in the same way as discussed in previous chapters and interesting data trend 

regularities can be found [HCX94],
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Chapter 9 

Conclusion and Future Directions 

9.1 Conclusion 

The rapid growth of data in the world's dat.,1•,ases is one reason for the recent inter-

est in KDD. The vastness of this data also creates one of KIM's greatest. challenges. 

Exhaustive, empirical analysis is all but impossible on the megabyte, gigabytes or 

even terabytes of data in many real-world databases. In these situations. a 1)1) sys 

tern must be able to focus its analysis on samples of data by selecting specific fields 

and/or subsets of records. 

In this thesis, we proposed a framework for knowledge discovery in dal abases its 

ing rough sets and attribute-oriented induction. Our system implements a number 

novel ideas. In our system, attribute-oriented induction is applied in the generaliza 

tion process to remove undesirable attributes and to generalize the primitive data to 

tb. desirable level. In the data reduction process. rough set theory is used to compute 

minimal attribute set, or redact of the attribute in the databases and each red net 

can be used instead of the entire attribute set, without losing any essential infda,

mation. By removing those attributes which arc not, in the reflect,, the generalized 

relation can be further reduced. The rules generated after da t a generalization and 

reduction are much more concise and efficacious. 

Our method integrates a variety of knowledge discovery algorithms Midi as 1)101tar 

for characteristic rules, DBelass for classification rules, DIMeci for decision rules, 1)13 

Maxi for maximal generalized rules, DBMkr for multiple sets of knowledwe rules and 
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DfiT•end for data trend regularities, which permit a user to discover various kinds 

of relationships and regularities in the data. This integration allows our• method to 

exploit the strengths of diverse discovery programs. Our systems inherit the advan-

tages of the attribute-oriented induction model and rough set theory and make some 

contribution to the KDD, such as handling large volume data (millions of tuples), 

redundancy data, uncertainty information. multiple sets of knowledge rules, discover 

data trend regularities and so on. 

I<1)1) systems face challenging problems from real-world databases which tend to 

be dynamic. incomplete, redundant., noisy and very large. Each of these problems has 

been addressed to some extent within machine learning. but few. if any. systems ad-

dress all of them. In this thesis, our system collectively handles these problems while 

producing useful knowledge rules efficiently and effectively. In our system, we use 

attribute-oriented induction rather than tuple-oriented induction, thus greatly im-

proving the learning efficiency. By integrating rough set techniques into the learning 

procedure. t he derived knowledge rules are particularly concise and pertinent, since 

only the relevant and/or important attributes (factors) to the learning task are con-

sidered. In our system, the combination of transition network and concept hierarchy 

provides a nice mechanism to handle dynamic characteristic of data in the databases. 

For applications with noisy data. our system can generate multiple sets of knowledge 

rules through a decision matrix to improve the learning accuracy. The experiments 

using the NSElIC information system demonstrate the promise of our method. 

9.2 Future Direction 

The realization of a general purpose, fully-automated knowledge discovery system 
is still far front reach. The attribute-oriented rough set approach represents a promis-
ing direction to follow in the development of efficient and effective learning strategy 
for knowledge discovery in databases. There are many issues which should be studied 
furt her. The following are some interesting topics for future research. 
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9.2.1 Applications of Knowledge Rules Discovered from Re-

lational Databases 

The knowledge rules learned from relational databases are very useful in many 

applications, some of which are listed below: 

(1) Discovery of knowledge rules from knowledge-base systems and t ̀ N Pert NYN I ell is 

[ASC95]. 

Since rules are derived from a huge mtmber of &It a stored in a relat tonal dal abase, 

they represent important knowledge about data in the database. Thus our approach 

is an important method to obtain knowledge rules for knowledge base systems and 

expert systems 

(2) Processing of queries which involve abstract concepts 

In general, relational databases can only answer queries which involve l he e (wept s 

itd the database. but they cannot handle queries like "What are the major dwarf eri* 

tic of mammals?" and "flow can we describe the ma jot dillervnevb between mammals 

and birds?". Such queries involve concepts which are at a higher level than t lw prim-

itive data stored in relational databases. By applying the knowledge rules obtained 

by our learning algorithms, it is possible to answer such learning-ENIIIIIiiti. 

(3) Semantic query optimization using the learned colas, 

Learning query-transformation rules are vit al for the success of query op 

timization in domains where the user cannot provide a comprehenski. set of int egrit 

constraints. Some queries can be answered inure' efficient! .y 4 I In' knowledge 

rules without searching databases, For example. the query. "Is t here ati, mammal 

who has feathers?", usually indicates that the relation mlist lie Neil:111ml. However, 

if the characteristic rule indicates that, there is no ma11111181 who has feat hers, t his 

query can be answered immediately without, any search. Learned rules may speed tip 

or optimize database query processing as previously stmdied in semantic query opl i-

mization. Notice that when there is a large number of learned titles. ii is man ri vial 

to search such a rule space. In such a case, there is a tradeoff between perlorming 

such semantic optimization versus searching the database directly, 
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9.2.2 Construction of An Interactive Learning System 

As illustrated in our learning system, the database learning process is guided by 

experts or users. Experts and users must specify the learning task and define the 

threshold value. It is important to obtain such information by interaction with users 

and experts because: 

(l) the system should have a user-friendly interface to facilitates users' communi-

cation with the learning system. A more flexible database learning language should 

be developed for such an interface: and 

(2) the entire learning process should be monitored and controlled by users. For 

example, at some stage of the learning process. users may terminate the generalization 

on sonic selected attributes but continue the process on other attributes. In order 

to obtain multiple rules. users may influence the learning process using different 

threshold values. 

9.2.3 Integration of Multiple Types of Discovery Strategy 

Most research in knowledge discovery in databases has been thus far primarily con-

cerned with the development of single-strategy learning approaches. Such approaches 

include empirical induction from examples. explanation-based learning. learning by 

analogy, cased-based learning, and abductive learning. Single-strategy approach has 

specific requirements as to the kind of input information from which they can learn, 

and the amount of background knowledge needed prior to learning. They also produce 

different kinds of knowledge. Consequently. they apply to relatively narrow classes of 

problems. 

Real-world problems rarely satisfy all the requirements single-strategy learning 

met hods. however. they usually satisfy partially the requirements of several strate-

gies. In this context. there is a need for systems that can apply different strategies in 
an integrated fashion. The method is based on the idea of' "understanding" the input 

t hrough an explanation of system's background knowledge, and an employment of 

different inference type-deduction, analogy and induction. 

A major advantage of the method is that it enables the system to learn in situations 
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in which single-strategy learning methods. or even previous integrated learning met It 

ods were insufficient. Therefore, the proposed method reduces to a single-strategy 

whenever the applicability conditions for such a method are satisfied. In this re-

spect, the multiple strategy method may be regarded as a generalization or these 
single-strategy methods. 
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