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Abstract

This research proposes a new distribution for non-zero count data, namely the

zero-truncated Poisson-weighted exponential distribution (ZTPWE). The Poisson-

weighted exponential distribution(P-WE) has been proved to be a flexible two-parameter

distribution; therefore, Zero-truncated models can be used to investigate data with-

out zero counts. The combination of two such methods will be discussed in two parts.

In the first part (the theoretical part), the probability mass function is derived from

two methods. Then theoretical properties of the zero-truncated Poisson weighted ex-

ponential distribution are discussed: such as probability generating function, moment

generating function, characteristic function, and moments. Furthermore, the method

of maximum likelihood estimation is applied to estimate the parameters. In the sec-

ond part, software simulations and fittings of two real data sets are discussed. The

performance of the new model will be compared with other proposed zero-truncated

models.
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Notations

In the following, we will use these notations:

WE weighted-exponential distribution;

P −WE Poisson-weighted exponential distribution;

ZTP zero-truncated Poisson distribution;

ZTPL zero-truncated Poisson-Lindley distribution;

ZTTPPL zero-truncated two-parameter Poisson-Lindley distribution;

ZTPWE zero-truncated Poisson-weighted Exponential distribution;

Poi(x) the Poisson distribution with parameter x;

pmf the probability mass function;

pgf the probability generating function;

mgf the moment generating function;

ψ(x) the moment generating function of variable x;

ϕ(x) the characteristic function of variable x;

p(i) the probability of ith event
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f(x) the probability mass function (pmf) of the distribution;

ImX image of set X;

h(x) the probability density function (pdf) of the distribution;

FX(x) the cumulative distribution function with parameter x;

cdf the cumulative distribution function;

G(x) the probability generating function with parameter x;

E(x) the expected value of variable x;

V ar(x) the variance of variable x;

L(α, β;x) the likelihood function;

MLE maximum likelihood estimator;

MSE the mean squared error of an estimator of a parameter;

AIC the akaike information criterion;

AD the Anderson-Darling test goodness of fit.
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Chapter 1

INTRODUCTION

1.1 Truncated Data and Distributions

In a period of time, certain events that have been recorded form a count data.

For example, the number of road hazards a driver has in a month intuitively contains

many zeros, and such data could not be observed very well with ordinary distributions;

such data sets follow zero-inflated distributions. Another situation might give us the

opposite result. Consider the number of people in a driving car. Intuitively, such data

sets contain no 0s at all; to model such data sets, zero omission distributions are proper

to be applied. Such distributions are called zero-truncated or positive distribution.The

purpose of this study is to show that the modified distributions are recommended so

that better performance is guaranteed. Some modified zero-truncated models that

have been proposed already, and they all appear to have advantages in data modeling.

Gupta and Kundu have demonstrated that the Poisson-weighted exponential(P-WE)
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distribution is a better fit than some other distributions for certain dispersed data

sets. This research is to establish ZTPWE distribution and determine its performance

for positive dispersed data sets.

1.2 Research Outline

In the following chapter, we go over a few theoretical probabilistic concepts that

will be used to establish ZTWEP distribution.

In Chapter 3, we first derive the pmf of ZTPWE distribution by two methods,

plot it, then obtain other properties such as cumulative distribution function(cdf),

moment generating function(mgf) and moments.

In Chapter 4, we simulate 1000 times for two parameters to obtain MSE and bias.

The sample size of the simulation will be n = 20, 50, 100, 200 500. The BFGS method

in optimx function (Nash and Varadhan) of R language [11] is applied to estimate

the parameters of the ZTPWE distribution. Compare average MSE and average bias

for parameters α and β, and we consider the most common confidence level 95%.

R-programming(version 3.6.3) is used to run simulations. Then two real data sets are

considered to fit with different zero-truncated distributions. The criteria information

such as AIC and p-values are compared.

In the last chapter, we discuss the significance of our new model and the future

study expectations.
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1.3 Research Objectives

1. Construct the ZTPWE distribution, derive theoretical properties such as pmf,

mean, variance, etc.

2. Simulate random samples and look at Mean Square Error(MSE) and Maximum

Likelihood Estimator (MLE) of parameters.

3. Apply the ZTPWE distribution to real data sets, and compare it to other zero-

truncated distributions. Analyze the result.

1.4 Research Advantages

This study has the following advantages:

1. Since P-WE distribution has been derived, the ZTPWE distribution can be

derived directly.

2. Several zero-truncated distributions are proposed by other researchers. Thus it

is relatively easy to make comparisons among zero-truncated distributions.
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Chapter 2

THEORETICAL BACKGROUND AND

REVIEW OF LITERATURE

2.1 Theoretical Background

2.1.1 Zero-Truncated Distribution

It is possible that in a data set, zero counts appear frequently or none at all.

Traditional distributions such as Poisson or binomial distributions would have biased

parameters to model such data sets. Zero-inflated distributions can be applied to

model such data set that contain lots of zeros. For data sets that contain no zeros,

zero-truncated distributions are proper to model such data sets. There are several

distributions that have been studied for none-zero data. The zero-truncated Poisson
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(ZTP) distribution was developed in 1952 (David and Johnson, p 275-285). The zero-

truncated Poisson-Amarendra distribution was introduced in 2017 (Shanker, pp. 82-

92), the zero-truncated Poisson-Akash distribution was introduced in 2016 (Shanker,

pp. 227-236), and the zero-truncated two-parameter Poisson-Lindley distribution was

introduced in 2017 (Shanker and Mishra, pp. 85-95).

The first way to derive the zero-truncated pmf is: by definiton, the probability that

a point chosen at random lies in a subregion A of Ω is the ratio measure(A)/measure

(Ω) (Rohatgi, Saleh, p. 2 ), say pi, for i = 1, 2, 3... . Assume there is a data set

contains count variables that include zeros and other integers, and suppose pi is the

probability of the ith count, for i = 1, 2, 3..., then by definition, the collection of

numbers pi is the pmf of the original distribution, satisfying for all i and
∑∞

i=1 pi = 1,

then the pmf of zero-truncated counts is

f(x) =
∑

pi(xi 6= 0)

=
∑ pi

1− p(x = 0)

=

∑
pi

1− f0(0)

=
f0(x)

1− fo(0)
(1)
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2.1.2 Poisson-Weighted Exponential Distribution

Thus from equation (1), the pmf of zero-truncated distributions can be derived

from the original pmf of models. Now consider the weightedexponentialdistribution(WE)

with shape parameter α > 0 and scale parameter β > 0, it is introduced in 2009

(Gupta, Kundu, pp. 624), the pdf of X is

g0(λ;α, β) =
α + 1

α
βe−βx(1− e−αβx);λ > 0. (2)

The Poisson-Weighted Exponential distribution(P-WE) is proposed in 2014 (Zamani,

Ismail, pp. 148). The P-WE distribution is a mixture distribution of conditional

Poisson distribution and weighted exponential distribution. Suppose that random

variable x—λ is Poisson distributed, the pmf of x is

f(x|λ) =
e−λλx

x!
, x = 0, 1, 2...

, and the random variable λ is distributed as WE with pdf:

g(λ) =
α + 1

α
βe−βλ(1− e−αβλ), λ, α, β > 0,

the mixture pmf of the Poisson and WE distribution is then can be derived by:

f0(x) =

∫
f(x|λ)g(λ)dλ

=
(α + 1)β

α

[
(β + 1)−(x+1) − (αβ + β + 1)−(x+1)

]
(3)

for x = 0, 1, 2... and α, β > 0.
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In the research of Zamani, by applying this new model to the US NMES data

sets and compare to other models such as negative binomial via log likelihood, AIC,

and BIC, it is confident to say that P-WE distribution performs well and can be

an alternative model to fit count data sets. The pmf of the P-WE distribution has

a closed-form expression. Thus this new P-WE distribution could be a potentially

better model for zero-truncated data sets.

Once the pmf of P-WE distribution and substitute it into equation (1), the pmf

of ZTPWE distribution can be derived directly. There is another way to derive the

pmf of ZTPWE distribution. It is a rather new class of distributions and is going to

be enlightening for future research and study of its theoretical characteristics.

Consider a random size-biased Poisson distribution with parameter λ from the

textbook (Gut, pp. 38-42), let the ZTPWE distribution as a combination of a con-

ditional variable with a parameter that follows a new class of ditribution. Thus the

unconditional distribution can be derived under certain circumstances.

Probability Generating Function of the ZTPWE Distribution

The probability generating function(pgf) is the sequence p0, p1, ... such that for

function

GX(s) = p0 + p1s+ p2s
2 + ...,
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for all values of s for which the right-hand side converges absolutely (Grimmett, 52).

Since
∑
pi = 1, it is not hard to prove that

GX(0) = p(p) and GX(1) = 1

By the Law of the subconscious statistician (Grimmett, 31), If X is a discrete random

variable and g : R→ R, then

E(g(X)) =
∑

x∈ImX

g(X)P(X = x)

, for |s| < 1, indicates that

GX(s) = E(sX).

The importance of the pgf can be shown by the following theorem: Suppose X and Y

have probability generating functions Gx and GY , respectively. Then

GX(s) = GY (s) for all s

if and only if

P(X = k) = P(Y = k) for k = 0, 1, 2, ....

The above theorem actually indicates that if the pgf of two integer-valued random

variables are the same, then their pmf’s are the same.
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2.1.3 Conditional Random Variable Sampling

Suppose a random variable X has parameter λ, then X is denoted as a size-biased

Poisson distribution, if its pmf is:

f(x|λ) = e−λ
λx−1

(x− 1)!
, x = 1, 2, ...

There are two ways to derive this distribution. The first method is to apply the

size-biased transformation to the original Poisson distribution. Assume that the orig-

inal pmf of Poisson distribution is f0(x), x = 0, 1, 2..., then the pmf of size-biased

distribution is defined as

f(x) = f0(x− 1), x = 1, 2....,

remind that the original pmf of Poisson distribution is:

f0(x) = e−λ
λx

x!

simply substitute f0(x) into the size-biased Poisson transformation, obtain:

f(x) = f0(x− 1) = e−λ
λx−1

(x− 1)!

For the second method, it is natural that the same result is obtained when apply

the length-biased transformation. Similarly, assume that the original pmf of Poisson

distribution is f0(x), x = 0, 1, 2..., then the pmf of length-biased distribution is defined

as

fX(x) =
xf0(x)

E(X)
, x = 1, 2...
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again substitute f0(x) into the length-biased Poisson transformation, obtain:

fX(x) =
xe−λ λ

x

x!

λ
= e−λ

λx−1

(x− 1)!

2.1.4 Cumulative Functions, Unimodal and Logconcave

A random variable X is a function mapping a sample space into the real number

set, IR, and for each element in the domain, there exists one and only one P (X = x)

that indicates the probability of x. Similarly, there exists a unique P (X ≤ x) for all

x. Such function P (X ≤ x) is defined as the cumulative distribution function, also

denoted as FX(x), such that 0 ≤ FX(x) ≤ 1, and limx→∞ FX(x) = 1. A discrete

distribution is always a step function with limit amount of steps. For a specific

step, P (X = x) = f(x), where f(x) is the probability mass function. Notice that

limx→∞ FX(x) =
∑

i f(xi) = 1, for i = 0, 1, 2.... The set {xi} is known as the discrete

random variables. For a discrete distribuion, if f(x)f(x + 2)/f 2(x + 1) > 1, it is

said to be logconvex, if f(x)f(x + 2)/f 2(x + 1) < 1, it is said to be logconcave. In

this research, discrete data sets are observed, but ZTPWE distribution model is a

continuous distribution. For a continuous pdf, if dfX(x)/dx = 0 and d2fX(x)/dx2 < 0,

the distritbution is a mode. The location of mode is at X = x if

fX(x− c1 − 1) < fX(x− c1) ≤ · · · ≤ fX(x)

and

fX(x) ≥ · · · ≥ fX(x+ c2) > fX(x+ c2 + 1)

10



, where 0 ≤ c1, 0 ≤ c2. In ordinary words, a distribution is a mode if it has peak

values. If it has only one peak value, then it is unimodal; otherwise, it is multimodal.

(Johnson, Kemp, pp. 43-51).

2.2 The Theory of Point Estimation

In the estimation section, the Method of Moments and the Method of Maximum

Likelihood Estimation are used to test the performance of the ZTPWE model.

2.2.1 Moment and Moment Generating Function

In a physics way to describe the idea of the moment of a distribution, it is pretty

much like an average ”distance” of all data sets to a certain point that is interested

in. By definition (Casella, p. 59),

For each integer n, the nth moment of X (or FX(x)), u′n, is

u′n = EXn.

The nth central moment of X, un, is

un = E(X − u)n,

where u = u′ =EX. In a physics way to understand this concept, assume n = 1,

then the first moment of X is simply the average distance between data sets to 0.

The first central moment is the average distance between data sets to the position of

11



mean. If n = 2, then it is the average squared distance that is interested in, and so

on, notice that the second central moment is usually called variance. The moment

generating function indicates that it can generate moments of a distribution, though

two different distributions can have the same moments(Shao, pp.32-33). However,

the main purpose of mgf is to determine the properties such as mean and variance

rather than derive the moments. By Definition(Casella, p. 62),

Let X be a random variable with cdf FX(x). The moment generating function(mgf)

of X, denoted by ψ(t) is

ψ(t) = EetX

, if the expectation does not exist, then the mgf does not exist. The mgf of X can be

derived by:

ψ(t) =
∑
x

etxP (X = x) if X is discrete,

or

ψ(t) =

∫ ∞
−∞

etxfX(x)dx if X is continuous.

The mgf has the following property with t = 0:

EXn = ψ(n)(0)

and defined that:

ψ(n)(0) =
dn

dtn
u′n(t)

∣∣∣∣
t=0

12



That is, in other words, the nth moment is the nth derivative of mgf at t = 0. Simply

look at the derivative:

d

dt
ψ(t) =

d

dt

∫
etxfX(x)dx

=

∫ (
d

dt
etx
)
fX(x)dx

=

∫
(xetx)fX(x)dx

= EXetX

If t = 0, then it can be obtained that:

d

dt
ψ(t)

∣∣∣∣
t=0

= EXetX
∣∣∣∣
t=0

= EX.

and

d2

dt2
ψ(t)

∣∣∣∣
t=0

= EX2etX
∣∣∣∣
t=0

= EX2.

and so on.

2.2.2 Maximum Likelihood Estimation

The likelihood function is a compelling method to analyze data sets. It is defined

as (Casella, p. 290, p. 310):

Definition 2.1 Let f(x|θ) denote the joint pdf or pmf of the sample X = (X1, X2, · · · , Xn),

and let the pdf or pmf has parameter θ, then:

L(θ|x) = f(x|θ)

13



where X = x that is observed.

The maximum likelihood estimation is a powerful method to estimate the parameters

of a probability distribution.

Definition 2.2 Recall that if f(x|θ1, . . . , θk) denote the pdf or pmf of the sample

X = (X1, X2, · · · , Xn), that from a population, the likelihood function is defined as:

L(θ1, . . . , θk|x) =
n∏
i=1

f(xi|θ1, . . . , θk)

then for each sample point x, let θ̂ be a parameter value where L(θ|x) gains its maxi-

mum as a function of θ, with x remain fixed. A maximum likelihood eastimator(MLE)

of the parameter θ based on a sample X is θ̂(X).

MLE provides an inspection of the most likely value of a parameter could be given

the count data set that has been observed. If the likelihood function is differentiable

over θi, then one of the potential values for the MLE is:

∂

∂θi
L(θ|x) = 0, i = 1, ..., k.

The solution xs to the above equation are possible candidates for the MLE since the

derivative being 0 is a sign for maximum, but it is not a sufficient condition. In many

cases, it is much easier to apply the natural logarithm of L(θ|x), say log L(θ|x)(known

as the log-likelihood) instead.

14



2.2.3 Mean Squared Error and Bias

Definition 2.3 The mean squared error(MSE) of an estimator W of a parameter θ

is the function of θ defined as Eθ(W − θ)2. (Casella, p. 330)

By definition, we can tell that the MSE is essentially the squared ”distance” or

difference between the estimator W and the parameter θ. In fact, there are many

ways to describe this ”distance”, for instance, the absolute value of —W-θ— would

be a good measure of the performance of the estimator, the mean absolute error,

Eθ|W − θ|. The reason that we use this MSE is that it is connected to another

concept about the ”distance” between the W and θ. The definition of the MSE is:

Eθ(W − θ)2 = Eθ(W
2) + Eθ(θ

2)− 2Eθ(Wθ)

= Eθ(W
2)− (Eθ(W ))2 + (Eθ(W ))2 + Eθ(θ

2)− 2Eθ(Wθ)

= Varθ(W ) + (Eθ(W )− θ)2.

Thus, we define the bias of an estimator as follow:

Definition 2.4 The bias of a point estimator W of a parameter θ is the difference

between the expected value of W and θ.

In mathematical words, BiasθW = EθW − θ. If the bias is 0, then we say that the

estimator is unbiased, EθW = θ, for all θ. Thus, we can tell that a good MSE should

equal to variance, which means there is 0 bias.

15



2.2.4 AIC, AD Test and p-value

The AIC is defined by (Konishi and Kitagawa, pp. 60-61):

AIC = −2(maximum log-likelihood) + 2(number of free parameters)

The number of free parameters in a distribution model is related to the dimensions

of a parameter θ contained in the f(x|θ).

The AIC basically describes that the number of free parameters in the model plays

an important role as a new ”bias”. Thus a good model should have a relatively small

AIC value.

The Anderson-Darling(AD) statistic describes how close the points are to the fitted

line estimated in a probability graphic (Jantschi, Bolboaca, p. 2). The maximum p-

value is based on the discrete AD test, and the large p-value indicates that there is

strong evidence to say the data and model are related(Anderson, Darling, p. 193).

2.3 Review of the Related Literature

In 1952, Daivd and Johnson noticed that in the Poisson model, the zero group

remains unobserved. They found that the Poisson model does not perform well when

dealing with a certain number of 0 counts. Thus a truncated distribution should be

considered when dealing with such data sets.
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In 2007, Gupta and Kundu introduced a new version of weighted exponential

distribution. A new parameter is introduced to gain this new distribution. Two

different methods are applied to obtain the pdf of random variables. The first way is to

take pdf of weighted exponential distribution as a special case of Jones’ model (Jones,

pp. 41-43). The other way is to take the skew-normal distribution(Arnold, Beaver,

pp. 23-25) as a hidden truncation model. The weighted exponential distribution is

similar to some other distributions. By evaluating the MLE, it seems the result does

not perform better even with a large sample size. Fitting weighted exponential model

to real data sets, the survival times of guinea pigs with different amounts of tubercle

bacilli injection(Bjerkedal, 1960), compare with Weibull, gamma, and generalized

exponential distributions, they seem perform similarly. The second data sets are 450

students’ performance in Joint Entrance Examination from the Indian Institute of

Technology Kanpur. Interestingly, this time the weighted exponential distribution

performs better than the Weibull and all other models.

In 2014, Zamani and Noriszura proposed the research about P-WE distribution,

it is a two-parameter model. Their method is to take X|λ as a conditional Poisson

distribution and let λ be distributed as weighted exponential distribution. Thus the

combination can be obtained, namely P-WE distribution. Furthermore, the proper-

ties of P-WE distribution are derived. The shape of pmf of P-WE implies it can be

used as an alternative for count data sets. The model is fitted with two real data sets.
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The first one is Belgium insurance count data in 1993(Denuit, 1997). The second data

set is US national Medical Expenditure Survey 1987/88(NMES) data from Deb and

Trivedi(1997). The result is compared with Poisson, generalized Poisson and negative

binomial distributions, investigate the criteria information, log-likelihood, AIC that is

generated in R language. It seems that the P-WE performs better than other models.

The related pmf’s are:

ZTP:

f(x; θ) =
(eθ − 1)−1θx

x!

for x = 1, 2, 3.....

ZTPL:

f(x; θ) =
θ3

θ2 + 3θ + 1

x+ θ + 2

(θ + 1)x

for x = 1, 2, 3...., θ > 0.

ZTTPL:

f(x; θ, α) =
θ2

θ2 + 2θα + θ + α

αx+ (θ + α + 1)

(θ + 1)x

for x = 1, 2, 3...., θ > 0, θ2 + 2θα + θ + α > 0.
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Chapter 3

THEORETICAL PART

3.1 ZTPWE model

In the last chapter, the two different ways to obtain the ZTPWE distribution is

discussed, and the first way is substitute equation (3) into (2), obtain:

f(x) =
f0(x)

1− f0(0)

=
(α+1)β

α

[
(β + 1)−(x+1) − (αβ + β + 1)−(x+1)

]
1− (α+1)β

α
[(β + 1)−1 − (αβ + β + 1)−1]

=
(α + 1)β

[
(β + 1)−(x+1) − (αβ + β + 1)−(x+1)

]
α− (α + 1)β [(β + 1)−1 − (αβ + β + 1)−1]

=
(α + 1)β

[
(β + 1)−(x+1) − (αβ + β + 1)−(x+1)

]
((β + 1)(αβ + β + 1))

α(β + 1)(αβ + β + 1)− α(α + 1)β2

=
(α + 1)β

[
(β + 1)−(x+1) − (αβ + β + 1)−(x+1)

]
((β + 1)(αβ + β + 1))

2αβ + α2β + α

=
(α + 1)β

α((α + 2)β + 1)
(β + 1)−x(αβ + β + 1)−x

(
(αβ + β + 1)x+1 − (β + 1)x+1

)
for x = 1, 2, 3, ... and α, β > 0.
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The other way to gain the pmf of ZTPWE distribution is rather new. Now intro-

duce a new class of distributions that have not been discussed in the literature yet.

Assume that a random variable follows a partly-exponential distribution with three

parameters 0 ≤ γ ≤ 1, δ > 0, and 0 < τ < δ(1 + γ), if its density function is:

h(t) =


c(1− γe−t/δ)e−t/τ if t ≥ 0

0 otherwise

where the normalizing constant c = δ+τ
τ [δ(1−γ)+τ ] . The fact that the above model is a

valid density function is a particular case θ = 1 of the following result.

Lemma 3.1 For positive δ, τ, andθ, and any real γ:

∫ ∞
0

tθ−1
(
1− γe−t/δ

)
e−t/τdt = Γ(θ)τ θ

[
1− γ

(
δ

δ + τ

)θ]
.

If θ = 1, rewrite the above equation to:

∫ ∞
0

t1−1
(
1− γe−t/δ

)
e−t/τdt = Γ(1)τ 1

[
1− γ

(
δ

δ + τ

)1
]
.

∫ ∞
0

(
1− γe−t/δ

)
e−t/τdt = τ

[
1− γ

(
δ

δ + τ

)]
.∫ ∞

0

δ + τ

τ [δ(1− γ) + τ ]

(
1− γe−t/δ

)
e−t/τdt = 1.

where the normalizing constant c = δ+τ
τ [δ(1−γ)+τ ] , this result indicates that h(t) has

intergral equals to 1, thus it is a valid density function.
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Proof. The statement is a simple corollary of the well known formula:∫ ∞
0

tθ−1e−t/adt = Γ(θ)aθ

been substituted twice. For the left hand side of equation (4), it can be rewritten as:

∫ ∞
0

tθ−1
(
1− γe−t/δ

)
e−t/τdt =

∫ ∞
0

tθ−1e−t/τdt−
∫ ∞
0

tθ−1γe−t(
1
δ
+ 1
τ
)

=

∫ ∞
0

tθ−1e−t/τdt−
∫ ∞
0

tθ−1γe
− t

δτ
δ+τ

= Γ(θ)τ θ − γΓ(θ)(
δτ

δ + τ
)θ

= Γ(θ)τ θ

[
1− γ

(
δ

δ + τ

)θ]
.

Now suppose that there is a random variable X follows the conditional distribution

with parameter λ > 0 size-biased Poisson distribution and that the parameter λ itself

follows the partly-exponential distribution with parameter γ = β+1
αβ+β+1

, δ = 1
αβ
, and

τ = 1
β
; thus the pdf of λ is

h(λ) =
δ + τ

τ [δ(1− γ) + τ ]

(
1− γe−t/δ

)
e−t/τ

=

1
αβ

+ 1
β

1
β

[
1
αβ

(1− β+1
αβ+β+1

) + 1
β

](1− β + 1

αβ + β + 1
e−t/

1
αβ )e−t/

1
β

=
αβ + β

(1− β+1
αβ+β+1

) + α
(1− β + 1

αβ + β + 1
e−t/

1
αβ )e−t/

1
β

=
(α + 1)β(αβ + β + 1)

(αβ + β + 1)− (β + 1) + α(αβ + β + 1)
(1− β + 1

αβ + β + 1
e−t/

1
αβ )e−t/

1
β

=
(α + 1)β

α((α + 2)β + 1)

[
(αβ + β + 1)− (β + 1)e−αβλ

]
e−βλ, λ > 0.
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Now it is clear that a unconditional distribution f(X) with parameter λ can be

obtained by:

f(x) =

∫ ∞
0

f(x|λ)h(λ)dλ

=

∫ ∞
0

e−λ
λx−1

(x− 1)!

(α + 1)β

α((α + 2)β + 1)

[
(αβ + β + 1)− (β + 1)e−αβλ

]
e−βλdλ

=
(α + 1)β

α((α + 2)β + 1)

∫ ∞
0

e−λ
λx−1

(x− 1)!

[
(αβ + β + 1)− (β + 1)e−αβλ

]
e−βλdλ

=
(α + 1)β(αβ + β + 1)

α((α + 2)β + 1)Γ(x)

∫ ∞
0

λx−1
[
1− β + 1

αβ + β + 1
e−αβλ

]
e−βλdλ

by Lemma 3.1, let t = λ, θ = x, γ =
β + 1

αβ + β + 1
, δ =

1

αβ
, and τ =

1

β + 1

=
(α + 1)β(αβ + β + 1)

α((α + 2)β + 1)Γ(x)

{
Γ(x)(

1

β + 1
)x

[
1− β + 1

αβ + β + 1
(

1
αβ

1
αβ

+ 1
β+1

)x

]}

=
(α + 1)β(αβ + β + 1)

α((α + 2)β + 1)Γ(x)

{
Γ(x)(

1

β + 1
)x
[
1− (

β + 1

αβ + β + 1
)x+1

]}

=
(α + 1)β

α((α + 2)β + 1)

[
αβ + β + 1

(β + 1)x
− β + 1

(αβ + β + 1)x

]
=

(α + 1)β

α((α + 2)β + 1)

[
(αβ + β + 1)x+1 − (β + 1)x+1

(β + 1)x(αβ + β + 1)x

]
,

for α, β > 0. And check with the pmf of ZTPWE distribution by the first mothed,

the two pmf are identical, which is as expected.

3.1.1 Plots of pmf’s

One of the most intuitive ways to understand a pmf function is to plot it, here

use R language [11] to plot pmf with different set of parameters α and β.

The pmf plots with different parameter pairs are shown above. They all skewed
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Figure 3.1: Pmf plots of the ZTPWE distribution with parameter α and β
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Figure 3.2: Pmf plots of the ZTPWE distribution with parameter α and β
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Figure 3.3: Pmf plots of the ZTPWE distribution with parameter α and β
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Figure 3.4: Pmf plots of the ZTPWE distribution with parameter α and β
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Figure 3.5: Pmf plots of the ZTPWE distribution with parameter α and β
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Figure 3.6: Pmf plots of the ZTPWE distribution with parameter α and β
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right, seem like pulled out to the right. Each of the plots has a peak value or mode,

the location of the mode is decreasing as α and β increase. Meanwhile, the magnitude

of the mode increases as α and β increase. The plots clearly indicate that the ZTPWE

distribution has only one mode, so it is unimodal (Johnson, Kemp and Kotz, p. 51).

Take a look at the ratio:

f(x+ 1)

f(x)
=

(α+1)β
α((α+2)β+1)

(α+1)β
α((α+2)β+1)

(αβ+β+1)x+2−(β+1)x+2

(β+1)x+1(αβ+β+1)x+1

(αβ+β+1)x+1−(β+1)x+1

(β+1)x(αβ+β+1)x

=
1

(β + 1)(αβ + β + 1)

[
(αβ + β + 1)x+2 − (β + 1)x+2

(αβ + β + 1)x+1 − (β + 1)x+1

]

and by fact that

f(x+ 2)f(x)

f 2(x+ 1)
=
f(x+ 2)

f(x+ 1)

f(x)

f(x+ 1)

=

1
(β+1)(αβ+β+1)

1
(β+1)(αβ+β+1)

(αβ+β+1)x+3−(β+1)x+3

(β+1)x+2(αβ+β+1)x+2

(αβ+β+1)x+2−(β+1)x+2

(β+1)x+1(αβ+β+1)x+1

1
(β+1)(αβ+β+1)

1
(β+1)(αβ+β+1)

(αβ+β+1)x+1−(β+1)x+1

(β+1)x(αβ+β+1)x

(αβ+β+1)x+2−(β+1)x+2

(β+1)x+1(αβ+β+1)x+1

=
(αβ + β + 1)x+3 − (β + 1)x+3

(αβ + β + 1)x+2 − (β + 1)x+2

(αβ + β + 1)x+1 − (β + 1)x+1

(αβ + β + 1)x+2 − (β + 1)x+2

let A = αβ + β + 1, B = β + 1, A,B > 0A 6= B ,

=
A2x+4 +B2x+4 − Ax+3Bx+1 − Ax+1Bx+3

A2x+4 +B2x+4 − 2Ax+2Bx+2

=
A2x+4 +B2x+4 − Ax+1Bx+1(A2 +B2)

A2x+4 +B2x+4 − Ax+1Bx+1(2AB)

Now compare A2 + B2 and 2AB, it is known that (A − B)2 > 0 with A 6= B, thus
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A2 +B2 − 2AB > 0⇒ A2 +B2 > 2AB ⇒ f(x+2)f(x)
f2(x+1)

< 1, which implies the ZTPWE

distribution is logconcave (John, Kemp and Kotz p.43).

3.1.2 Cumulative Distribution Function

By definition, the cumulative distribution function(cdf) can be derived by F (x) =∑
f(x), x = 1, 2, 3, ..., the partial sums of geometric sequence terms are applied twice,

F (x) =
∑
x

(α + 1)β

α((α + 2)β + 1)

[
(αβ + β + 1)x+1 − (β + 1)x+1

(β + 1)x(αβ + β + 1)x

]

=
(α + 1)β

α((α + 2)β + 1)

[∑
x

(αβ + β + 1)x+1

(β + 1)x(αβ + β + 1)x
−
∑
x

(β + 1)x+1

(β + 1)x(αβ + β + 1)x

]

=
(α + 1)β

α((α + 2)β + 1)

[∑
x

αβ + β + 1

(β + 1)x
−
∑
x

β + 1

(αβ + β + 1)x

]

=
((α + 1)β)(αβ + β + 1)

α((α + 2)β + 1)

∑
x

1

(β + 1)x
− ((α + 1)β)(β + 1)

α((α + 2)β + 1)

∑
x

1

(αβ + β + 1)x

The above equation is a combination of two sums of geometric sequence. The

general term of a geometric sequence can be re-written as a1r
n−1, where a1 is

the first term when x = 1. The summation Sn =
a1r

n

1− r
.

The first summation has ratio r =
1

β + 1
, the second summation has ratio r =

1

αβ + β + 1
.

The above equation can be re-written as:
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=

(α+1)(αβ+β+1)β
α((α+2)β+1)(β+1)

β
β+1

(1− (
1

β + 1
)x)−

(α+1)(β+1)β
α((α+2)β+1)(αβ+β+1)

(α+1)β
αβ+β+1

(1− (
1

αβ + β + 1
)x)

=
(α + 1)(αβ + β + 1)

α((α + 2)β + 1)

[
1− (

1

β + 1
)x
]
− β + 1

α((α + 2)β + 1)

[
1− (

1

αβ + β + 1
)x
]

=
α((α + 2)β + α + (β + 1)(αβ + β + 1)−x − (α + 1)(αβ + β + 1)(β + 1)−x

α((α + 2)β + 1)

x = 1, 2, 3, · · · .

3.2 Theoretical Probalilistic Properties of the ZTPWE Dis-

tribution

3.2.1 The Probability Generating Function of ZTPWE Dis-

tribution

Theorem 3.1 If X ∼ ZTPWE(α, β), then the probability generating function of X

is

G(s) =
(α + 1)β

α((α + 2)β + 1

[
s(αβ + β + 1)

β + 1− s
− s(β + 1)

αβ + β + 1− s

]
,

where |s| < β + 1.

Proof. By definition, the pgf of X is given by:

G(s) = E(sx) =
∞∑
x=1

sxf(x)

=
∞∑
x=1

sx
(α + 1)β

α((α + 2)β + 1)

[
(αβ + β + 1)x+1 − (β + 1)x+1

(β + 1)x(αβ + β + 1)x

]
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=
(α + 1)β

α((α + 2)β + 1)

{
(αβ + β + 1)

∞∑
x=1

(
s

β + 1
)x − (β + 1)

∞∑
x=1

(
s

αβ + β + 1
)x

}

again calculate two sums of geometric series, S∞ =
a1

1− r
, where a1 is the

first term and r is the geometric ratio.

=
(α + 1)β

α((α + 2)β + 1)

[
((αβ+β+1)s)

β+1

1− s
β+1

−
(β+1)s
αβ+β+1

1− s
αβ+β+1

]

=
(α + 1)β

α((α + 2)β + 1)

[
(αβ + β + 1)s

β + 1− s
− (β + 1)s)

αβ + β + 1− s

]

The moment generating function and the characteristic function of X can be obtained

by the similar mathematic method as the pgf.

3.2.2 The Moment Generating Function of ZTPWE Distri-

bution

Theorem 3.2 If X ∼ ZTPWE(α, β), then the moment generating function of X is

ψ(t) =
(α + 1)β

α((α + 2)β + 1

[
et(αβ + β + 1)

β + 1− et
− et(β + 1)

αβ + β + 1− et

]
,

where t < log(β + 1).
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3.2.3 The characteristic Function of ZTPWE Distribution

Theorem 3.3 If X ∼ ZTPWE(α, β), then the characteristic function of X is

ϕ(t) =
(α + 1)β

α((α + 2)β + 1

[
eit(αβ + β + 1)

β + 1− eit
− eit(β + 1)

αβ + β + 1− eit

]
.

3.2.4 Methods of Moments

The methods of moments implies that the kth derivative of the mgf with t = 0

equals to E(xk). Thus the mean and variance of ZTPWE distribution can be derived

by:

E(x) =

(
dψ(t)

dt

)
t=0

=
d

dt

(
(α + 1)β

α((α + 2)β + 1

[
et(αβ + β + 1)

β + 1− et
− et(β + 1)

αβ + β + 1− et

])
t=0

=
(α + 1)β

α((α + 2)β + 1

(
(αβ + β + 1)et(β + 1− et) + e2t(αβ + β + 1)

(β + 1− et)2

− (β + 1)et(αβ + β + 1− et) + e2t(β + 1)

(αβ + β + 1− et)2

)
t=0

=
(α + 1)β(β + 1)(αβ + β + 1)

α((α + 2)β + 1)

(
et

(β − et + 1)2
− et

(αβ + β + 1− et)2

)
t=0

=
(α + 1)β(β + 1)(αβ + β + 1)

α((α + 2)β + 1)

(
1

β2
− 1

(αβ + β)2

)
=

(αβ + β + 1)(β + 1)(α + 2)

((α + 2)β + 1)β(α + 1)

In order to obtain the variance, consider the definition of variance, it is defined as

Var(X) = E(X − E(X))2 = E(X2 − 2XE(X) + E2(X)) = E(X2) − 2E(XE(X)) +
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E2(X) = E(X2)−2E(X)E(X)+E2(X) = E(X2)−2E2(X)+E2(X) = E(X2)−E2(X).

Thus it is necessary to derive E(X2). Again, by methods of moments, the second

derivative of mgf with respect to t at t = 0 equals to E(x2), thus:

E2(x) =

(
d2ψ(t)

dt2

)
t=0

=
d2

dt2

(
(α + 1)β

α((α + 2)β + 1

[
et(αβ + β + 1)

β + 1− et
− et(β + 1)

αβ + β + 1− et

])
t=0

=
(α + 1)β

α((α + 2)β + 1

d2

dt2

(
et(αβ + β + 1)

β + 1− et
− et(β + 1)

αβ + β + 1− et

)
t=0

=
(α + 1)β(β + 1)(αβ + β + 1)

α((α + 2)β + 1)

d

dt

(
et

(β − et + 1)2
− et

(αβ + β + 1− et)2

)
t=0

=
(α + 1)β(β + 1)(αβ + β + 1)

α((α + 2)β + 1)

(
et(β + 1− et)2 − et2(β + 1− et)(−et)

(β + 1− et)4

− et(αβ + β + 1− et)2 − 2et(αβ + β + 1− et)(−et)
(αβ + β + 1− et)4

)
t=0

=
(α + 1)β(β + 1)(αβ + β + 1)

α((α + 2)β + 1)

(
β + 2

β3
− (α + 1)β + 2

(α + 1)3β3

)
=

(β + 1)(αβ + β + 1)(α2β + 2α2 + 3αβ + 6α + 2β + 6)

(α + 1)2(αβ + 2β + 1)β2

Now deriving the variance of X is possible,

Var(X) = E(X2)− E2(X)

=
(β + 1)(αβ + β + 1)(α2β + 2α2 + 3αβ + 6α + 2β + 6)

(α + 1)2(αβ + 2β + 1)β2

−
[

(αβ + β + 1)(β + 1)(α + 2)

((α + 2)β + 1)β(α + 1)

]2
=

(β + 1)(αβ + β + 1)(α3β + 5α2β + α2 + 9αβ + 2α + 6β + 2)

(α + 1)2(αβ + 2β + 1)2β2

Plot the mean and variance with paramter α and β.
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Figure 3.7: mean and variane plots of the ZTPWE distribution with parameter α and β
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According to the two figures, the mean and variance values decrease as α and β

increase.

3.2.5 Parameter Estimation

The maximum likelihood estimation is applied to obtain the parameter estimators

of the ZTPWE distribution in this section. Assume that X1, X2, · · · , Xn represent a

random sample of size n that follow the ZTPWE distribution with parameter α and β,

the observed values are x1, x2, · · · , xn respectively.Then by definition, the likelihood

function of the ZTPWE distribution is:

L(α, β) =
n∏
i=1

f(xi)

=
n∏
i=1

(α + 1)β
(β + 1)−xi(αβ + β + 1)−xi((αβ + β + 1)xi+1 − (β + 1)xi+1)

α((α + 2)β + 1)

Now apply the log-likelihood method,

log L(α, β) = n log (α + 1) + n log β +
n∑
i=1

log ((αβ + β + 1)xi+1 − (β + 1)xi+1)

−
( n∑

i=1

xi

)
log (β + 1)−

( n∑
i=1

xi

)
log (αβ + β + 1)− n log α

− n log ((α + 2)β + 1).
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Then take the first partial derivative of the log-likelihood function with respect to

each parameter, α and β, obtain:

∂ log L(α, β)

∂α
=

n

α + 1
+

n∑
i=1

β(xi + 1)(αβ + β + 1)xi

(αβ + β + 1)xi+1 − (β + 1)xi+1

−
( n∑

i=1

xi

)
β

αβ + β + 1
− n

α
− βn

αβ + β + 1
,

∂ log L(α, β)

∂β
=
n

β
+
∑
i=1

n
(α + 1)(xi + 1)(αβ + β + 1)xi − (xi + 1)(β + 1)xi

(αβ + β + 1)xi+1 − (β + 1)xi+1

−
∑n

i=1 xi
β + 1

−
( n∑

i=1

xi

)
α + 1

αβ + β + 1
− (α + 2)n

(α + 2)β + 1
.

Thus the MLE can be obtained by setting the above score functions equal to 0.

Although the above score functions do not have closed-form solutions, the MLE can

still be obtained by the numerical methods. The BFGS method is applied from the

optimx function (Nash and Varadhan) of R language.

As n → ∞, the distribution of
√
n(α̂ − α, β̂ − β) is an asymptotically bivariate

normal with zero means and the variance-covariance matrix that which is calculated

as the inverse of the Fisher information matrix. Due to the complexity of the Fisher

information matrix, it is replaced by the observed information matrix.
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Chapter 4

SIMULATION and APPLICATION

Simulation of Paramter Estimators

In this chapter the performance of the MLE, α̂, β̂ are investigated. Generate

random samples, and the steps are:

i. Generate ui ; i = 1, 2, . . . , n from U(0, 1) distribution.

ii. Set xi = F−1(ui).

iii. Repeat n times to obtain the sample values xi ; i = 1, 2, . . . , n.

The simulation will be repeated 1000 times for α = 0.5, 1. The sample size n

would be 20, 50, 100, 200, and 500. The measures of accuracy of the estimators for

parameter α are:

(i) Average Mean Square Error MSE =

1,000∑
i=1

(α̂i − α)2

1, 000
,
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(ii) Average Bias =
1

1000

1,000∑
i=1

(α̂i − α).

Table 4.1: Average MSE (average bias) of the simulated maximum likelihood estimates
for α

n α β

0.5 1 2
20 0.0069 (0.0099) 0.2474 (0.4589) 2.1519 (1.3640)
50 0.0025 (0.0063) 0.2043 (0.4383) 1.6448 (1.2524)
100 0.5 0.0012 (0.0034) 0.1902 (0.4294) 1.5531 (1.2324)
200 0.0006 (0.0011) 0.1818 (0.4230) 1.4934 (1.2151)
500 0.0002 (0.0005) 0.1792 (0.4219) 1.4731 (1.2109)

20 0.2037 (-0.4414) 0.0505 (0.0425) 1.3581 (1.0121)
50 0.2023 (-0.4462) 0.0247 (0.0284) 0.9213 (0.9077)
100 1 0.2040 (-0.4499) 0.0079 (0.0117) 0.8330 (0.8867)
200 0.2056 (-0.4526) 0.0037 (0.0052) 0.7752 (0.8678)
500 0.2058 (-0.4533) 0.0015 (0.0021) 0.7467 (0.8589)

The same procedure is applied to parameter β for value of 0.5, 1, 2.

4.1 Simulation Result

Table 4.1 shows the average MSE and bias(in parentheses) of the MLE of param-

eter α. The MSE value should decreases as n increases. A good average bias should

go as close as possible to 0 when n increases. For most combinations of α and β, the

average MSE decreases when n increases and the average bias shrinks close to 0 as n

increases. A similar conclusion can be made to β. Thus the estimators of α and β

have pretty good accuracy.
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Table 4.2: Average MSE (average bias) of the simulated maximum likelihood estimates
for β

n α β

0.5 1 2
20 1.4669 (1.2034) 0.0699 (0.2355) 1.2095 (-1.0941)
50 1.4448 (1.1989) 0.0618 (0.2366) 1.1745 (-1.0816)
100 0.5 1.4427 (1.1997) 0.0604 (0.2394) 1.1692 (-1.0803)
200 1.4480 (1.2026) 0.0604 (0.2425) 1.1622 (-1.0775)
500 1.4474 (1.2028) 0.0595 (0.2425) 1.1612 (-1.0774)

20 1.2880 (1.1268) 0.0485 (0.1854) 1.2813 (-1.1266)
50 1.2678 (1.1228) 0.0417 (0.1880) 1.2542 (-1.1179)
100 1 1.2711 (1.1258) 0.0370 (0.1843) 1.2494 (-1.1167)
200 1.2744 (1.1281) 0.0359 (0.1852) 1.2428 (-1.1143)
500 1.2752 (1.1289) 0.0355 (0.1866) 1.2394 (-1.1130)

4.2 Application

Finally, fit ZTPWE distribution into two real data sets and compare the result

with several competitors. The first data set is the birth order of 1800 students en-

rolled in elementary psychology classes at the University of California in 1924 to 1929

(Guttorp, 1991). The second data set is the number of occupants in 1469 cars (Hand,

Daly, Lunn, McConway, and Ostrowsky, 1994). The competitors are ZTP, ZTPL, and

ZTTPL distributions. The criteria for model selection are the lowest of the Akaike

information criterion(AIC), the highest of the log-likelihood, and the highest of p-

value based on the discrete Anderson-Darling(AD) goodness of fit test (Choulakian,

Lockhart and Stephens, pp. 125-137). The results are shown in the Tables:
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Table 4.3: The birth order of 1800 students enrolled in elementary psychology classes at
the University of California in 1924 to 1929

Birth order frequencies ZTP ZTPL ZTTPPL ZTPWE
1 797 603.8408 782.3003 807.3863 798.5009
2 455 571.8339 458.2171 453.2348 452.2384
3 265 361.0157 258.1594 245.5257 248.9240
4 125 170.9400 141.5655 135.3956 136.2151
5 68 64.7517 76.0989 74.6642 74.4478
6 37 20.4398 40.2869 41.1737 40.6786
7 26 5.5304 21.0717 22.7053 22.2258
8 8 1.3093 10.9137 12.521 12.1435
9 1 0.2755 5.6069 6.9047 6.6348
10 9 0.0522 2.8609 3.8076 3.6250
11 5 0.0090 1.4513 2.0997 1.9806
12 3 0.0014 0.7325 1.1579 1.0821
13 1 0.0002 0.3681 0.6385 0.5912

Estimated
parameters

λ̂=1.8940
(0.0367)

θ̂=1.1215
(0.0299)

θ̂=0.8135
(0.1637)

α̂= 8.2702
(8.8865)

(se)
α̂=0.0001
(0.1617)

β̂ = 0.8303
(0.0391)

Log-likelihood -2934.301 -2762.626 -2760.31 -2760.130
AIC 5870.601 5527.252 5524.62 5524.260
AD statistic 44.8651 0.5512 0.3091 0.2031
p-value 0.01 0.4977 0.7239 0.8515
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Table 4.3 illustrates that the ZTPWE distribution has the minimum AIC, max-

imum log-likelihood, and maximum p-value among all the competitor distributions.

Notice that the ZTP distribution has p-value less than 5%, which means it cannot

fits this data very well.

Table 4.4: The numbers of occupants in 1469 cars

# of occupants freq ZTP ZTPL ZTTPPL ZTPWE
1 902 876.7183 939.3755 925.054 924.5196
2 403 419.3416 342.9273 359.950 360.6375
3 106 133.7164 121.9941 124.971 125.0469
4 38 31.9788 42.5752 40.739 40.6487
5 16 6.1183 14.6407 12.759 12.6850
6 4 0.9755 4.9759 3.887 3.8486

Estimated
parameters

λ̂=0.9566
(0.0315)

θ̂=2.2600
(0.0864)

θ̂=2.8256
(0.1210)

α̂ = 0.00002
(0.0020)

(se)
α̂=82.0071
(190.7117)

β̂ = 2.8453
(0.1138)

Log-likelihood -1487.233 -1484.41 -1481.053 -1480.958
AIC 2976.466 2970.821 2966.105 2965.915
AD statistic 1.7274 2.3561 1.0951 1.0584
p-value 0.0853 0.0380 0.1869 0.1967

Table 4.4 still indicates that the ZTPWE distribution is the most proper model to

fit the data, though the p-value is not significant. For this data set, the ZTPL model

has p-value less than 5%.
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Figure 4.1: Plots of the observed data points and expected values
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Figure 4.2: Plots of the observed data points and expected values
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4.2.1 Plots of Observed Values and Models

Figure 4.1 contains observed values and expected values of four zero-truncated

models fitted to the birth order data. It is noticeable that ZTP distribution cannot

describe the data very well. Figure 4.2 are the models fitted to the number of occu-

pancy in a car data, it seems most distribution fits kind of close, but ZTP still have

deviation when x = 1, and x = 2. This implies that the idea of modified complex

model is indeed the correct way to find a better fit of non-zero data. ZTPWE is

not necessarily the best model for all non-zero datas, but compare it to the previous

models in these two real data sets fitting, it appears that it can be an alternative for

such kinds of data sets. Remind that there are different kinds of data sets. For data

that contains a vast zero group, the other modified models should be considered too.
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Chapter 5

CONCLUSIONS AND DISCUSSIONS

5.1 Theoretical Part

The objective of this research is to establish the ZTPWE distribution. The char-

acteristics of this distribution are carefully studied, and two sets of real data points

are fitted to this distribution. Several other distributions are also compared that gives

the conclusion of the following:

5.1.1 Advantage for using ZTPWE distribution

First, the zero-truncated distributions are proper for data sets with no zero counts.

Second, the two-parameter P-WE distribution is a more flexible model for dispersed

data. The modified model, ZTPWE, performs well when all the models are compared

after fitting into real data sets. Under certain circumstances, the ZTPWE distribution

has its own advantage to describe positive data sets.
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5.1.2 Progress for Construction of ZTPWE Model

� There are two different ways to obtain ZTPWE distribution. The first way

is to substitute P-WE into zero-truncated transformation, the second way is

to establish the unconditional distribution by combining a conditional random

variable and its parameter with partly-exponential distribution. The two meth-

ods produce the same pmf of ZTPWE distribution is:

f(x) =
(α + 1)β

α((α + 2)β + 1)
(β+1)−x(αβ+β+1)−x

(
(αβ + β + 1)x+1 − (β + 1)x+1

)
� The cdf of ZTPWE distribution is represented as:

F (x) =
α((α + 2)β + α + (β + 1)(αβ + β + 1)−x − (α + 1)(αβ + β + 1)(β + 1)−x

α((α + 2)β + 1)

� After that, the pgf, mgf and, characteristic function of ZTPWE distribution

can be derived:

G(s) =
(α + 1)β

α((α + 2)β + 1

[
s(αβ + β + 1)

β + 1− s
− s(β + 1)

αβ + β + 1− s

]
ψ(t) =

(α + 1)β

α((α + 2)β + 1

[
et(αβ + β + 1)

β + 1− et
− et(β + 1)

αβ + β + 1− et

]
ϕ(t) =

(α + 1)β

α((α + 2)β + 1

[
eit(αβ + β + 1)

β + 1− eit
− eit(β + 1)

αβ + β + 1− eit

]
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� Then, the mean and variance of ZTPWE distribution can be obtained:

E(x) =
(αβ + β + 1)(β + 1)(α + 2)

((α + 2)β + 1)β(α + 1)

Var(X) =
(β + 1)(αβ + β + 1)(α3β + 5α2β + α2 + 9αβ + 2α + 6β + 2)

(α + 1)2(αβ + 2β + 1)2β2

� Finally, the likelihood function of ZTPWE distribution is:

L(α, β) =
n∏
i=1

(α+1)β
(β + 1)−xiyi(αβ + β + 1)−xi((αβ + β + 1)xi+1 − (β + 1)xi+1)

α((α + 2)β + 1)
.

5.2 Response of Simulation

Run the simulations 1000 times for the different sizes of generated samples. The

conclusion is: when the sample size (n) increases,

� The average MSE decreases.

� The average bias moves towards 0.

5.3 Interpretation of Application

Four zero-truncated distributions are fitted to two real data sets and inspected

the result of three criteria information. The results are:

� The ZTPWE distribution has the minimum AIC.

� The ZTPWE distribution has the maximum log-likelihood.

� The ZTPWE distribution has the maximum p-value.
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5.4 Future Study and Expectations

One crucial field that remains unrevealed is the partly distribution for the condi-

tional distribution of random variables. It seems to have various in statistics research.

Another field that needs more work is the goodness-of-fit test. There are more stan-

dards that can be used to justify the fitted model with data sets.
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Appendix. R Source Code

R Source Code for Simulation

test<-function(x)

{

xnew <- unique(sort(x))

prob_pztpwe <- pztpwe(xnew,a,b)

StepProb_pztpwe <- stepfun(xnew, c(0,prob_pztpwe))

library(dgof)

dgof::cvm.test(x, StepProb_pztpwe,type="A2") -> ADPZTPWE

p <- ADPZTPWE$p

return(p)

}
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setwd("~/Downloads/ZTP test")

t<-1000

n<-c(20,50,100,200)

a <- 1;b<- 1

k<-1

while(k <=length(n))

{

dir_sample <- paste("Sample/",sep="\t")

file_name_sample <- paste(dir_sample,"alpha ",a," beta ",b," n ",n[k],".txt",sep="")

i<-1

set.seed(99)

while(i<=t) {
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x <- numeric()

x <- dztpwe(n[k],a,b)

p <- test(x)

while(p<0.1)

{

x<-numeric()

x<-dztpwe(n[k],a,b)

p<-test(x)

}

if(i==1) {

write.table(cbind(i,t(x),p), file_name_sample, sep="\t", col.name=NA)

}

#else

if(i!=1) {

write.table(cbind(i,t(x),p), file_name_sample, sep="\t", append=TRUE,col.name=FALSE)

}

i<-i+1

}
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k<-k+1

}

R code for ZTPWE MSE estimation

dztpwe<-function(x,a,b)

{

p=((a + 1) *b* (b + 1) *(a* b + b + 1)* ((b + 1)^(-x - 1) - (a *b + b + 1)^(-x - 1)))/((a + 2) *a* b + a)

return(p)

}

ll = function (para)

{

a=exp(para[1])

b=exp(para[1])

#a=para[1]

#b=para[2]

f = log(dztpwe(dx,a,b))

return(-sum(f))

57



}

library(optimx)

setwd("~/Downloads/ZTP test/")

t<-1000

n<-c(20,50,100,200)

###Parameter sets

a <- 1;b <- 1

output<-paste("alpha ",a," beta ",b,sep="")

dir.create(output)

k<-1

while(k <=length(n))

{
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if(!require(optimx)){

install.packages(’optimx’)

}

library(optimx)

est_alpha<-numeric()

est_beta<-numeric()

err_alpha<-numeric()

err_beta<-numeric()

bias_alpha<-numeric()

bias_beta<-numeric()

dir_sample <- paste("~/Downloads/ZTP test/",sep="\t")

file_name_sample <- paste(dir_sample,"alpha ",a," beta ",b," n ",n[k],".txt",sep="")

data<-read.table(file_name_sample,header=T)

j<-1

set.seed(99)
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while(j<=t)

{

x<-data[j,4:ncol(data)-1]

dx<-t(x)

out_PNWL<-optimx(c(.1,.1),ll,hessian =T)

LL <- -out_PNWL$value

est_alpha[j]<-exp(out_PNWL$p1[1])

est_beta[j]<-exp(out_PNWL$p2[1])

err_alpha[j]<-(a-est_alpha[j])^2

err_beta[j]<-(b-est_beta[j])^2

bias_alpha[j]<-(est_alpha[j]-a)

bias_beta[j]<-(est_beta[j]-b)
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####set directory for output saving

dir_output <- paste(output,"/",sep="")

file_name_output <- paste(dir_output,"mle_estimates alpha ",a," beta ",b," n ",n[k],".txt",sep="")

file_name_loss <- paste(dir_output,"mle_error alpha ",a," beta ",b," n ",n[k],".txt",sep="")

if(j==1)

{

write.table(cbind(j,est_alpha,est_beta), file_name_output, sep="\t", col.name=TRUE)

write.table(cbind(j,err_alpha,err_beta,bias_alpha,bias_beta), file_name_loss, sep="\t", col.name=TRUE)

}

else if(j!=1)

{

write.table(cbind(j,est_alpha[j],est_beta[j]), file_name_output, sep="\t", append=TRUE,col.name=FALSE)

write.table(cbind(j,err_alpha[j],err_beta[j],bias_alpha[j],bias_beta[j]), file_name_loss, sep="\t", append=TRUE,col.name=FALSE)
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}

j=j+1

}

alpha_est<-round(mean(est_alpha),4)

sd_alpha<-round(sd(est_alpha),4)

beta_est<-round(mean(est_beta),4)

sd_beta<-round(sd(est_beta),4)

MSE_alpha<-round(mean(err_alpha),4)

RMSE_alpha<-round(sqrt(MSE_alpha),4)

average_bias_alpha<-round(mean(bias_alpha),4)

MSE_beta<-round(mean(err_beta),4)

RMSE_beta<-round(sqrt(MSE_beta),4)

average_bias_beta<-round(mean(bias_beta),4)

size<-n[k]
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dir_result <- paste("Result/", sep="")

file_name_result <- paste(dir_result,"mle_result alpha ",a," beta ",b," n ",n[k],".txt",sep="")

if(k==1)

{

write.table(cbind(size,alpha_est,sd_alpha,beta_est,sd_beta,MSE_alpha,MSE_beta,RMSE_alpha,RMSE_beta,average_bias_alpha,average_bias_beta), file_name_result, sep="\t", col.name=NA)

}else if(k!=1){

write.table(cbind(size,alpha_est,sd_alpha,beta_est,sd_beta,MSE_alpha,MSE_beta,RMSE_alha,RMSE_beta,average_bias_alpha,average_bias_beta), file_name_result, sep="\t",append=TRUE,col.name=FALSE)

}

k <- k+1

}
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