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Abstract

Complicated designs (eg. partially questionnaire design), which are often used in epi-

demiologic studies to reduce the cost of data collection while at the same time improving

data quality, generate data with nonmonotone missing patterns. This thesis focuses on sta-

tistical inference for regression models with nonmonotone missing covariate data under

some designs that generate nonmonotone missing data in covariates. Proposed methods

in this scenario often depend on additional assumptions about covariates, for example, the

covariates need to be categorical or follow a particular semiparametric joint distribution.

This thesis describes a generalized unified estimation method for regression models with

covariates missing in nonmonotone patterns which use a sequence of working regression

models to extract information from incomplete observations. It can deal with both contin-

uous and categorical variables. We consider both cross-sectional and longitudinal studies.

The asymptotic theory and variance estimator for the generalized unified estimator are pro-

vided. Simulation studies in different settings are used to examine the proposed method.

Finally we applied the generalized unified approach to the two real examples. One is a

cross-sectional study, and the other is a longitudinal study.
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Chapter 1

INTRODUCTION

Missing data frequently occur in epidemiological studies and clinical trials. For exam-

ple, in epidemiological studies, two-phase sampling designs are used to reduce the cost of

data collection. In this design, “cheaper” variables are measured for individuals selected in

a phase I sample, then other variables including “expensive” or hard to measure variables,

are measured for individuals selected into a subsample, a phase II sample. In clinical trials,

missing data occur whenever one or more intended measurements are not taken, lost, or

otherwise unavailable. Robins et al. (1994) called this case as “missing by happenstance”.

A naive method for missing data problems is the complete-case analysis. It discards

incomplete observations. If the mechanism leading to the missingness is relevant to the

response process, the complete-case analysis may produce biased results.

Little and Rubin (2002) defined three missing data mechanisms as (i) missing complete

at random (MCAR) if the missing data process does not depend on any data (observed or

unobserved); (ii) missing at random (MAR) if the missing data process does not depend on
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the unobserved data given the observed data; and (iii) not missing at random (NMAR) if

the missing data process depends on the unobserved data given the observed data.

The missing-data pattern is another important concept. Little and Rubin (2002) men-

tioned that “We found it useful to distinguish the missing-data pattern, which describes

which values are observed in the data matrix and which values are missing”. Many meth-

ods described for missing data problems can only deal with simple monotone missingness

patterns. When data are missing in arbitrary nonmonotone patterns many methods cannot

be applied directly or require intensive computation.

This research focuses on regression models with covariates missing in arbitrary non-

monotone patterns. It deals with the MCAR data and the MAR data separately.

1.1 Literature Review

In epidemiologic studies, complex sampling designs are often used to reduce the cost of

data collection while at the same time improving data quality. Complex sampling designs

generate data with large proportion of missing values and different missing patterns. Two-

phase sampling designs in Zhao and lipsitz (1992), for example, produce data with a simple

monotone missing pattern, where the variables measured in phase I have no missing values,

and the variables measured in phase II are missing for the subjects selected in the phase I

sample but not selected in the phase II subsample. In general, the phase I sample is large

whereas the phase II sample is relatively small. In addition, multiphase sampling designs

in Holcroft et al. (1997) generate data with general monotone missing patterns, where the
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subjects selected in the current phase are observed in the previous phases but may not be

observed in the future phases. Wacholder et al. (1994) proposed a partial questionnaire

design (PQD) for lengthy questionnaires or other burdensome data-collection processes,

where subsets of variables are measured for different, but overlapping, groups of subjects

to reduce the cost of data collection while at the same time increasing participation and

improving data quality. A PQD generates data with nonmonotone missing patterns.

Most of the estimation methods proposed for regression models with data missing by

design depend on the assumption of monotone missing patterns (Little and Rubin 2002 ;

Zhao and lipsitz 1992; Holcroft et al. 1997; Zhao et al. 2009). However, in regression

models it is common that the covariate data are missing in nonmonotone patterns either

by design or happenstance. In general estimation methods for monotone missing covari-

ate data may be computationally complex or have difficulties to deal with nonmonotone

missing patterns. The double robust estimating equations in Lipsitz and Zhao (1999) and

Van der Laan and Robins (2003) may have closed form expressions for monotone miss-

ing covariate data but will be difficult to obtain for nonmonotone missing patterns. The

semiparametric efficient inference developed by Robins et al. (1994) for semmiparametric

regression models and by Robins et al. (1995) for parametric regression models is com-

putationally complex and may be difficult to implement for nonmonotone missing patterns

especially for continuous response.

Methods for the analysis of nonmonotone missing data are limited and often require

additional assumptions. For example, the maximum likelihood method in Ibrahim et al.
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(1990) requires the covariates to be categorical. The consistency of the semiparametric

estimator in Chen (2004) for general nonmonotone missing covariates data depends on

the correctness of the parametric odds-ratio model. The conditional model in Lipsitz and

Ibrahim (1996) depends on parametric assumptions for the joint distribution of the covari-

ates. The three techniques for a PQD described in Chatterjee and Li (2010), including the

mean score method, the pseudo-likelihood method, and the full maximum likelihood, are

extensions of Reilly and Pepe (1995), Scott and Wild (1998) and Zhao et al. (2009) to a

PQD. These methods are based on nonparametic models for the joint distributions of the

covariates and auxiliary variables and therefore require certain covariates to be categorical.

The purpose of this research is to develop easily implemented estimation methods for

dealing regression models with nonmonotone missing data that obtained from complex

designs, which will fill a needed gap in statistical analysis with missing data.

This thesis describes estimation methods for regression models with covariates missing

in nonmonotone patterns under a PQD or other designs that generate nonmonotone miss-

ing data in covariates. Instead of modeling the distribution of the covariates we propose

using a sequence of working regression models to extract information from the incomplete

observations. This approach can be easily implemented to deal with both continuous and

categorical variables. The initial idea was proposed in Chen and Chen (2000) for two-

phase sampling designs based on simple random samples, where the variables observed in

phase II are MCAR. In a PQD, the subjects are randomly selected into different, but over-

lapping, groups, and then different subsets of variables are measured for different groups.
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In general, there is information available for all the subjects in the study, and the random

selections of subjects into different groups often depend on this fully observed information.

If this is the case, then the data are MAR. Motivating examples include (i) a study of occu-

pational risk factors for adult onset asthma using a PQD in Houseman and Milton (2006)

and (ii) a case-control study investigating the association of polychlorinated biphenyls with

the risk of non-Hodgkin lymphoma (Colt et al. 2005; Deroos et al. 2005). In the latter

study, two measurements of polychlorinated biphenyls, one based on home dust samples

and the other based on blood plasma levels, were obtained for two distinct but overlapping

groups of participants.

1.2 Organization of the Thesis

Chapter 2 describes a generalized unified estimation method for regression models with

nonmonotone missing covariates in cross-sectional study. It considers both the MCAR case

and the MAR case. It derives the asymptotic theory and variance estimator for the unified

generalized estimator in each case. Numerical studies are implemented to examine the

finite sample performance of the proposed method.

Chapter 3 extends the generalized unified estimation method for marginal model with

nonmonotone missing covariates in longitudinal data analysis. It derives the asymptotic

theory and variance estimator for the unified estimator for MCAR data and MAR data re-

spectively. Numerical studies are used to examine the performance of the proposed method

in several different settings.
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Chapter 4 uses real-data examples in a cross-sectional study and a longitudinal study to

illustrate the methods.

Chapter 5 gives a summary and a discussion of future work.

6



Chapter 2

Generalized Unified Estimation Method

Let Y be a response variable, X denote a vector of covariates, and f(X; β) represent

the conditional mean of Y given X, where β is a vector of parameters. For convenience

we consider estimating the β parameter in the mean function f(X; β), but the procedures

readily extend to estimation of the full distribution of Y given X.

According to the finite set of missingness patterns in the observed data we reorder the

covariates in X as X = (XT
1 , · · · ,XT

q )T such that each Xk, k = 1, · · · , q, is a vector

of covariates with the same missingness pattern, where q is the total number of distinct

patterns. We define indicator variables Rk as Rk = 1 if Xk is observed and 0 otherwise

for k = 1, · · · , q, and R0 = 1 if R1 = · · · = Rq = 1 and 0 otherwise. Let N be the

total number of individuals in the sample. For i = 1, · · · , N we define the probabilities of

observation to be

πik = pr(Rik = 1|Yi,Xi) for k = 1, · · · , q, and πi0 = pr(Ri0 = 1|Yi,Xi),

where πik ≥ πi0. Throughout we suppose that the selection probabilities are specified
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values, and that πi0 > C > 0 with probability 1. If Rk, k = 1, · · · , q, can be ordered

such that R(1) ≥ R(2) ≥ · · · ≥ R(q) then the missingness pattern is monotone, otherwise

the pattern is nonmonotone. In a PQD, the response variable Y and sometimes certain

covariates, without loss of generality say X1, are available for all the subjects in the study

(Chatterjee and Li 2010). Using our notation, we consider that in the PQD the variables

are divided into q subsets, (Y,XT
1 )T , (Xk), k = 2, · · · , q, where data on (Y,XT

1 )T are

fully observed. Then according to the selection probabilities πik the subjects in the study

are selected into (overlapping) groups, Gk, k = 2, · · · , q, based on the fully observed

variables (Y,X1). That is, the selection probabilities πik and πi0 depend on Y and X only

through (Y,X1). Here Rik = 1 indicates the ith subject is selected into the group Gk, and

πik = pr(Rik = 1|Yi,Xi1), πi0 = pr(Ri0 = 1|Yi,Xi1), and the missing covariate data are

MAR. In some studies, the missing data probabilities are constants and can be denoted as

πk, and π0. In this case, the subjects are completely randomly selected into groups and this

does not depend on (Y,X1), so the missing data are MCAR.

Let V0 = {i : Ri0 = 1} and Vk = {i : Rik = 1}, k = 1, · · · , q be the index set

of complete observations and the index set of completely observed Xk respectively, and

let n, nk be the corresponding number of observations in each set. We see that n ≤ nk

and we require n > 0. To be complete we denote the complement of V0 as V̄0. We as-

sume that (Yi,X
T
i1, · · · ,XT

iq, Ri1, · · · , Riq), i ∈ 1, · · · , N , are independent and identically

distributed.

Next we describe a generalized unified extimation method for MCAR data and MAR
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data separately.

2.1 MCAR Data

For k = 1, · · · , q, let the parametric function fk(Xk; γk) denote the conditional mean

of Y given Xk, where γk is a vector of parameters. We call fk(Xk; γk), k = 1, · · · , q, the

working regression models or surrogate models and γ = (γT1 , · · · , γTq )T a vector of sur-

rogate parameters. For convenience we denote the model of interest f(X; β) as f0(X0; β)

with X0 = X.

Assume that β̂ and γ̂k, k = 1, · · · , q, solve the system of estimating equations for β and

γk given in (2.1) and (2.2) respectively:

∑
i∈V0

Si0(β) =
∑
i∈V0

w0(Xi0){Yi − f0(Xi0; β)} = 0, (2.1)∑
i∈V0

Sik(γk) =
∑
i∈V0

wk(Xik){Yi − fk(Xik; γk)} = 0, for k = 1, · · · , q, (2.2)

where w0(Xi0) and wk(Xik), using notation similar to that in Chen and Chen (2000),

are vectors corresponding to known functions of Xi0 and Xik. As a special case, Si0(β)

and Sik(γk) could be score functions based on some set of distributions. For example,

in the case of linear and logistic regression models we could use least squares estimating

equations and logistic regression estimating equations respectively. We denote Si(θ) =

(STi0(β),STiQ(γ))T with θ = (βT , γT )T and SiQ(γ) = (STi1(γ1), · · · ,STiq(γq))T .

Following Chen and Chen (2000) and Foutz (1977) under regularity conditions we can

show that (i) θ̂ = (β̂T , γ̂T )T , with γ̂ = (γ̂T1 , · · · , γ̂Tq )T , is consistent for some vector

θ∗ = (β∗T , γ∗T )T ; and (ii) n1/2(θ̂− θ∗) is asymptotically normal with mean 0 and variance
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D−1CDT−1 with D = E{∂Si(θ∗)/∂θ} and C = E{Si(θ∗)STi (θ∗)}.

We rewrite D as diag(D0, D1) with

D0 = E{∂Si0(β∗)/∂β}

and

D1 = E{∂SiQ(γ∗)/∂γ}

We partition the matrix C as

C =

 C00 C01

CT
01 C11

 ,

where

C00 = E{Si0(β∗)STi0(β∗)},

C01 = E{Si0(β∗)STiQ(γ∗)},

and

C11 = E{SiQ(γ∗)STiQ(γ∗)}.

According to multivariate normal distribution theory, the conditional distribution of

n1/2(β̂−β∗), given n1/2(γ̂−γ∗), is asymptotic normal with mean n1/2D−1
0 C01C

−1
11 D1(γ̂−

γ∗), which suggests that the CC estimator β̂ may be improved by using

β̄ = β̂ − D̂−1
0 Ĉ01Ĉ

−1
11 D̂1(γ̂ − γ̄), (2.3)

where

D̂0 = n−1
∑
i∈V0

{∂Si0(β̂)/∂β},

10



Ĉ01 = n−1
∑
i∈V0

{Si0(β̂)STiQ(γ̂)},

Ĉ11 = n−1
∑
i∈V0

{SiQ(γ̂)STiQ(γ̂)},

D̂1 = n−1
∑
i∈V0

{∂SiQ(γ̂)/∂γ},

and γ̄ = (γ̄T1 , · · · , γ̄Tq )T . Here, γ̄k is an estimate of γ∗k based on the observations in Vk, that

is, γ̄k solves ∑
i∈Vk

Sik(γk) =
∑
i∈Vk

wk(Xik){Yi − fk(Xik; γk)} = 0,

which allows all the observations in Vk to be used in the estimation. We call β̄ an improved

complete-case (ICC) estimator. We expect that the ICC estimator produces efficiency gains

when β̂ and γ̂ are highly correlated and the sizes of the Vk’s are much larger than the size

of V0.

Under the regularity conditions, β̄ is consistent for β∗, which is the true value of β in

the model f0(X0; β) when f0(X0; β) is correctly specified. The consistency for β∗ does

not depend on the correctness of the working regression models fk(Xk; γk). In addition

n1/2(β̄ − β∗) is asymptotic normal with mean 0 and variance given by

D−1
0 C00D

T−1
0 −D−1

0 C01(I − C−1
11 Cρ11)C−1

11 C
T
01D

T−1
0 , (2.4)

where Cρ11 is C11 with its khth element ckh replaced by cρkh = (π0πkh/πkπh)ckh and

πkh = pr(Rk = Rh = 1) for k, h = 1, · · · , q. The first term in (2.4) is the variance of

n1/2(β̂ − β∗), and the second term represents the improvement of the ICC estimator over

the CC estimator. The asymptotic variance in (2.4) can be estimated by

D̂−1
0 Ĉ00D̂

T−1
0 − D̂−1

0 Ĉ01(I − Ĉ−1
11 Ĉρ11)Ĉ−1

11 Ĉ
T
01D̂

T−1
0 ,
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where

Ĉ00 = n−1
∑
i∈V0

{Si0(β̂)STi0(β̂)}

and Ĉρ11 has khth element ĉρkh = (nnkh/nknh)ĉkh and nkh is the total number of obser-

vations with Rik = Rih = 1 for k, h = 1, · · · , q. A proof and references are given in the

Appendix B.

We know that a regular CC analysis for any regression model provides consistent es-

timates as long as the missing data probability does not depend on the response vari-

able, given the covariates in the model. Therefore, the above method can also be ap-

plied in the special MAR case where the missingness does not depend on Y , that is,

πik = pr(Rik = 1|Xi1) and πi0 = pr(Ri0 = 1|Xi1). In this special MAR case, to ob-

tain a consistent β̄ we need to add the fully observed X1 as covariates in each working

regression model so that both γ̂ and γ̄ can be consistent for γ∗. We note that the unified

estimator of Chen and Chen (2000) is a special case of the generalized unified estimator β̄

when the covariates follow a simple monotone missing pattern.

2.2 MAR Data with Known Missing Data Probability

In a PQD, it is common that the missingness depends on both the response Y and the

fully observed covariates X1. In this case the ICC estimator will be biased. In this section

we extend the generalized unified method of Section 2.1 to deal with general MAR data

using inverse probability weighted estimation equations (Horvitz and Thompson 1952).

Assume that β̂π, γ̂π = (γ̂Tπ1, · · · , γ̂Tπq)T , and γ̄π = (γ̄Tπ1, · · · , γ̄Tπq)T solve the system of

12



weighted estimation equations given in (2.5), (2.6), and (2.7) respectively:

N∑
i=1

Ri0

πi0
Si0(β) = 0, (2.5)

N∑
i=1

Ri0

πi0
Sik(γk) = 0, for k = 1, · · · , q, (2.6)

N∑
i=1

Rik

πik
Sik(γk) = 0, for k = 1, · · · , q. (2.7)

We note that β̂π and γ̂π are computed based on the complete observations in V0, while γ̄π is

computed based on the larger data sets Vk, k = 1, · · · , q. Following a similar development

to that in Section 2.1, under regularity conditions we obtain the following results:

(i) N1/2(β̂π − β∗) given N1/2(γ̂π − γ∗) is asymptotic normal with mean

N1/2D−1
0 Cπ01C

−1
π11D1(γ̂π − γ∗),

where

Cπ01 = E[(Ri0/π
2
i0)Si0(β∗)STiQ(γ∗)]

and

Cπ11 = E[(Ri0/π
2
i0)SiQ(γ∗)STiQ(γ∗)].

(ii) β∗ can be consistently estimated by

β̄π = β̂π − D̂−1
π0 Ĉπ01Ĉ

−1
π11D̂π1(γ̂π − γ̄π), (2.8)

where

D̂π0 = N−1

N∑
i=1

(Ri0/πi0)∂Si0(β̂π)/∂β,

Ĉπ01 = N−1

N∑
i=1

(Ri0/π
2
i0)Si0(β̂π)STiQ(γ̂π),
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Ĉπ11 = N−1

N∑
i=1

(Ri0/π
2
0i)SiQ(γ̂π)STiQ(γ̂π),

and

D̂π1 = N−1

N∑
i=1

(R0i/π0i)∂SQi(γ̂π)/∂γ.

The consistency of β̄π does not depend on the correctness of the working regression models.

We call β̄π an improved weighted complete-case (IWCC) estimator.

(iii) N1/2(β̄π − β∗) is asymptotic normal with mean 0; its variance can be estimated by

D̂−1
π0 Ĉπ00D̂

T−1
π0 − D̂−1

π0 [Ĉπ01Ĉ
−1
π11{(Ĉπ11 − Ĉπ22 + ĈT

π12 + Ĉπ12)Ĉ−1
π11Ĉ

T
π01 − ĈT

π02}

− Ĉπ02Ĉ
−1
π11Ĉ

T
π01]D̂T−1

π0 ,

(2.9)

where

Ĉπ00 = N−1

N∑
i=1

(Ri0/π
2
i0)S0i(β̂π)STi0(β̂π),

Ĉπ22 = N−1

N∑
i=1

SπiQ(γ̂π)STπiQ(γ̂π),

Ĉπ12 = N−1

N∑
i=1

(Ri0/π0i)SiQ(γ̂π)STπiQ(γ̂π),

and

Ĉπ02 = N−1

N∑
i=1

(R0i/πi0)Si0(β̂π)STπiQ(γ̂π)

with

SπiQ(γ) = ((Ri1/πi1)STi1(γ1), · · · , (Riq/πiq)S
T
iq(γq))

T .

2.3 MAR Data with Estimated Missing Data Probability

In practice, the true missing data probabilities are often unknown when data are MAR.

Even if the missing probability is known, the estimation efficiency of the IWCC can be
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further improved by using estimated missing data probabilities π̂ij instead of the true known

missing data probabilities (Robins et al. 1994; Lawless et al. 1999; Chatterjee and Breslow

2003; Breslow et al. 2009).

Let
∑N

i=1 Hπik(αk) be an estimating function for the selection probability πik, k =

0, · · · , q, which can be correctly specified when data are missing by design. Here αk,

k = 0, · · · , q, are vectors of parameters. We denote the estimated selection probabilities as

π̂ik = πik(α̂k).

Let β̂π̂, γ̂π̂, and γ̄π̂ denote the corresponding estimators using estimated selection prob-

abilities. Following Robins et al. (1994) we define

Res{Ai(β, α), Bi(α)} = Ai(β, α)− E[
∂Ai(β, α)

∂α
]E[

∂Bi(α)

∂α
]−1Bi(α),

and

R̂es{Ai(β, α), Bi(α)} = Ai(β, α)− {N−1

N∑
i

∂Ai(β, α)

∂α
}{N−1

N∑
i

∂Bi(α)

∂α
}−1Bi(α),

and denote

Resi0(β, α0) = Res{ Ri0

πi0(α0)
Si0(β), Hπi0(α0)},

Resi1(γ, α0) = Res{ Ri0

πi0(α0)
SiQ(γ), Hπi0(α0)},

Resi2(γ, αQ) = Res{( Ri1

πi1(α1)
STi1(γ1), · · · , Riq

πiq(αq)
STiq(γq))

T , HπiQ(αQ)},

R̂esi0(β, α0) = R̂es{ Ri0

πi0(α0)
Si0(β), Hπi0(α0)},

R̂esi1(γ, α0) = R̂es{ Ri0

πi0(α0)
SiQ(γ), Hπi0(α0)},

R̂esi2(γ, αQ) = R̂es{( Ri1

πi1(α1)
STi1(γ1), · · · , Riq

πiq(αq)
STiq(γq))

T , HπiQ(αQ)},
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where αQ = (αT1 , · · · , αTq )T and HπiQ(αQ) = (HT
πi1(α1), · · · , HT

πiq(αq))
T .

The IWCC using the estimated selection probabilities π̂ji’s can be written as

β̄π̂ = β̂π̂ − D̂−1
π̂0 Ĉπ̂01Ĉ

−1
π̂11D̂π̂1(γ̂π̂ − γ̄π̂), (2.10)

where

D̂π̂0 = N−1

N∑
i=1

(Ri0/π̂i0)∂Si0(β̂π̂)/∂β,

Ĉπ̂01 = N−1

N∑
i=1

R̂es0i(β̂π̂, α̂0)R̂esT1i(γ̂π̂, α̂0),

Ĉπ̂11 = N−1

N∑
i=1

R̂esi1(γ̂π̂, α̂0)R̂esT1i(γ̂π̂, α̂0),

and

D̂π̂1 = N−1

N∑
i=1

(Ri0/π̂i0)∂SiQ(γ̂π̂)/∂γ.

The asymptotic variance of β̄π̂ can be given by

D−1
0 Cπ̂00D

T−1
0 − D̂−1

0 [Cπ̂01C
−1
π̂11{(Cπ̂11 − Cπ̂22 + CT

π̂12 + Cπ̂12)C−1
π̂11C

T
π̂01 − CT

π̂02}

− Cπ̂02C
−1
π̂11Ĉ

T
π̂01]DT−1

0 ,

(2.11)

where

Cπ̂00 = E[Resi0(β∗, α∗0)ResTi0(β∗, α∗0)],

Cπ̂01 = E[Resi0(β∗, α∗0)ResTi1(β∗, α∗0)],

Cπ̂02 = E[Resi0(β∗, α∗0)ResTi2(β∗, α∗Q)],

Cπ̂11 = E[Resi1(β∗, α∗0)ResTi1(β∗, α∗0)],
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Cπ̂12 = E[Resi1(β∗, α∗0)ResTi2(β∗, α∗Q)],

Cπ̂22 = E[Resi2(β∗, α∗Q)ResTi2(β∗, α∗Q)].

The asymptotic variance in (2.11) be estimated by

D̂−1
π̂0 Ĉπ̂00D̂

T−1
π̂0 − D̂

−1
π̂0 [Ĉπ̂01Ĉ

−1
π̂11{(Ĉπ̂11 − Ĉπ̂22 + ĈT

π̂12 + Ĉπ̂12)Ĉ−1
π̂11Ĉ

T
π̂01 − ĈT

π̂02}

− Ĉπ̂02Ĉ
−1
π̂11Ĉ

T
π̂01]D̂T−1

π̂0 ,

(2.12)

where

Ĉπ̂00 = N−1

N∑
i=1

R̂esi0(β̂π̂, α̂0)R̂esTi0(β̂π̂, α̂0),

Ĉπ̂22 = N−1

N∑
i=1

R̂esi2(γ̂π̂, α̂Q)R̂esTi2(γ̂π̂, α̂Q),

Ĉπ̂12 = N−1

N∑
i=1

R̂esi1(γ̂π̂, α̂0)R̂esTi2(γ̂π̂, α̂Q),

and

Ĉπ̂02 = N−1

N∑
i=1

R̂esi0(β̂π̂, α̂0)R̂esTi2(γ̂π̂, α̂Q).

A proof and references are provided in the Appendix B. As in Section 2.1, we see that

the first term in (2.9) or (2.12) is an estimate of the asymptotic variance of N1/2(β̂π − β∗)

or N1/2(β̂π̂ − β∗), and the second term represents the improvement of the IWCC estimator

over the weighted CC estimator using know or estimated πik’s.

We note that in many studies auxiliary variables are used to increase estimation effi-

ciency (Robins et al.1994; Reilly and Pepe 1995). Both the ICC and the IWCC can deal

with the case where auxiliary covariates X̃ are observed. In this case we reorder (XT , X̃T )T
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as (XT
1 , · · · ,XT

q )T , and the same procedure can be applied to compute an ICC or IWCC

estimate of β.

2.4 Simulation Studies

In this section we use simulation studies to examine the finite sample performance of the

ICC and IWCC estimators. We consider a linear regression model Y = β0+β1X1+β2X2+

β3X3 + ε and a logistic regression model logit{P (Y = 1|X1, X2, X3)} = β0 + β1X1 +

β2X2 + β3X3, where X2 is generated from the exponential distribution with mean 1, and

X1,X3 and ε are generated independently from the standard normal distribution. Following

a PQD, we assume that {Y,X1} are fully observed but bothX2 andX3 have missing values,

and we consider both the MCAR and MAR cases. We assume that each subject is selected

into group G2 and G3 with probability πi2 and πi3 respectively. Then values of X2 and

X3 are observed for the subjects in G2 and G3 respectively. In the MCAR case πi2 = π2

and πi3 = π3. For the MAR case we let the selection probabilities depend on the fully

observed response Y and covariates X1 such that logit{πi2} = α20 + α21Xi1 + α22Yi and

logit{πi3} = α30 + α31Xi1 + α32Yi.

We set the sample size N = 1000 and for each setting we generate 1000 data sets. We

let β∗ = (0.1, 1, 1, 1)T in the linear model and β∗ = (−1.2, 1, 1, 1)T in the logit model.

For the MCAR case we set π2 = π3 = 0.50. For the MAR case we let (α20, α21, α22)T =

(α30, α31, α32)T = (0.2, 0.2, 0.2)T . Here the number of distinct missing patterns q = 3.

The number of observations in set V0, Vj , j = 1, 2, 3 is approximately 250, 1000, 500
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Table 2.1 Simulation Result

Linear Model β = (0.1, 1, 1, 1)T Logit Model β = (−1.2, 1, 1, 1)T

β̂0 β̂1 β̂2 β̂3 β̂0 β̂1 β̂2 β̂3

(1) MCAR:
ICC estimation
Bias -0.002 0.045a −0.031 0.003 -0.022 0.019 0.021 0.029
s.d.b 0.079 0.054 0.058 0.057 0.198 0.132 0.175 0.157
s.e.c 0.077 0.054 0.056 0.057 0.192 0.133 0.168 0.154
MSE 0.006 0.003 0.003 0.003 0.040 0.018 0.031 0.025
95%CP 95.0% 94.8% 94.3% 94.8% 94.0% 95.4% 94.1% 94.3%
AREd 1.269 1.361 1.180 1.183 1.620 2.205 1.481 1.496
CC estimation
Bias -0.004 −0.034 −0.037 0.003 -0.037 0.027 0.029 0.037
s.d. 0.089 0.063 0.063 0.062 0.252 0.196 0.213 0.192
MSE 0.008 0.004 0.004 0.004 0.065 0.039 0.046 0.038

(2) MAR:
IWCC estimation using estimated πji’s
Bias -0.005 -0.004 0.044 −0.037 -0.031 0.014 0.026 0.016
s.d. 0.072 0.051 0.047 0.052 0.170 0.121 0.157 0.139
s.e. 0.067 0.048 0.046 0.051 0.171 0.121 0.153 0.137
MSE 0.005 0.003 0.002 0.003 0.030 0.015 0.025 0.020
95%CP 93.2% 92.6% 94.3% 94.2% 95.7% 95.4% 95.3% 94.7%
ARE 1.494 1.526 1.272 1.331 1.690 1.749 1.404 1.426
IWCC estimation using known πji’s
Bias -0.003 -0.004 0.056 0.048 -0.032 0.014 0.028 0.016
s.d. 0.074 0.052 0.048 0.054 0.180 0.122 0.158 0.140
s.e. 0.070 0.048 0.047 0.052 0.179 0.122 0.156 0.139
MSE 0.005 0.003 0.002 0.003 0.033 0.015 0.026 0.020
95%CP 94.0% 92.3% 94.3% 94.1% 95.6% 95.5% 94.6% 94.8%
ARE 1.414 1.468 1.219 1.235 1.507 1.720 1.386 1.406
Weighted CC estimation using known πji’s
Bias 0.001 -0.005 0.033 -0.002 -0.040 0.014 0.036 0.022
s.d. 0.088 0.063 0.053 0.060 0.221 0.160 0.186 0.166
MSE 0.008 0.004 0.003 0.004 0.050 0.026 0.036 0.028
a0.045 = 0.00005.
bs.d. is the empirical standard deviation.
cs.e. is the simulation mean of the asymptotic standard errors.
dARE = (s.d.(β̂)/s.d.(β̄))2 .
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and 500 respectively in the MCAR case, 370, 1000, 600 and 600 respectively in the linear

model and 330, 1000, 570 and 570 in the logit model in the MAR case. We use linear

regression models and logistic regression models as the working regression models for the

linear regression model and the logistic regression model respectively. Logistic regression

models are used to estimate the selection probabilities in the MCAR case.

We let X0 = (X1, X2, X3)T . The model f0(X0; β) is of interest. We note that in the

logistic regression case, if f0(X0; β) is “correct” then logistic models for Y given X1, for

Y given X2, and for Y given X3 are misspecified, but still useful for increasing efficiency.

The simulation results for the ICC and IWCC estimates together with the CC and

weighted CC estimates are listed in Table 2.1. We see that (i) the biases of the ICC and

IWCC estimates are small; (ii) the means of the standard errors (s.e.) based on the asymp-

totic variance estimator are close to the empirical standard deviations (s.d.); (iii) the esti-

mated 95% coverage probabilities are close to the nominal level; and (iv) comparing to the

(weighted) CC analysis both the ICC and IWCC estimates have smaller mean square er-

rors (MSE) and empirical standard deviations; (v) comparing to the IWCC estimates using

known selection probability the corresponding IWCC estimates using estimated selection

probability are slightly more efficient.
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Chapter 3

Generalized Unified Approach to Longitudinal

Data Analysis

3.1 A Brief Review of Generalized Estimating Equation

Longitudinal data frequently occurs in medical and social studies. In longitudinal study

measurements from the same individuals are taken repeatedly through time. A primary

goal of longitudinal data analysis lies in characterizing the change in responses over time

as well as factors that influence the change.

In the past a few decades, statistical methods for the analysis of longitudinal data have

been developed tremendously. One of the popular methods is the generalized estimating

equations (GEE) approach proposed by Liang and Zeger (1986). The GEE approach does

not require a complete probability model of the response vector, and it only needs the first

two moments of the response vector. Liang and Zeger (1986) showed that the consistency

of the estimates for regression parameters only depends on the correctness of the mean
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model, but does not depend on the correctness of the “working” correlation structure of the

response vector.

Missing data is a common problem in the longitudinal studies. Andrea et al. (1998)

described the maximum likelihood method for non-ignorable and nonmonotone missing

data problems, but it encounters a difficult numerical problem; Chen et al. (2008) provided

a careful investigation of likelihood methods for missing response and covariate data via

the EM algorithm. Alternatively, when data are MCAR, GEE approach yields consistent

estimates for the regression parameters (Liang and Zeger 1986). When data are MAR,

Robins et al. (1994), Robins et al. (1995) and Schaarfstein et al. (1999) proposed methods

to improve the efficiency of the inverse probability weighted generalized estimating equa-

tions (IPWGEE). The idea is that adding a zero mean function to the estimating equation

to maintain unbiasness, and at the same time to extract the remainder information from the

incomplete observations to improve estimation efficiency.

3.2 Notation

Let Yi = (yi1, · · · , yij, · · · , yiJ)T be a response vector of subject i at time points

t = (t1, t2, · · · , tJ)T and xij = (xij1, · · · , xijk, · · · , xijp)T be the p × 1 covariates vec-

tor recorded for subject i at the jth time point, j = 1, · · · , J , i = 1, · · · ,M . Let Xi

be the J × p matrix (xi1, · · · , xiJ)T . Here i, j and k is the index of subject, observation

and covariate respectively. Let µij = E(yij|Xi), and µi = (µi1, · · · , µij, · · · , µiJ)T . Sup-

pose that the mean structure of yij depends on the covariate vector of subject i at time j,
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i.e., E(yij|Xi) = E(yij|xij) (Pepe and Anderson 1994 and Robins et al. 1999), we are

interested in estimating parameter β in the generalized linear regression models

g(µij) = xTijβ, j = 1, · · · , J,

where g(�) is a monotone differentiable link function.

Let us briefly review the generalized estimating equation and its application to regres-

sion analysis. To simplify the introduction, we consider a regression model without missing

values. We suppose that β̂f is the solution to the generalized estimating equation in (Liang

and Zeger 1986)

U f (β̂) =
∑
i

U f
i = 0, (3.1)

where the summation is over all M independent subjects and

U f (i) = DT
i V
−1
i (Yi − µi).

Here the super-script f denotes the full data, Di = ∂µi/∂β, and Vi is the covariance matrix

for the response Yi. In actual implementation, a working covariance matrix is used to

replace Vi, which is often decomposed as

Vi = a(φ)A
1/2
i Ri(ρ)A

1/2
i ,

where a(�) is a known function, φ is a scaled parameter, Ai is a J × J diagonal matrix with

elements vij = V ar(yij), Ri(ρ) is a J×J working correlation matrix that is fully specified

up to a vector of parameters ρ.
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Under mild regularity conditions, the estimate β̂f from the generalized estimating equa-

tion (3.1) converges to its true value β∗ in probability. Moreover, by the Central Limit

Theory, M1/2(β̂ − β∗) has an asymptotic normal distribution with mean 0 and covariance

[E{∂U f
i (β∗)/∂β}]−1E(U f

i (β∗)U fT
i (β∗))[E{∂U fT

i (θ∗)/∂θ}]−1,

which can be consistently estimated by

M(
M∑
i=1

{∂U f
i (β̂f )/∂β})−1{

M∑
i=1

U f
i (β̂f )U fT

i (β̂f )}(
M∑
i=1

{∂U fT
i (β̂f )/∂β})−1.

Here we consider the missing covariate problem, and we assume that the response vec-

tor is fully observed. According to the missingness in the observed data set we reorder the

covariates in xij as xij = (x
(1)T
ij , · · · , x(k)T

ij , · · · , x(q)T
ij )T such that each x(k)

ij , k = 1, · · · , q,

is a vector of covariates with the same missingness pattern, where q is the total number of

distinct missingness patterns. We define r(k)
ij as an indicator variable and r(k)

ij = 1 if x(k)
ij

is observed and 0 otherwise for k = 1, · · · , q, and r(0)
ij = 1 if r(1)

ij = · · · = r
(q)
ij = 1 and

0 otherwise. In fact r(0)
ij = 1 indicates xij is fully observed. For convenience we denote

x
(0)
ij = xij . For each i, we specifyX(k)

i = (x
(k)
i1 , · · · , x

(k)
ij , · · · , x

(k)
iJ )T . We assume thatX(k)

i

has nik fully observed x(k)
ij . We remove all the unobserved elements and obtain observed

covariates matrix X̃(k)
i = (x

(k)
i1 , · · · , x

(k)
ij , · · · , x

(k)
inik

)T and the corresponding response vari-

able Ỹ (k)
i = (yi1, · · · , yinik)T . Furthermore, we denote Ỹ (k)

i = (ỹ
(k)
i1 , · · · , ỹ

(k)
inik

)T and

X̃
(k)
i = (x̃

(k)
i1 , · · · , x̃

(k)
inik

)T .

For k = 0, · · · , q, j = 1, · · · , J , and i = 1, · · · ,M , we define the missing data proba-

bilities as

π
(k)
ij = Pr(r

(k)
ij = 1|Yi, Xi).
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Under the MCAR missing mechanism, the missing data probability does not depend on

any observed or unobserved data, that is π(k)
ij = P (r

(k)
ij = 1|Yi, Xi) = P (r

(k)
ij = 1). Under

the MAR missing mechanism, The missing data probability depends on the observed data,

for example, π(k)
ij = P (r

(k)
ij = 1|Yi, Xi) = P (r

(k)
ij = 1|Yi, X(k)

i ).

Let S0 and Sk, k = 1, · · · , q, denote the index set of the complete observed x(0)
ij and

x
(k)
ij , k = 1, · · · , q respectively, Let mk be the corresponding number of subjects in each

index set. We see that m0 ≤ mk and we require m0 > C > 0.

To give a clear description to the notation, we will give a simple example which will

be used through the whole section. Suppose that there are two subjects in the study, each

subject has four observations and there are three covariates in the data example. The data

is as follows. 

y11 x111 x112 x113

y12 x121 x122 x123

y13 x131 x132 x133

y14 x141 x142 x143

y21 x211 x212 x213

y22 x221 x222 x223

y23 x231 x232 x233

y24 x241 x242 x243


The data elements with a box are missing value. In this example xij1 and xij3 have the

same missingness pattern. We let x(1)
ij = (xij1, xij3) and x(2)

ij = xij2. We note that there

are q = 2 distinct missingness patterns in the covariates. We reorder the covariates by the
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missing pattern. The data set will be

y11 x111 x113 x112

y12 x121 x123 x122

y13 x131 x133 x132

y14 x141 x143 x142

y21 x211 x213 x212

y22 x221 x223 x222

y23 x231 x233 x232

y24 x241 x243 x242



.

We denote the index set of complete observations as S0. The observations in the S0 are

(Ỹ (0), X̃(0)) =

y14 x141 x142 x143

y23 x231 x232 x233

 =

ỹ14 x̃
(0)
14

ỹ23 x̃
(0)
23

.

We denote the index set of complete observed x(1)
ij and x(2)

ij as S1 and S2 respectively.

The observation in S1 and S2 are (Ỹ (1), X̃(1)) =



y12 x121 x123

y14 x141 x143

y22 x221 x223

y23 x231 x233


=



ỹ12 x̃
(1)
12

ỹ14 x̃
(1)
14

ỹ22 x̃
(1)
22

ỹ23 x̃
(1)
23


and

(Ỹ (2), X̃(2)) =



y14 x142

y21 x212

y23 x232

y24 x242


=



ỹ14 x̃
(2)
14

ỹ21 x̃
(2)
21

ỹ23 x̃
(2)
23

ỹ24 x̃
(2)
24


, respectively.
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3.3 MCAR Data

The generalized estimating equation will generate consistent estimator when the miss-

ing mechanism is MCAR, so we can apply the generalized estimating equation directly for

each data set Sk, k = 0, · · · , q.

For i = 1, · · · ,M , j = 1, · · · , J and k = 1, · · · , q, we define µijk = E(ỹ
(k)
ij |x̃

(k)
ij ). We

consider the generalized linear regression models

gk(µijk) = (x̃
(k)
ij )Tγk, j = 1, · · · , nik,

where gk(�) is a monotone differentiable link function, and γk is a vector of regression pa-

rameters. For convenience we denote the model of interest g(�) as g0(�), that is g0(µij0) =

g0(E(ỹ
(0)
ij |x̃

(0)
ij )) = (x̃

(0)
ij )Tβ. Here β is the parameter vector of interest and γk, k =

1, · · · , q, are the vectors of surrogate parameters.

Let µi0 = (µi10, · · · , µij0, · · · , µini00)T and µik = (µi1k, · · · , µijk, · · · , µini0k)T , k =

1, · · · , q.

Assume that β̂ and γ̂j, j = 1, · · · , q, solve the generalized estimating equations for β

and γj given in (3.2) and (3.3) respectively.

∑
i∈S0

Ui0(β) =

m0∑
i=1

DT
i0Vi0

−1(Ỹ
(0)
i − µi0) = 0 (3.2)

∑
i∈S0

Uik(γk) =

m0∑
i=1

DT
ikVi0

−1(Ỹ
(0)
i − µik), k = 1, · · · , q (3.3)

where Di0 = ∂µi0/∂β, Dik = ∂µik/∂γk, and Vi0 is the covariance matrix for the response
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Ỹ
(k)
i . It is well known that β̂ is consistent for β∗ which is the true parameter value that

would be computed if the data from the whole cohort were available, provided that some

regularity conditions hold. Similarly, under some regularity conditions, γ̂k is consistent for

γk
∗. We call gk(X̃

(k)
i , γk) = g(µ

(k)
ij ) surrogate models and call γ = (γT1 , · · · , γTq )T a vector

of surrogate parameters. We denote Ui(θ) = (UT
i0(β), UT

iQ(γ))T with θ = (βT , γT )T and

UiQ(γ) = (UT
i1(γ1), · · · , UT

iq(γq))
T .

Under the regularity conditions in Appendix A, we can show that (i) θ̂ = (β̂T , γ̂T )T ,

with γ̂ = (γ̂T1 , · · · , γ̂Tq )T , is consistent for θ∗ = (β∗T , γ∗T )T and (ii) m1/2
0 (θ̂ − θ∗) is

asymptotically normal with mean 0 and variance Γ−1ΣΓ−1 with Γ = E{∂Ui(θ∗)/∂θ} and

Σ = E{Ui(θ∗)UT
i (θ∗)}.

We rewrite Γ as diag(Γ00,Γ11) with Γ00 = E{∂Ui0(β∗)/∂β} and Γ11 = E{∂UiQ(γ∗)/∂γ}.

We partition the matrix Σ as

Σ00 Σ01

ΣT
01 Σ11

 with Σ00 = E{Ui0(β∗)UT
i0(β∗)},

Σ01 = E{Ui0(β∗)UT
iQ(γ∗)}, and Σ11 = E{UiQ(γ∗)UT

iQ(γ∗)}. According to the multivariate

normal distribution theory, the conditional distribution of m1/2
0 (β̂−β∗) given m1/2

0 (γ̂−γ∗)

is asymptotic normal with mean

m
1/2
0 Γ−1

00 Σ01Σ−1
11 Γ11(γ̂ − γ∗), (3.4)

which suggests that the CC estimator β̂ may be improved by using

β̄ = β̂ − Γ̂−1
00 Σ̂01Σ̂−1

11 Γ̂11(γ̂ − γ̄), (3.5)
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where

Γ̂00 = m−1
0

∑
i∈S0

{∂Ui0(β̂)/∂β},

Σ̂01 = m−1
0

∑
i∈S0

{Ui0(β̂)UT
iQ(γ̂)},

Σ̂11 = m−1
0

∑
i∈S0

{UiQ(γ̂)UT
iQ(γ̂)},

Γ̂11 = m−1
0

∑
i∈S0

{∂UiQ(γ̂)/∂γ},

and γ̄ = (γ̄T1 , · · · , γ̄Tq )T . Here γ̄k is an estimator based on observations in Sk, that is , γ̄k

solves ∑
i∈Sk

Ūik(γk) =

mk∑
i=1

D̄T
ikVik

−1(Ỹ
(k)
i − µ̄ik),

where D̄ik = ∂µ̄ik/∂γk, Vik is the covariance matrix for the response Ỹ (k)
i and µ̄ik =

(µi1k, · · · , µijk, · · · , µinikk)T , which allows all the observations in Sk to be used in the

estimation.

In our simple example, let gk(µ) = µ, the estimating equations for β̂, γ̂ and γ̄ are as

follows.

U0(β) =

m0∑
i=1

Ui0(β)

= (x
(0)
14 )V −1

10

(
y14 − µ140

)
+ (x

(0)
23 )V −1

20

(
y23 − µ130

)
, (3.6)

U1(γ1) =

m0∑
i=1

Ui1(γ1)

= (x
(1)
14 )V −1

10

(
y14 − µ141

)
+ (x

(1)
23 )V −1

20

(
y23 − µ131

)
, (3.7)
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U2(γ2) =

m0∑
i=1

Ui2(γ2)

= (x
(2)
14 )V −1

10

(
y14 − µ142

)
+ (x

(2)
23 )V −1

20

(
y23 − µ132

)
, (3.8)

Ū1(γ1) =

m1∑
i=1

Ūi1(γ1)

= (x
(1)
12 , x

(1)
14 )V −1

11

y12 − µ121

y14 − µ141

+ (x
(1)
22 , x

(1)
23 )V −1

21

y22 − µ221

y23 − µ231

 , (3.9)

and

Ū2(γ2) =

m2∑
i=1

Ūi2(γ1)

= (x
(2)
14 )V −1

12

(
y14 − µ142

)
+ (x

(2)
21 , x

(2)
23 , x

(2)
24 )V −1

22


y21 − µ212

y23 − µ232

y24 − µ242

 , (3.10)

where equations (3.6), (3.7) and (3.8) are based on index set S0, equations (3.9) and (3.10)

are based on index set S1 and S2 respectively.

We call β̄ an improved complete-case (ICC) estimator. We expect that the ICC esti-

mator produces efficiency gains when β̂ and γ̂ are highly correlated and the sizes of the

observations in Sk’s are much larger than the size of the observations in S0.

It can be shown that under regularity conditions (i) β̄ is consistent for β∗ and the con-

sistency of β̄ does not depend on the correctness of the sequence of parametric working
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models, and (ii) m1/2
0 (β̄ − β∗) is asymptotic normal with mean 0 and variance

V ar(m
1/2
0 β̄) = Γ−1

00 Σ00Γ−1
00 − Γ−1

00 Σ01(I − Σ−1
11 Σρ11)Σ−1

11 ΣT
01Γ−1

00 , (3.11)

where Σρ11 is Σ11 with its khth element σkh replaced by σρkh = (m0 �mkh)/(mk �mh)σkh

and mkh is the number of observations in the intersection of Sk and Sh for k, h = 1, · · · , q.

The first term in (3.11) is the asymptotic variance of m1/2
0 (β̂ − β∗), and the second term

represents the improvement of the ICC estimator over the CC estimator. The asymptotic

variance in (3.11) can be estimated by

Γ̂−1
00 Σ̂00Γ̂−1

00 − Γ̂−1
00 Σ̂01(I − Σ̂−1

11 Σ̂ρ11)Σ̂−1
11 Σ̂T

01Γ̂−1
00 ,

where Σ̂00 = m−1
0

∑
i∈V

{Ui0(β̂)UT
i0(β̂)} and Σ̂ρ11 is Σ̂11 with its khth element σ̂kh replaced

by (m0 �mkh)/(mk �mh)σ̂kh for k, h = 1, · · · , q.

3.4 MAR Data with Known Missing Probability

The consistency of the GEE method requires that the missing mechanism is MCAR.

When the missing mechanism is MAR, we can use the weighted generalized estimating

equations in Robins et al. (1995) to obtain a consistent estimator for β. Chen et al. (2010)

and Chen and Zhou (2011) used a new weight matrix and element-wise product to incorpo-

rate general working correlation matrices in longitudinal data analysis with missing covari-

ates. Next we will explain how to extend the ICC approach to MAR data using weighted

GEEs.

For the data in S0, we consider the weighted generalized estimating equations given in

(3.12), (3.13) and obtain the β̂π, γ̂π respectively.
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M∑
i=1

Uπi0(β) =
M∑
i=1

DT
πi0Zi0(Yi − µπi0) = 0, (3.12)

M∑
i=1

Uπik(γk) =
M∑
i=1

DT
πikZi0(Yi − µπik) = 0, for k = 1, · · · , q. (3.13)

For the data Sk, k = 1, · · · , q, we consider the weighted generalized estimating equations

given in (3.14) and obtain the γ̄π.

M∑
i=1

Ūπik(γk) =
M∑
i=1

DT
πikZik(Yi − µπik) = 0, for k = 1, · · · , q, (3.14)

where Dπi0 = ∂µπi0/∂β, Dπki = ∂µπik/∂γk, and Zik = α(φ)−1Ai
−1/2[V −1

i • ∆ik]Ai
−1/2

with

∆ik =



I(r
(k)
i1 =1)

π
(k)
i1

I(r
(k)
i1 =1,r

(k)
i2 =1)

π
(k)
i12

· · · I(r
(k)
i1 =1,r

(k)
iJ =1)

π
(k)
i1J

I(r
(k)
i2 =1,r

(k)
i1 =1)

π
(k)
i21

I(r
(k)
i2 =1)

π
(k)
i2

· · · I(r
(k)
i2 =1,r

(k)
iJ =1)

π
(k)
i2J

· · · · · · · · · · · ·

I(r
(k)
iJ =1)

π
(k)
iJ1

I(r
(k)
iJ =1,r

(k)
i2 =1)

π
(k)
iJ2

· · · I(r
(k)
iJ =1)

π
(k)
iJ


and

π
(k)
ijl = P (r

(k)
ij = 1, r

(k)
il = 1|Yi, Xi),

for k = 0, 1, · · · , q and j, l = 1, · · · , J . Here ∆i0 and ∆ik are the weight matrix for S0 and

Sk respectively.

In our example, the weighted generalized estimating equation for β is
2∑
i=1

Uπi0(β),

where
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Uπ10(β) = ( x
(0)
11 , x

(0)
12 , x

(0)
13 , x

(0)
14 )Φ[V −1

1 •



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

π
(0)
14


]



y11 − µ110

y12 − µ120

y13 − µ130

y14 − µ140


,

and

Uπ20(β) = ( x
(0)
21 , x

(0)
22 , x

(0)
23 , x

(0)
24 )Φ[V −1

2 •



0 0 0 0

0 0 0 0

0 0 1

π
(0)
23

0

0 0 0 0


]



y21 − µ210

y22 − µ220

y23 − µ130

y24 − µ240


.

Here [•] is element-wise multiplication.

The weighted generalized estimating equations for γ1 and γ2 are
2∑
i=1

Uπi1(γ1),
2∑
i=1

Uπi2(γ2),

2∑
i=1

Ūπi1(γ1) and
2∑
i=1

Ūπi2(γ2), where

Uπ11(γ1) = ( x
(1)
11 , x

(1)
12 , x

(1)
13 , x

(1)
14 )Φ[V −1

1 •



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

π
(0)
14


]



y11 − µ111

y12 − µ121

y13 − µ131

y14 − µ141


,
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Uπ21(γ1) = ( x
(1)
21 , x

(1)
22 , x

(1)
23 , x

(1)
24 )Φ[V −1

2 •



0 0 0 0

0 0 0 0

0 0 1

π
(0)
23

0

0 0 0 0


]



y21 − µ211

y22 − µ221

y23 − µ131

y24 − µ241


,

Uπ12(γ2) = ( x
(2)
11 , x

(2)
12 , x

(2)
13 , x

(2)
14 )Φ[V −1

1 •



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

π
(0)
14


]



y11 − µ112

y12 − µ122

y13 − µ132

y14 − µ142


,

Uπ22(γ2) = ( x
(2)
21 , x

(2)
22 , x

(2)
23 , x

(2)
24 )Φ[V −1

2 •



0 0 0 0

0 0 0 0

0 0 1

π
(0)
23

0

0 0 0 0


]



y21 − µ212

y22 − µ222

y23 − µ132

y24 − µ242


,

Ūπ11(γ1) = ( x
(1)
11 , x

(1)
12 , x

(1)
13 , x

(1)
14 )Φ[V −1

1 •



0 0 0 0

0 1

π
(1)
12

0 1

π
(1)
124

0 0 0 0

0 1

π
(1)
142

0 1

π
(1)
14


]



y11 − µ111

y12 − µ121

y13 − µ131

y14 − µ141


,
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Ūπ21(γ1) = ( x
(1)
21 , x

(1)
22 , x

(1)
23 , x

(1)
24 )Φ[V −1

2 •



0 0 0 0

0 1

π
(1)
22

1

π
(1)
223

0

0 1

π
(1)
232

1

π
(1)
23

0

0 0 0 0


]



y21 − µ211

y22 − µ221

y23 − µ231

y24 − µ241


,

Ūπ12(γ2) = ( x
(2)
11 , x

(2)
12 , x

(2)
13 , x

(2)
14 )Φ[V −1

1 •



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

π
(2)
14


]



y11 − µ112

y12 − µ122

y13 − µ132

y14 − µ142


,

Ūπ22(γ2) = (x
(2)
21 , x

(2)
22 , x

(2)
23 , x

(2)
24 )Φ[V −1

2 •



1

π
(2)
21

0 1

π
(2)
213

1

π
(2)
214

0 0 0 0

1

π
(2)
231

0 1

π
(2)
23

1

π
(2)
234

1

π
(2)
241

0 1

π
(2)
243

1

π
(2)
24


]



y21 − µ212

y22 − µ222

y23 − µ232

y24 − µ242


.

We see that
2∑
i=1

Uπi1(γ1) and
2∑
i=1

Uπi2(γ2) are based on the observations in S0, and

2∑
i=1

Ūπi1(γ1) and
2∑
i=1

Ūπi2(γ2) are based on observations in S1 and S2 respectively.

We note that β̂π and γ̂π are computed based on observations in S0, while γ̄π is computed

based on the larger data sets Sk, k = 1, · · · , q. Following a procedure similar to that in

Section 3.2, under regularity conditions we obtain the following results:

(i) M1/2(β̂π − β∗) given M1/2(γ̂π − γ∗) is asymptotic normal with mean

M1/2Γ−1
00 Σπ01Σ−1

π11Γ11(γ̂π − γ∗), where
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Σπ01 = E[Uπi0(β∗)UT
πiQ(γ∗)], Σπ11 = E[UπiQ(γ∗)UT

πiQ(γ∗)] withUπiQ(γ) = (Uπi1(γ1), · · · , Uπiq(γq))T

(ii) β can be consistently estimated by

β̄π = β̂ − Γ̂−1
π00Σ̂π01Σ̂−1

π11Γ̂π11(γ̂π − γ̄π), (3.15)

where

Γ̂π00 = M−1

M∑
i=1

∂Uπi0(β̂π)/∂β,

Σ̂π01 = M−1

M∑
i=1

Uπi0(β̂π)UT
πiQ(γ̂π),

Σ̂π11 = M−1

M∑
i=1

UπiQ(γ̂π)UT
πiQ(γ̂π),

Γ̂π11 = M−1

M∑
i=1

∂UπiQ(γ̂π)/∂γ.

The consistency of β̄π does not depend on the correctness of the working regression

models. We call β̄π an improved weighted complete-case (IWCC) estimator.

(iii) M1/2(β̄π − β∗) is asymptotically normal with mean 0 and variance

Γ−1
00 Σπ00Γ−1

00 − Γ−1
00 {Σπ01Σ−1

π11[(Σπ12 − Σπ22 + ΣT
π12)Σ−1

π11ΣT
π01 − ΣT

π02]+

(Σπ01 − Σπ02)Σ−1
π11ΣT

π01}Γ−1
00 ,

(3.16)

where

Σπ00 = E[Uπi0(β∗)UT
πi0(β∗)],

Σπ02 = E[Uπi0(β∗)ŪT
πiQ(γ∗)],

Σπ12 = E[UπiQ(γ∗)ŪT
πiQ(γ∗)],

Σπ22 = E[Ūπi0(γ∗)ŪT
πi0(γ∗)],
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with

ŪπiQ(γ) = (Ūπi1(γ1), · · · , Ūπik(γk), · · · , Ūπiq(γq))T .

The asymptotic variance (3.16) can be estimated by

Γ̂−1
π00Σ̂π00Γ̂−1

π00 − Γ̂−1
π00{Σ̂π01Σ̂−1

π11[(Σ̂π12 − Σ̂π22 + Σ̂T
π12)Σ̂−1

π11Σ̂T
π01 − Σ̂T

π02]+

(Σ̂π01 − Σ̂π02)Σ̂−1
π11Σ̂T

π01}Γ̂−1
π00,

(3.17)

where

Γ̂π00 = M−1

M∑
i=1

∂Uπi0(β̂π)/∂β,

Γ̂π11 = M−1

M∑
i=1

∂UπiQ(γ̂π)/∂γ,

Σ̂π00 = M−1

M∑
i=1

Uπi0(β̂π)UT
πi0(β̂π),

Σ̂π01 = M−1

M∑
i=1

Uπi0(β̂π)UT
πiQ(γ̂π),

Σ̂π02 = M−1

M∑
i=1

Uπi0(β̂π)ŪT
πiQ(γ̄π),

Σ̂π11 = M−1

M∑
i=1

UπiQ(γ̂π)UT
πiQ(γ̂π),

Σ̂π12 = M−1

M∑
i=1

UπiQ(γ̂π)ŪT
πQ(γ̄π),

Σ̂π22 = M−1

M∑
i=1

ŪπiQ(γ̄π)ŪT
πiQ(γ̄π).

As in Section 3.2, we see that the first term in (3.17) is an estimate of the asymptotic

variance of M1/2(β̂π − β∗), and the second term represents the improvement of the IWCC

estimator over the weighted CC estimator.
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3.5 MAR Data with Estimated Missing Probability

It is well known that the estimation efficiency of the inverse probability weighted es-

timates can be further improved by using estimated selection probabilities π̂ij instead of

the known selection probabilities (Robins et al. 1994; Lawless et al. 1999; Chatterjee and

Breslow 2003; Breslow et al. 2009). In practice, MAR data often occurs with unknown

missing probabilities where the selection probabilities must be estimated in the weighted

estimating equations. Robins et al. (1995) developed a class of inverse probability weighted

generalized estimating equations (IPWGEE), which can yield consistent estimators when

data are MAR. The weights are obtained from models for the missing data process, and

these models must be correctly specified for the resulting estimators to be consistent.

Modeling the missing data process can be very difficult in practice. To illustrate how

to use the unified approach in missing by happenstance case, we only consider a simple

missing data process. Suppose now that r(k)
ij and r(k)

il are independent for j, l = 1, · · · , J ,

k = 0, 1, · · · , q, and π(k)
ij depends on the fully observed variables which may include our

variables in the regression model and other auxiliary variables and the dependence is spec-

ified up to a known probability function indexed by a finite number of unknown parameters

αk.

One can estimate (β∗T , γ∗T )T by (β̂Tπ̂ , γ̂
T
π̂ )T with γ̂π̂ = (γ̂Tπ̂1, · · · , γ̂Tπ̂q)T using the weighted

estimating equations (3.18) and (3.19), while constructing another estimating equations

(3.20) for on r(0)
ij to estimate the nuisance parameters α0.
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M∑
i=1

Uπ̂i0(β) =
M∑
i=1

DT
πi0Ẑi0(Yi − µπi0) = 0, (3.18)

M∑
i=1

Uπ̂ik(γk) =
M∑
i=1

DT
πikẐi0(Yi − µπik) = 0, for k = 1, · · · , q, (3.19)

M∑
i=1

Hi0(α0) = 0, (3.20)

where Dπi0 = ∂µπi0/∂β, Dπki = ∂µπik/∂γk, Ẑi0 = α(φ)−1Ai
−1/2[V −1

i • ∆̂i0]Ai
−1/2 with

∆̂i0 =
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· · · · · · · · · · · ·
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· · · I(r
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π̂
(0)
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
.

Let Uπ̂iQ(γ, α0) = (UT
π̂i1, · · · , UT

π̂ik, · · · , UT
π̂iq)

T . Following the procedure similar to

that in Section 3.2, we can show that the conditional distribution of M1/2(β̂π̂ − β∗) given

M1/2(γ̂π̂ − γ∗) is asymptotic normal with mean

M1/2Γ−1
00 Σπ̂01Σ−1

π̂11Γ11(γπ̂ − γ∗),

where

Σπ̂01 = E{Res(Uπ̂i0(β∗, α∗0), Hi0(α∗0))ResT (Uπ̂iQ(γ∗, α∗0), Hi0(α∗0))},

and

Σπ̂11 = E{Res(Uπ̂iQ(γ∗, α∗0), Hi0(α∗0))ResT (Uπ̂iQ(γ∗, α∗0), Hi0(α∗0))}.
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It suggests that the weighted CC estimator β̂π̂ may be improved by using

β̄π̂ = β̂π̂ − Γ̂−1
π̂00Σ̂π̂01Σ̂−1

π̂11Γ̂π̂11(γ̂π̂ − γ̄π̂), (3.21)

where

Γ̂π̂00 = M−1

M∑
i=1

∂Uπ̂i0(β̂, α̂0)/∂β,

Σ̂π̂01 = M−1

M∑
i=1

R̂es(Uπ̂i0(β̂, α̂0), Hi0(α̂0))R̂esT (Uπ̂iQ(β̂, α̂0), Hi0(α̂0)),

Σ̂π̂11 = M−1

M∑
i=1

R̂es(Uπ̂iQ(β̂, α̂0), Hi0(α̂0))R̂esT (Uπ̂iQ(β̂, α̂0), Hi0(α̂0)),

Γ̂π̂11 = M−1

M∑
i=1

∂Uπ̂iQ(β̂, α̂0)/∂γ.

We note that γ̄π̂ = (γ̄Tπ̂1, · · · , γ̄Tπ̂q)T is estimated using the weighted estimating equations

(3.22) and (3.23).

M∑
i=1

Ūπik(γk) =
M∑
i=1

DT
πikẐik(Yi − µπik) = 0, for k = 1, · · · , q, (3.22)

N∑
i=1

Hik(αk) = 0, for k = 1, · · · , q, (3.23)

where Dπki = ∂µπik/∂γk, Ẑik = α(φ)−1Ai
−1/2[V −1

i • ∆̂ik]Ai
−1/2 with

∆̂ik =
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
.
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Let αQ = (αT1 , · · · , αTq )T , α̂Q = (α̂T1 , · · · , α̂Tq )T , and
∑N

i=1Hik(αk) be a system of esti-

mating functions for αk.

We see that γ̄π̂k is estimated based on observations in Sk, which allows all the informa-

tion in Sk to be used to increase the estimation efficiency. We call β̄π̂ an improved weighted

complete-case (IWCC) estimator using estimated π.

Under some regularity conditions, we can obtain that M1/2(β̄π̂ − β∗) is asymptotic

normal with mean 0 and variance given by

Γ−1
00 Σπ̂00Γ−1

00 − Γ−1
00 {Σπ̂01Σ−1

π̂11[(Σπ̂12 − Σπ̂22 + ΣT
π̂12)Σ−1

π̂11ΣT
π̂01 − ΣT

π̂02]+

(Σπ̂01 − Σπ̂02)Σ−1
π̂11ΣT

π̂01}Γ−1
00 ,

(3.24)

where

Σπ̂00 = E{Res(Uπ̂i0(β∗, α∗0), Hi0(α∗0))ResT (Uπ̂i0(β∗, α∗0), Hi0(α∗0))},

Σπ̂02 = E{Res(Uπ̂i0(β∗, α∗0), Hi0(α∗0))ResT (Ūπ̂iQ(γ∗, α∗Q), HiQ(α∗Q))},

Σπ̂12 = E{Res(UQi(γ∗, α∗0), Hi0(α∗0))ResT (Ūπ̂iQ(γ∗, α∗Q), HiQ(α∗Q))},

Σπ̂22 = E{Res(Ūπ̂iQ(γ∗, α∗Q), HiQ(α∗Q))ResT (Ūπ̂iQ(γ∗, α∗Q), HiQ(α∗Q))}

with Ūπ̂iQ(γ, αQ) = (ŪT
π̂i1, · · · , ŪT

π̂iq)
T , and HiQ(αQ) = (HT

i1(α1), · · · , HT
iq(αq))

T .

The asymptotic variance in (3.24) can be estimated by

Γ̂−1
π̂00Σ̂π̂00Γ̂−1

π̂00 − Γ̂−1
π̂00{Σ̂π̂01Σ̂−1

π̂11[(Σ̂π̂12 − Σ̂π̂22 + Σ̂T
π̂12)Σ̂−1

π̂11Σ̂T
π̂01 − Σ̂T

π̂02]+

(Σ̂π̂01 − Σ̂π̂02)Σ̂−1
π̂11Σ̂T

π̂01}Γ̂−1
π̂00,

(3.25)
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where

Σ̂π̂00 = N−1

N∑
i=1

R̂es(Uπ̂i0(β̂, α̂0), Hi0(α̂0))R̂esT (Uπ̂i0(β̂, α̂0), Hi0(α̂0)),

Σ̂π̂02 = N−1

N∑
i=1

R̂es(Uπ̂i0(β̂, α̂0), Hi0(α̂0))R̂esT (Ūπ̂iQ(γ̄, α̂), HiQ(α̂Q)),

Σ̂π̂12 = N−1

N∑
i=1

R̂es(Uπ̂iQ(β̂, α̂0), Hi0(α̂0))R̂esT (Ūπ̂iQ(γ̄, α̂), HiQ(α̂Q)),

Σ̂π̂22 = N−1

N∑
i=1

R̂es(Ūπ̂iQ(γ̄, α̂Q), HiQ(α̂Q))R̂esT (Ūπ̂iQ(γ̄, α̂), HiQ(α̂Q)).

For the IPWGEE, to obtain a consistent estimator we need to “correct“ models for the

missing data process and also need “correct” models for the response process given the

covariates, but we do not need to model the distribution of the missing covariates. If the

missing data process models are misspecified, both the β̄π̂ and β̂π̂ can be biased.

3.6 Simulation Studies

In this section we use simulation studies to examine the finite sample performance of

the ICC and the IWCC estimators. We consider the linear regression model,

yij = µij + εij = β0 + β1 ∗ xij1 + β2 ∗ xij2 + εij

and logistic regression model,

logit(µij) = logit(Pr(yij = 1|xij)) = β0 + β1 ∗ xij1 + β2 ∗ xij2,

where xij1 and xij2 are time-dependent continuous covariates. We consider two correlation

structures (i) exchangeable and (ii) Ar(1) with parameter ρ = 0.3. We let J = 3, β∗ =
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Table 3.1 Linear Regression Model

MCAR MAR π MAR π̂
β̄0 β̄1 β̄2 β̄π0 β̄π1 β̄π2 β̄π̂0 β̄π̂1 β̄π̂2

Exchangeable Correlation ρ = 0.3

ICC or IWCC estimation

Bias 0.001 0.033 0.002 -0.003 -0.002 -0.001 -0.007 −0.032 0.038
s.d. 0.043 0.045 0.045 0.054 0.045 0.044 0.060 0.042 0.046
s.e. 0.046 0.044 0.044 0.057 0.044 0.044 0.074 0.045 0.045
MSE 0.002 0.002 0.002 0.003 0.002 0.002 0.004 0.002 0.002
95%CP 95.6% 95.2% 94.8% 95.8% 94.4% 97.0% 97.8% 95.0% 93.8%
ARE 1.519 1.284 1.235 1.449 1.138 1.291 1.480 1.474 1.328

CC or weighted CC estimation

Bias 0.002 0.002 0.033 0.034 -0.005 −0.032 0.003 -0.002 -0.002
s.d. 0.053 0.051 0.050 0.065 0.048 0.050 0.073 0.051 0.053
MSE 0.003 0.003 0.003 0.004 0.002 0.002 0.005 0.003 0.003

Ar(1) ρ = 0.3

ICC or IWCC estimation

Bias -0.002 -0.001 -0.001 −0.036 0.005 0.002 −0.039 −0.036 -0.002
s.d. 0.043 0.043 0.045 0.041 0.041 0.041 0.042 0.042 0.042
s.e. 0.041 0.043 0.044 0.040 0.041 0.041 0.043 0.041 0.042
MSE 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
95%CP 94.4% 95.4% 93.2% 93.4% 94.2% 94.6% 96.2% 94.0% 94.2%
ARE 1.462 1.299 1.186 1.563 1.205 1.259 1.361 1.252 1.252

CC or weighted CC estimation

Bias -0.004 -0.001 −0.035 0.002 0.003 0.001 0.006 -0.005 -0.004
s.d. 0.052 0.049 0.049 0.050 0.045 0.046 0.049 0.047 0.047
MSE 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
a0.032 = 0.0002.
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Table 3.2 Logistic Regression Model

MCAR MAR π MAR π̂
β̄0 β̄1 β̄2 β̄π0 β̄π1 β̄π2 β̄π̂0 β̄π̂1 β̄π̂2

Exchangeable Correlation ρ = 0.3

ICC or IWCC estimation

Bias -0.002 -0.002 -0.003 0.003 -0.013 0.005 0.005 -0.005 0.001
s.d. 0.140 0.417 0.363 0.096 0.121 0.096 0.088 0.118 0.095
s.e. 0.139 0.424 0.373 0.096 0.125 0.093 0.091 0.120 0.091
MSE 0.020 0.173 0.131 0.009 0.015 0.009 0.008 0.014 0.009
95%CP 95.8% 96.2% 96.0% 95.8% 97.4% 94.8% 96.4% 96.2% 94.8%
ARE 2.050 1.014 1.154 2.219 1.537 1.668 1.768 1.638 1.596

CC or weighted CC estimation

Bias -0.002 0.002 -0.012 0.005 -0.011 0.001 0.005 -0.005 −0.046
s.d. 0.199 0.420 0.390 0.143 0.150 0.124 0.117 0.151 0.120
MSE 0.039 0.176 0.152 0.020 0.023 0.015 0.014 0.023 0.014

ar(1) ρ = 0.3

ICC or IWCC estimation

Bias -0.011 0.008 -0.003 -0.016 0.003 0.006 -0.012 0.033 0.001
s.d. 0.098 0.134 0.095 0.099 0.119 0.094 0.102 0.121 0.087
s.e. 0.105 0.133 0.096 0.106 0.124 0.092 0.109 0.122 0.089
MSE 0.010 0.018 0.009 0.010 0.014 0.009 0.011 0.015 0.008
95%CP 95.8% 95.0% 95.8% 95.8% 95.8% 94.2% 96.4% 95.8% 95.6%
ARE 2.129 1.572 1.844 3.197 2.089 2.583 2.681 2.116 2.165

CC or weighted CC estimation

Bias -0.008 0.014 -0.012 -0.024 0.006 0.007 -0.010 0.002 0.005
s.d. 0.143 0.168 0.129 0.177 0.172 0.135 0.167 0.176 0.128
MSE 0.020 0.028 0.017 0.032 0.029 0.018 0.028 0.031 0.017

a0.046 = 0.00006.
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(0.5, 1.0, 1.0)T in the linear regression model, and β∗ = (−0.7, 0.1, 0.1)T in the logistic

regression model. The data generation procedures are provided in the Appendix D.

For the missing covariates process, we assume that yij are fully observed and xij1 and

xij2 are missing independently. We consider both the MCAR and the MAR cases. We

assume that xij1 and xij2 are observed with probability π(1)
ij and π(2)

ij respectively. In the

MCAR case we let π(1)
ij = π1 and π(2)

ij = π2. For the MAR case, we let observed prob-

ability depend on the fully observed response yij , and we consider two settings: (i) we

let (π
(1)
ij , π

(2)
ij ) = (π1y1, π2y1) if Y ≥ 0 (in the linear regression model) or Y = 1 (in the

logistic regression model) and (π
(1)
ij , π

(2)
ij ) = (π1y0, π2y0) otherwise. (ii) we let the ob-

served probabilities depend on the response Y such that logit(π(1)
ij ) = α01 + α11yij and

logit(π
(2)
ij ) = α02 + α12yij .

We set the sample size m = 500 and for each setting we generate 500 data sets. For

the MCAR case we set π1 = π2 = 0.50, for the MAR case we let (π1y1, π2y1, π1y0, π2y0) =

(0.5, 0.5, 0.4, 0.4) and (α01, α11) = (α02, α12) = (0.2, 0.2); Here the number of distinct

missing patterns q = 2. We use linear regression models and logistic regression models as

surrogate models for the linear model and the logistic model respectively.

The simulation results for the ICC and the IWCC estimates together with the CC and

the weighted CC estimates are given in Table 3.1 and Table 3.2 respectively. We see that

(i) the biases of the ICC and the IWCC estimates are small; (ii) the means of the standard

errors (s.e) calculated based on the asymptotic variance estimator are close to the empirical

standard deviations (s.d.); (iii) the estimated 95% coverage probabilities are close to the
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nominal level; and (iv) compared to the (weighted) CC analysis both the ICC and the IWCC

estimates have smaller mean square errors (MSE) and empirical standard deviations.
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Chapter 4

Examples

In this section, we will use the generalized unified approach to analysis two real data

examples. One is a cross-sectional data, and the other one is a longitudinal data.

4.1 A Case-Control Study of Risk Factors of Hip Fractures

We consider a case-control study of risk factors of hip fractures among male veterans.

The study was carried out at the University of Illinois at Chicago College of Medicine

(Barengolts et al. 2001; Chen 2004), where a case was matched with a control on age

and race, and 25 potential risk factors in addition to age and race were recorded. One

major analysis is fitting a logistic regression model with nine potentially important risk

factors identified in preliminary exploratory analysis. There are 436 subjects in the study

and q = 9 distinct missingness patterns in the covariates (each risk factor has a unique

missingness pattern). The number of observations in V0 is 237 and the overall missing

percentage is 10.81%.
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Table 4.1 Analysis of hip fracture data

Weighted CC IWCC
Variable β̂π̂ s.e.(β̂π̂) β̃π̂ s.e.(β̃π̂) ARE∗

Etoh 1.380 0.401 1.232 0.351 1.305
Smoke 0.936 0.385 0.799 0.333 1.337
Dementia 2.506 0.672 2.017 0.539 1.554
AntiSeiz 3.275 0.914 3.144 0.786 1.352
LevoT4 1.875 0.734 1.539 0.657 1.248
AntiChol -1.803 0.727 -2.032 0.669 1.181
BMI -0.103 0.040 -0.093 0.034 1.384
log(HGB) -2.618 1.268 -3.429 1.134 1.250
Albumin -0.904 0.371 -0.792 0.325 1.303
∗: ARE = (s.e.(β̂π̂)/s.e.(β̃π̂))2

Following Chen (2004) we assume that the covariates are MAR. We estimate the miss-

ing data probabilities, πj , j = 0, 1, . . . , 9, using logistic regression models with hip frac-

ture (the binary outcome variable), age and race as predictors. We report the results of

the weighted CC analysis and the IWCC analysis in Table 4.1. We use logistic regression

models as the working regression models in the IWCC analysis. We see that the weighted

CC estimates and the IWCC estimates are close but the IWCC estimates have relatively

smaller s.e.’s than the weighted CC estimates.

4.2 A Clinical Study of Breast Cancer

The quality of life is a question of interest in many clinical studies. A Breast Cancer

Chemotherapy Questionnaire (BCQ) has been designed for women with stage II breast

cancer. The questions selected for this questionnaire were based on common problems

and experiences of women undergoing adjutant chemotherapy. The BCQ consists of 30

questions that focus on loss of attractiveness, fatigue, physical symptoms, inconvenience,
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Fig 4.1 Plot of bcq VS. qol time

emotional distress, and feelings of hope and support from others. Longitudinal data of

715 patients in NCIC Clinical Trail Group were collected to study the relationship between

BCQ and other physical variables. The following are the variables collected in this study.

id: Patient identification;

bcq: Average of 30 bcq questions (from 0 to 7);

qol time: Time (from randomization) of measurements for bcq.

surg typ: Type of surgery for breast cancer with T=total mastectomy and P=partial

mastectomy;
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Fig 4.2 Smooth Curves

est recp: Estrogen receptor status which is a continuous variables with some observa-

tions missing;

node pos: Number of positive nodes;

pth tcls: Size of the tumor with some observations missing;

all01 co: Treatment group with E=CEF and M=CMF;

dead: Death indicator with D=dead and A=Alive;

age: Age of patients (in year);

survival: Survival or censoring time (in days);

progress: Relapse-free survival time (in days);
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Fig 4.3 Correlation Structure

recurr: Whether patients recurred (Y=yes, N=No).

Fig 4.1 is a plot of bcq and qol time, and lines of randomly selected four patients. In

Fig 4.2, we highlight the average changes in BCQ over time. The scatter plot in Fig 4.3

indicates that (i) the correlation is weaker for observations far away from each other; and

(ii) there is some hint that the correlation between observations at time ti and tj primarily

depends on |ti − tj|.

We note that variables, est recp and pth tcls, have missing values, and they do not have

the same missingness pattern. We let r(1)
ij and r(2)

ij indicate the missingnesses for est recp

and pth tcls respectively, and let r(0)
ij indicate both est recp and pth tcls missing.
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Table 4.2 Clinical study of breast cancer

intercept surg typ est recp node pos pth tcls allo1 co qol time

ICC estimates

β̄ 5.055 -0.005 −0.032 0.004 0.037 -0.073 0.001
s.e. 0.063 0.040 0.032 0.005 0.031 0.039 0.044

CC estimates

β̂ 5.078 0.034 −0.032 0.006 0.021 -0.075 0.001
s.e. 0.064 0.041 0.032 0.005 0.032 0.039 0.044
a0.032 = 0.0002.

In order to apply our unified method, we must test which missing mechanism r
(1)
ij , r(2)

ij

and r(0)
ij follow. We will first test the null hypothesis that the probability of the missingness

for each covariate is independent of the response variable bcq. We want to construct a

“score” variable Hij of bcq such that for each j = 1, · · · , J , Hij(yi1, · · · , yij) is a “score”

of the responses up to that time. Following Diggle et al. (2002), we let

Hij = Hij(yi1, · · · , yij) =

j∑
t=1

wt ∗ yit,with
j∑
t=1

wt = 1.

The choice of weights, wts, reflects analysts’ knowledge or judgment about how the past

measurement history influences missingness, Some examples are as follows.

(i) Missing influenced immediately by an abnormally high/low measurement:

Hij = Hij(yi1, · · · , yij) = yij.

(ii) Missing influenced by a sustained sequence of higher/lower measurements:

Hij = Hij(yi1, · · · , yij) =
1

j

j∑
t=1

yit.
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We assume

logit(π
(k)
ij ) = αk + βk ∗Hij,

and we need to test the hypothesis that βk = 0, k = 0, 1, 2. The corresponding p-values

are 0.519, 0.978, and 0.721 respectively, which indicate the MCAR mechanism may be

reasonable, thus the generalize unified method for the MCAR case may be applicable.

In this study, we note that there are two covariates est recp and pth tcls with missing

values, and three distinct missing patterns. The number of subjects in S0, Sj, j = 1, 2, 3

is 620, 626, 704, and 713 respectively. We use the ICC method to estimate the regression

parameters. The model of interest is

bcqij = β0 + β1 ∗ surg typij + β2 ∗ est recpij + β3 ∗ node posij

+β4 ∗ pth tclsij + β5 ∗ allo1ij + β6 ∗ qol timeij + εij,

and some preliminary analysis indicate that an Ar(1) model may be considered.

Our surrogate models are

bcqij = γ0+γ1∗surg typij+γ2∗pth tclsij+γ3∗node posij+γ4∗allo1ij+γ5∗qol timeij+εij

and

bcqij = η0 + η1 ∗ surg typij + η2 ∗ est recpij + η3 ∗ node posij + η4 ∗ qol timeij + εij

respectively, and the correlation structure for each surrogate model is Ar(1).

Table 4.2 lists the results of ICC estimates and the CC estimates. We see that (i) the

ICC estimates are close to the CC estimates, and (ii) the standard errors (s.e.) of the ICC

estimators are consistently smaller than the corresponding s.e.’s of the CC estimators.
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Chapter 5

Discussion and Future Research

The proposed generalized unified parametric methods, the ICC and the IWCC, provide

convenient estimation procedures for regression models with covariates missing in arbi-

trary nonmonotone patterns. It uses all the observed data to compute estimates which are

more efficient than the (weighted) CC analysis. It is computationally simple and does not

require an iteration procedure. When the covariates have a simple monotone missingness

pattern Chen and Chen (2000) showed that the unified estimation method can be as efficient

as the semiparametric efficient method of Robins et al. (1994). We note that the estimation

efficiency of the generalized unified estimation methods depend on the selected working

parametric regression models. Further investigations on selecting ‘optimal’ working para-

metric regression models is one of my future research topics.

A limitation of the generalized unified parametric method is that it requires MCAR

data or MAR data with known selection probabilities or with known true models for the

selection probabilities. One exception is the case where the selection probabilities only
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depend on the fully observed covariates X1 but do not depend on the response variable

Y , then the proposed ICC will be consistent if we include X1 in each working regression

model. Extending the IWCC method to MAR data with unknown selection probabilities or

unknown true models for the selection probabilities requires constructing sufficient models

to estimate the selection probabilities. Zhao et al. (1996) gave several recommendations for

modeling the selection probabilities. For example, one can use some ‘stable’ ‘saturated’

models or consider nonparametric estimates for categorical and/or continuous variables.

The semiparametric weighted estimation with selection probabilities estimated by kernel

smoothers (Wang et al. 1997) may be considered to achieve more general applications of

the IWCC method for MAR data which is another topic in my future research.

The missingness in the longitudinal data may be caused by many factors, for example

some covariates or historical response data. Models for the missing data probability are

very complex. In the future, I will investigate how to obtain robust models for the missing

probability in longitudinal data.

I am also interested in extending the generalized unified methods to deal with other

statistical models, for example, partial linear model and Cox proportional hazard model,

with arbitrary nonmonotone missing covariate data.

R is a free software environment for statistical computing and graphics which include

many packages for statistical analysis. However, there are few packages for the missing

data problems. In the future I will develop an R package based on the proposed generalized

unified approach so that the generalized unified approach can be widely used in statistical
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analysis with missing data.
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Appendix

Appendix A: Regularity Conditions

Let ξ be a vector of the parameters, including the parameters of interest and nuisance

parameters, ξ∗ be the true value of ξ, and Ui(ξ) be the estimating functions. The regularity

conditions are as follows.

(a) ξ∗ exists and lies in the interior of a compact parameter space;

(b) Ui(ξ) has zero mean only at true value ξ∗;

(c) There is a neighborhood of ξ∗, Nδ(ξ
∗), such that E{supξ∈Nδ(ξ∗)||Ui(ξ)||},

E{supξ∈Nδ(ξ∗)||∂Ui(ξ)/∂ξ||} and E{supξ∈Nδ(ξ∗)||Ui(ξ)U
T
i (ξ)||} are all finite, where ||M || =

(Σijm
2
ij)

1/2 for any matrix M with elements mij;

(d) var(Ui(ξ)) is finite and positive definite, and E[∂Ui(ξ)/∂ξ] exists and is invertible.

57



Appendix B: Asymptotic Properties

Cross-Sectional Study

For the MCAR case, following Foutz (1977) , Chen and Chen (2000) proved the con-

sistency and the asymptotic normality of β̄ under the regularity conditions (a)-(d) in Ap-

pendix A. The proof can be directly extended to the generalized unified estimator by let-

ting U(θ) = (ST0 (β), STQ(γ))T and assuming the conditions (a)-(d) in Appendix A. hold for

U(θ).

In the MAR case, there are two sets of estimation equations for γ with different weights

(see equations (2.6) and (2.7)). We let U(θ) = (R0/π0)(ST0 (β), STQ(γ))T and Ū(γ) =

((R1/π1)ST1 (γ1), · · · ,(Rq/πq)S
T
q (γq))

T . Following Chen and Chen (2000), when U(θ)

satisfies conditions (a)-(c) in Appendix A. we can obtain the consistency of β̂π and γ̂π

by the uniform law of large numbers and the inverse function theory. Similarly, we can

derive that γ̄π is a consistent estimator for γ∗ when Ū(γ) satisfies conditions (a)-(c). Then

under conditions (c) and (d) for U(θ) it can be shown that D̂−1
π0 Ĉπ01Ĉ

−1
π11D̂π1 converges

uniformly to the finite matrix D−1
0 Cπ01C

−1
π11D1 with probability going to 1. Therefore β̄π is

consistent for β∗. Finally, by the central limit theorem and Slutsky’s theorem, (β̂π, γ̂π) and

γ̄π are asymptotically normal, and furthermore β̄π is asymptotically normal. For the IWCC

using the estimated selection probabilities the asymptotic normality and consistency can

be derived similarly by combining Sπ0(α0) with U(θ) and (STπi1(α1), · · · , STπiq(αq))T with

Ū(γ).

Let V(�) and C(�, �) denote the asymptotic variance and covariance respectively. We
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note that

n1/2(β̂ − β∗) = n−1/2E[∂Si0(β∗)/∂β]−1
∑
i∈V0

{Si0(β∗)}+ op(1),

n1/2(γ̂k − γ∗k) = n−1/2E[∂Sik(γ
∗
k)/∂γ]−1

∑
i∈V0

{Sik(γ∗k)}+ op(1),

and

n
1/2
k (γ̄k − γ∗k) = n

−1/2
k E[∂Sik(γ

∗)/∂γ]−1
∑
i∈Vk

{Sik(γ∗k)}+ op(1).

Let D1 = diag{d11, · · · , dqq}, C01 = (c01, c02, ..., c0q), and

C11 =


c11 · · · c1q

...

cq1 · · · cqq

 .

We can get

V(n1/2β̂) = D−1
0 C00D

−1T
0 ,

V(n1/2γ̄k) =
π0

πk
V(n1/2γ̂k) =

π0

πk
d−1
kk ckkd

T−1
kk ,

C(n1/2β̂, n1/2γ̄k) =
π0

πk
C(n1/2β̂, n1/2γ̂k) =

π0

πk
D−1

0 c0kd
−1T
kk ,

C(n1/2γ̂k, n
1/2γ̄h) =

π0

πh
C(n1/2γ̂k, n

1/2γ̂h) =
π0

πh
d−1
kk ckhd

−1T
hh ,

C(n1/2γ̄k, n
1/2γ̄h) =

π0πkh
πkπh

d−1
kk ckhd

−1T
hh .

The asymptotic variance of β̄ thus follows.

We note that

N1/2(β̂π − β∗) = N−1/2E[∂
Ri0

πi0
Si0(β∗)/∂β]−1

N∑
i=1

{Ri0

πi0
Si0(β∗)}+ op(1),
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N1/2(γ̂π − γ∗) = N−1/2E[∂
Ri0

πi0
SiQ(γ∗)/∂γ]−1

N∑
i=1

{Ri0

πi0
SiQ(γ∗)}+ op(1),

and

N1/2(γ̄π − γ∗) = N−1/2E[∂SπiQ(γ∗)/∂γ]−1

N∑
i=1

{SπiQ(γ∗)}+ op(1).

We can get

V(N1/2β̂π)

= E[∂
Ri0

πi0
Si0(β∗)/∂β]−1E[

Ri0

π2
i0

Si0(β∗)STi0(β∗)]E[∂
Ri0

πi0
STi0(β∗)/∂β]−1

= D−1
0 Cπ00D

T−1
0 ,

V(N1/2γ̂π)

= E[∂
Ri0

πi0
SiQ(γ∗)/∂γ]−1E[

Ri0

π2
i0

SiQ(γ∗)STiQ(γ∗)]E[∂
Ri0

πi0
STiQ(γ∗)/∂γ]−1

= D−1
1 Cπ11D

T−1
1 ,

V(N1/2γ̄π)

= E[∂SπiQ(γ∗)/∂γ]−1E[SπiQ(γ∗)STπiQ(γ∗)]E[∂STπiQ(γ∗)/∂γ]−1

= D−1
1 Cπ22D

T−1
1 ,

C(N1/2β̂π, N
1/2γ̂π)

= E[∂
Ri0

πi0
Si0(β∗)/∂β]−1E[

Ri0

π2
i0

Si0(β∗)STiQ(γ∗)]E[∂
Ri0

πi0
STiQ(γ∗)/∂γ]−1

= D−1
0 Cπ01D

T−1
1 ,

C(N1/2β̂π, N
1/2γ̄π)

= E[∂
Ri0

πi0
Si0(β∗)/∂β]−1E[

Ri0

πi0
Si0(β∗)STπiQ(γ∗)]E[∂STπiQ(γ∗)/∂γ]−1

= D−1
0 Cπ02D

T−1
1 ,
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C(N1/2γ̂π, N
1/2γ̄π)

= E[∂
Ri0

πi0
Si0(β∗)/∂β]−1E[

Ri0

πi0
SiQ(γ∗)STπiQ(γ∗)]E[∂STπiQ(γ∗)/∂γ]−1

= D−1
1 Cπ12D

T−1
1 ,

where E[∂Ri0
πi0
SiQ(γ∗)/∂γ] = E[∂SπiQ(γ∗)/∂γ] = D1. The asymptotic variance of β̄π thus

follows.

We note that

N1/2(β̂π̂ − β∗) =N−1/2E[∂
Ri0

πi0
Si0(β∗)/∂β]−1

N∑
i=1

Res(
Ri0

πi0
Si0(β∗), Hπi0(α∗0)) + op(1),

N1/2(γ̂π̂ − γ∗) =N−1/2E[∂
Ri0

πi0
SiQ(γ∗)/∂γ]−1

N∑
i=1

Res(
Ri0

πi0
SiQ(γ∗), Hπi0(α∗0)) + op(1),

and

N1/2(γ̄π̂ − γ∗) = N−1/2E[∂SπiQ(γ∗, α∗)/∂γ]−1

N∑
i=1

Res(SπiQ(γ∗), HπiQ(α∗Q)) + op(1).

We can get

V(N1/2β̂π̂)

= E[∂
Ri0

πi0
Si0(β∗)/∂β]−1

E[Res(
Ri0

πi0
Si0(β∗), Hπi0(α∗0))ResT (

Ri0

πi0
Si0(β∗), Hπi0(α∗0))]E[∂

Ri0

πi0
STi0(β∗)/∂β]−1

= D−1
0 Cπ̂00D

T−1
0 ,
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V(N1/2γ̂π̂)

= E[∂
Ri0

πi0
SiQ(γ∗)/∂γ]−1

E[Res(
Ri0

πi0
SiQ(γ∗), Hπi0(α∗0))ResT (

Ri0

πi0
SiQ(γ∗), Hπi0(α∗0))]E[∂

Ri0

πi0
STiQ(γ∗)/∂γ]−1

= D−1
1 Cπ̂11D

T−1
1 ,

V(N1/2γ̄π̂)

= E[∂SπiQ(γ∗)/∂γ]−1

E[Res(SπiQ(γ∗), HπiQ(α∗Q))ResT (SπiQ(γ∗), HπiQ(α∗Q))]E[∂SπiQ(γ∗)/∂γ]−1

= D−1
1 Cπ̂22D

T−1
1 ,

C(N1/2β̂π̂, N
1/2γ̂π̂)

= E[∂
Ri0

πi0
Si0(β∗)/∂β]−1

E[Res(
Ri0

πi0
Si0(β∗), Hπi0(α∗0))ResT (

Ri0

πi0
SiQ(γ∗), Hπi0(α∗0))]E[∂

Ri0

πi0
STiQ(γ∗)/∂γ]−1

= D−1
0 Cπ̂01D

T−1
1 ,

C(N1/2β̂π̂, N
1/2γ̄π̂)

= E[∂
Ri0

πi0
Si0(β∗)/∂β]−1E[Res(

Ri0

πi0
Si0(β∗), Hπi0(α∗0))ResT (SπiQ(γ∗), HπiQ(α∗Q))]

E[∂SπiQ(γ∗)/∂γ]−1

= D−1
0 Cπ̂02D

T−1
1 ,

C(N1/2γ̂π̂, N
1/2γ̄π̂)

= E[∂
Ri0

πi0
Si0(β∗)/∂β]−1

E[Res(
Ri0

πi0
SiQ(γ∗), Hπi0(α∗0))ResT (SπiQ(γ∗), HπiQ(α∗Q))]E[∂SπiQ(γ∗)/∂γ]−1

= D−1
1 Cπ̂12D

T−1
1 , 62



where E[∂Ri0
πi0
SiQ(γ∗)/∂γ] = E[∂SπiQ(γ∗)/∂γ] = D1. The asymptotic variance of β̂π̂ thus

follows.

Longitudinal Study

For the MCAR case, under the regularity conditions (a)-(c) in Appendix A, the con-

sistence of (β̂, γ̂) and γ̄ can be obtained by Theorem 2.6 of Newey (1994). Under the

conditions (c) and (d), with probability going to 1, Γ̂−1
00 Σ̂01Σ̂−1

22 Γ̂11 converges uniformly to

the finite matrix Γ−1
00 Σ01Σ−1

22 Γ11 by Theorem 4.5 of Newey (1994). The consistency of β̄

thus follows. The asymptotic normality of β̂, γ̂ and γ̄ can be obtained under the conditions

(a)-(d) by the Theorem 3.4 of Newey (1994). The asymptotic normality of β̄ will follow by

Slutsky’s theorem.

For the MAR case, there are two sets estimation equations for γ with different weights

(see equation (3.13) and (3.14)). When (UT
πi0(β), UT

πiQ(γ))T satisfies conditions (a)-(c),

we can obtain the consistency of β̂π and γ̂π by Theorem 2.6 of Newey (1994). Similarly,

we can drive that γ̄π is a consistent estimator for γ∗ when ŪπiQ(γ) satisfies conditions

(a)-(c). Then under conditions (c) and (d) for (UT
πi0(β), UT

πiQ(γ))T it can be shown that

Γ̂−1
π00Σ̂π01Σ̂−1

π11Γ̂π11 converges uniformly to the finite matrix Γ−1
00 Σπ01Σ−1

π11Γ11 with prob-

ability going to 1. Therefore β̄π is consistent for β∗. Finally, by the central limit the-

orem and Slutsky’s theorem, β̂π, γ̂π and γ̄π are asymptotically normal, and furthermore

β̄π is asymptotically normal. For the IWCC using the estimated selection probabilities

the asymptotic normality and consistency can be derived similarly by combining Hi0(α0)
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with(UT
π̂i0(β), UT

π̂iQ(γ))T and HiQ(α) with Ūπ̂iQ(γ).

To derive the asymptotic variance of β̄ in (3.11), we only need to consider the asymp-

totic variance and covariance between β̂, γ̂ and γ̄.

We have

m
1/2
0 (β̂ − β∗) = m

−1/2
0 E[∂Ui0(β∗)/∂β]

m0∑
i=1

{Ui0(β∗)}+ op(1),

m
1/2
0 (γ̂k − γ∗k) = m

−1/2
0 E[∂Uik(γ

∗
k)/∂γk]

m0∑
i=1

{Uik(γ∗k)}+ op(1),

and

m
1/2
k (γ̄k − γ∗k) = m

−1/2
k E[∂Ūik(γ

∗
k)/∂γk]

mk∑
i=1

{Ūik(γ∗k)}+ op(1).

So we can obtain

V(m
1/2
0 (β̂)) = E[∂Ui0(β∗)/∂β]E[Ui0(β∗)UT

i0(β∗)]E[∂UT
i0(β∗)/∂β],

V(m
1/2
0 (γ̂k)) = E[∂Uik(γ

∗
k)/∂γk]E[Uik(γ

∗
k)U

T
ik(γ

∗
k)]E[∂UT

ik(γ
∗
k)/∂γk],

V(m
1/2
0 (γ̄k)) =

m0

mk

E[∂Ūik(γ
∗
k)/∂γk]E[Ūik(γ

∗
k)U

T
ik(γ

∗
k)]E[∂ŪT

ik(γ
∗
k)/∂γk],

C(m1/2
0 β̂,m

1/2
0 γ̂k)) = E[∂Ui0(β∗)/∂β]E[Ui0(β∗)UT

ik(γ
∗
k)]E[∂UT

ik(γ
∗
k)/∂γk],

C(m1/2
0 β̂,m

1/2
0 γ̄k)) =

m0

mk

E[∂Ui0(β∗)/∂β]E[Ui0(β∗)ŪT
ik(γ

∗
k)]E[∂ŪT

ik(γ
∗
k)/∂γk],

Cov(m
1/2
0 γ̂k,m

1/2
0 γ̂h)) = E[∂Uik(γ

∗
k)/∂γk]E[Uik(γ

∗
k)U

T
ih(γ

∗
h)]E[∂UT

ih(γ
∗
h)/∂γh],

C(m1/2
0 γ̂k,m

1/2
0 γ̄h)) =

m0

mh

E[∂Uik(γ
∗
k)/∂γk]E[Uik(γ

∗
k)Ū

T
ih(γ

∗
h)]E[∂ŪT

ih(γ
∗
h)/∂γh],

C(m1/2
0 γ̄k,m

1/2
0 γ̄h)) =

m0 ∗mkh

mk ∗mh

E[∂Ūik(γ
∗
k)/∂γk]E[Ūik(γ

∗
k)Ū

T
ih(γ

∗
h)]E[∂ŪT

ih(γ
∗
h)/∂γh].
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In fact Ui0 and U f
i are the same main models, and Uik, Ūik, and U f

ik are the same

surrogate models, where super-script f denotes the regression model without missing data,

so we can obtain that

V(m
1/2
0 (β̂)) = E[∂U f

i (β∗)/∂β]E[U f
i (β∗)U fT

i (β∗)]E[∂U fT
i (β∗)/∂β],

V(m
1/2
0 (γ̂k)) = E[∂U f

ik(γ
∗
k)/∂γk]E[U f

ik(γ
∗
k)U

fT
ik (γ∗k)]E[∂U fT

ik (γ∗k)/∂γk],

V(m
1/2
0 (γ̄k)) =

m0

mk

E[∂U f
ik(γ

∗
k)/∂γk]E[U f

ik(γ
∗
k)U

fT
ik (γ∗k)]E[∂U fT

ik (γ∗k)/∂γk],

C(m1/2
0 β̂,m

1/2
0 γ̂k)) = E[∂U f

i (β∗)/∂β]E[U f
i (β∗)U fT

ik (γ∗k)]E[∂U fT
ik (γ∗k)/∂γk],

C(m1/2
0 β̂,m

1/2
0 γ̄k)) =

m0

mk

E[∂U f
i (β∗)/∂β]E[U f

i (β∗)U fT
ik (γ∗k)]E[∂U fT

ik (γ∗k)/∂γk],

C(m1/2
0 γ̂k,m

1/2
0 γ̄h)) =

m0

mh

E[∂U f
ik(γ

∗
k)/∂γk]E[U f

ik(γ
∗
k)U

fT
ih (γ∗h)]E[∂U fT

ih (γ∗h)/∂γh],

C(m1/2
0 γ̄k,m

1/2
0 γ̄h)) =

m0 ∗mkh

mk ∗mh

E[∂U f
ik(γ

∗
k)/∂γk]E[U f

ik(γ
∗
k)U

fT
ih (γ∗h)]E[∂U fT

ih (γ∗h)/∂γh]

since the missingness is MCAR.

Furthermore, we can obtain that

V(m
1/2
0 (γ̄k)) =

m0

mk

V(m
1/2
0 (γ̂πk)),

C(m1/2
0 β̂,m

1/2
0 γ̄k)) =

m0

mk

C(m1/2
0 β̂π,m

1/2
0 γ̂πk)),

C(m1/2
0 γ̄k,m

1/2
0 γ̄h)) =

m0 ∗mkh

mk ∗mh

C(m1/2
0 γ̂πk,m

1/2
0 γ̂πh)).

Finally following the procedure similar to that of the MCAR case, we can derive the

variance of β̄.

The proof of the asymptotic variance in (3.16) is as follows.
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We know

M1/2(β̂π − β∗) = M−1/2E[∂Uπi0(β∗)/∂β]
M∑
i=1

{Uπ0i(β
∗)}+ op(1),

M1/2(γ̂π − γ∗) = M−1/2E[∂UπiQ(γ∗)/∂γ]
M∑
i=1

{UπiQ(γ∗)}+ op(1),

and

M1/2(γ̄π − γ∗) = M−1/2E[∂ŪπiQ(γ∗)/∂γ]
M∑
i=1

{ŪπiQ(γ∗)}+ op(1).

So we can get

V(M1/2β̂) = E[∂Uπi0(β∗)/∂β]E[Uπ0i(β
∗)UT

πi0(β∗)]E[∂UT
πi0(β∗)/∂β] =Γ−1

00 Σπ00ΓT−1
00 ,

V(M1/2γ̂) = E[∂UπiQ(γ∗)/∂γ]E[UπiQ(γ∗)UT
πiQ(γ∗)]E[∂UT

πiQ(γ∗)/∂γ] =Γ−1
11 Σπ11ΓT−1

11 ,

V(M1/2γ̄) = E[∂ŪπiQ(γ∗)/∂γ]E[ŪπiQ(γ∗)ŪT
πiQ(γ∗)]E[∂ŪπiQ(γ∗)/∂γ] =Γ−1

11 Σπ22ΓT−1
11 ,

C(M1/2β̂,M1/2γ̂) = E[∂Uπi0(β∗)/∂β]E[Uπi0(β∗)UT
πiQ(γ∗)]E[∂UT

πiQ(γ∗)/∂γ] =Γ−1
00 Σπ01ΓT−1

11 ,

C(M1/2β̂,M1/2γ̄) = E[∂Uπi0(β∗)/∂β]E[Uπi0(β∗)ŪT
iQ(γ∗)]E[∂ŪT

πiQ(γ∗)/∂γ] =Γ−1
00 Σπ02ΓT−1

11 ,

C(M1/2γ̂,M1/2γ̄) = E[∂UπiQ(γ∗)/∂γ]E[UπiQ(γ∗)ŪT
πiQ(γ∗)]E[∂ŪT

πiQ(γ∗)/∂γ] =Γ−1
11 Σπ12ΓT−1

11 ,

where E[∂UπiQ(γ∗)/∂γ] = E[∂ŪπiQ(γ∗)/∂γ] = Γ11.

The following is the proof of the asymptotic variance in (3.24).

We have

M1/2(β̂π̂ − β∗) = M−1/2E[∂Uπ̂i0(β∗)/∂β]
M∑
i=1

{Res(Uπ̂i0(β∗, α∗0), Hi0(α∗0))}+ op(1),

M1/2(γ̂π̂ − γ∗) = M−1/2E[∂Uπ̂iQ(γ∗)/∂γ]
M∑
i=1

{Res(Uπ̂iQ(γ∗, α∗0), Hi0(α∗0))}+ op(1).
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and

M1/2(γ̄π̂ − γ∗) = M−1/2E[∂Ūπ̂iQ(γ∗)/∂γ]
M∑
i=1

{Res(Ūπ̂iQ(γ∗, α∗), HiQ(α∗Q))}+ op(1).

So we can get

V(M1/2β̂π̂)

= E[∂Uπ̂i0(β∗)/∂β]−1

E[Res(Uπ̂i0(β∗, α∗0), Hi0(α∗0))ResT (Uπ̂i0(β∗, α∗0), Hi0(α∗0))]E[∂UT
π̂i0(β∗)/∂β]−1

= Γ−1
00 Σπ̂00ΓT−1

00 ,

V(M1/2γ̂π̂)

= E[∂Uπ̂iQ(γ∗)/∂γ]−1

E[Res(Uπ̂iQ(γ∗, α∗0), Hi0(α∗0))ResT (Uπ̂iQ(γ∗, α∗0), Hi0(α∗0))]E[∂UT
π̂iQ(γ∗)/∂γ]−1

= Γ−1
11 Σπ̂11ΓT−1

11 ,

V(M1/2γ̄π̂)

= E[∂Ūπ̂iQ(γ∗)/∂γ]−1

E[Res(Ūπ̂iQ(γ∗, α∗Q), HiQ(α∗Q))ResT (Ūπ̂iQ(γ∗, α∗Q), HiQ(α∗Q))]E[∂Ūπ̂iQ(γ∗)/∂γ]−1

= Γ−1
11 Σπ̂22ΓT−1

11 ,
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C(M1/2β̂,M1/2γ̂)

= E[∂Uπ̂i0(β∗)/∂β]−1

E[Res(Uπ̂i0(β∗, α∗0), Hi0(α∗0))ResT (Uπ̂iQ(γ∗, α∗0), Hi0(α∗0))]E[∂UT
π̂iQ(γ∗)/∂γ]−1

= Γ−1
00 Σπ̂01ΓT−1

11 ,

C(M1/2β̂,M1/2γ̄)

= E[∂Uπ̂i0(β∗)/∂β]−1

E[Res(Uπ̂i0(β∗, α∗0), Hi0(α∗0))ResT (Ūπ̂iQ(γ∗, α∗Q), HiQ(α∗Q))]E[∂ŪT
π̂iQ(γ∗)/∂γ]−1

= Γ−1
00 Σπ̂02ΓT−1

11 ,

C(M1/2γ̂,M1/2γ̄)

= E[∂Uπ̂iQ(γ∗)/∂γ]−1

E[Res(Uπ̂iQ(γ∗, α∗0), Hi0(α∗0))ResT (Ūπ̂iQ(γ∗, α∗Q), HiQ(α∗Q))]E[∂ŪT
π̂iQ(γ∗)/∂γ]−1

= Γ−1
11 Σπ̂12ΓT−1

11 ,

where E[∂Uπ̂iQ(γ∗)/∂γ] = E[∂Ūπ̂iQ(γ∗)/∂γ] = Γ11.

Appendix C: Relationship to existing approaches

Robins et al. (1994) proposed a general class of estimators, which includes all regu-

lar asymptotic linear estimators. The relationship between the estimator β̄, which is also

asymptotic linear, and those of Robins et al. (1994) has been discussed in Chen and Chen

(2000) for MCAR case with simple monotone missing pattern. We will consider the other

cases in our approaches.
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Adding a function with zero expectation to the estimating function, Robins et al. (1994)

maintains an unbiased estimating function. A suitable choice of this added estimation

function may improve the estimation efficiency. The serial of surrogate models in our

generalized approach takes the role of the function with zero expectations. We will show

that our generalized unified estimator corresponds to a member in Robins et al. (1994), and

it is more efficient than β̂ using other perspective.

Recall that the estimators of Robins et al. (1994), which make essentially the same

assumptions as our proposal, are asymptotic linear with influence function of the form

D−1
00 R(w, κ), where

R(w, κ) = δS(β∗)/π − (δ − π)κ/π

with δ = 1 if an observation belong to complete case sample and δ = 0 otherwise, π =

P (δ = 1|y, x) and κ = κ(y, x) being a function of (y, x). We note that E[(δ− π)κ/π] = 0

does not depend on κ.

First we consider the MCAR case with q distinct missingness pattern. We have

β̄ = β̂ −D−1
00 C12C

−1
22 D11(γ̂ − γ̄),

β̄ − β∗ = β̂ − β∗ −D−1
00 C12C

−1
22 D11((γ̂ − γ∗)− (γ̄ − γ∗)), and

N1/2(β̄ − β∗) = N1/2(β̂ − β∗)−D−1
00 C12C

−1
22 D11(N1/2(γ̂ − γ∗)−N1/2(γ̄ − γ∗)),

where

N1/2(β̂ − β∗) = N−1/2D−1
00

N∑
i=1

{(Ri0/π0)Si0}+ op(1),

N1/2(γ̂ − γ∗) = N−1/2D−1
11

N∑
i=1

{(Ri0/π0)SiQ}+ op(1)
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and

N1/2(γ̄ − γ∗) = N−1/2D−1
11

N∑
i=1

{∆iSiQ}+ op(1).

So

N1/2(β̄ − β∗) = N−1/2D−1
00

N∑
i=1

{(Ri0/π0)(Si0 −BSiQ) +B∆iSiQ}+ op(1),

N1/2(β̄ − β∗) = N−1/2D−1
00

N∑
i=1

{(Ri0/π0)(Si0)− ((Ri0/π0)BSiQ −B∆iSiQ)}+ op(1),

where B = C01C
−1
11 = cov(Si0, SiQ)var(SiQ)−1 and ∆i = diag(Ri1 ∗ I1/π1, · · · , Riq ∗

Iq/πq). We note that E[B(Ri0/π0)SiQ − B∆iSiQ] = 0 does not depending on SiQ, the

estimator β̄ corresponds to a member of the class of estimators in Robins et al. (1994) by

replacing (δ − π)κ/π with ((Ri0/π)BSiQ −B∆iSiQ).

The estimator β̄π in the MAR case with known missing probability is similar to that in

the MCAR case. We note that

N1/2(β̄π − β∗) = N−1/2D−1
00

N∑
i=1

{Ri0(Si0 −BSiQ)/πi0 +B∆iSiQ}+ op(1),

N1/2(β̄π − β∗) = N−1/2D−1
00

N∑
i=1

{Ri0

πi0
Si0 − (B(Ri0/πi0)SiQ −B∆iSiQ)}+ op(1),

where B = Cπ01C
−1
π11 = cov(Si0, SiQ)var(SiQ)−1 and ∆i = diag(Rik ∗ Ik/πik), k =

1, · · · , q. Here E[B(Ri0/πi0)SiQ −B∆iSiQ] = 0 still does not depend on SiQ, Thus it can

be seen that the estimator β̄ corresponds to a member of the class of estimators in Robins

et al. (1994) by replacing (δ − π)κ/π with ((Ri0/πi0)BSiQ −B∆iSiQ).

Finally, we consider the MAR case with estimated missing probability. We note that

β̄π̂ = β̂π̂ −D−1
0 Cπ̂12C

−1
π̂22D1(γ̂π̂ − γ̄π̂),
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β̄π̂ − β∗ = β̂π̂ − β∗ −D−1
0 Cπ̂12C

−1
π̂22D1((γ̂π̂ − γ∗)− (γ̄π̂ − γ∗)), and

N1/2(β̄π̂ − β∗) = N1/2(β̂π̂ − β∗)−D−1
0 Cπ̂12C

−1
π̂22D1(N1/2(γ̂π̂ − γ∗)−N1/2(γ̄π̂ − γ∗)),

where

N1/2(β̂π̂ − β∗) =N−1/2D−1
0

N∑
i=1

Res(
Ri0

πi0
Si0(β∗), Hπi0(α∗0)) + op(1),

N1/2(γ̂π̂ − γ∗) =N−1/2D−1
1

N∑
i=1

Res(
Ri0

πi0
SiQ(γ∗), Hπi0(α∗0)) + op(1),

N1/2(γ̄π̂ − γ∗) = N−1/2D−1
1

N∑
i=1

Res(SπiQ(γ∗, α∗Q), HπiQ(α∗Q)) + op(1).

So we have

N1/2(β̄π̂ − β∗) =N−1/2D−1
0

N∑
i=1

{Res(Uπ̂i0(β∗, α∗0), Sπi0(α∗0))

−B(Res(
Ri0

πi0
SiQ(γ∗), Sπi0(α∗0))−Res(SπiQ(γ∗, α∗Q), HπiQ(α∗Q)))}+ op(1),

where

B = Cov{Res(Ri0

πi0
Si0(β∗), Hi0(α∗0))Res(

Ri0

πi0
SiQ(γ∗), Hi0(α∗0))}V ar−1[Res(

Ri0

πi0
SiQ(γ∗), Hi0(α∗0))].

Under a correctly specified parametric models for the missing data probability, we can

show that

E[B(Res(
Ri0

πi0
SiQ(γ∗), Sπi0(α∗0))−Res(SπiQ(γ∗, α∗Q), HπiQ(α∗Q)))] = 0

does not depend on the surrogate models. Thus it can be seen that the estimator β̄ corre-

sponds to a member of the class of estimations in Robins et al. (1994).
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Appendix D: Generate Correlated Random Number

In this appendix, we will introduce how to generate the correlated response yij accord-

ing to the exchangeable correlation and the Ar(1) correlation respectively. We start with

the simple case where yij is continuous (Peter Diggle et al. 2002), then we give the details

for the complex case where yij is a binary variable (Preisser et al. 2002). For each case, we

will give the model first, and then provide the algorithm steps.

Continuous Variables

For the exchangeable structure, suppose that yij follows the model

yij = µij + Ui + Zij, i = 1, ...,m, j = 1, ..., n,

where µij = E(yij), theUi are mutually independentN(0, ν2) random variables, theZij are

mutually independent N(0, τ 2) random variables, and Ui and Zij are independent. Then,

the covariance structure of the data yij is ρ = ν2/(ν2 + τ 2) and σ2 = ν2 + τ 2. The steps

that generate the random data xij1, xij2 and yij such that the correlation structure between

yij is exchangeable are as follows.

(1) generate xij1 and xij2 such that xij1 follows N(0.1∗ j, 1) and Xij2 follows N(0.01∗

j2, 1) , i = 1, ...,m, j = 1, ..., n;

(2) generate Ui such that Ui follows N(0, ν2), i = 1, ...,m;

(3) generate Zij such that Zij follows N(0, τ 2), i = 1, ...,m, j = 1, ..., n;

(4) generate µij such that µij = β0 + β1 ∗ xij1 + β2 ∗ xij2, i = 1, ...,m, j = 1, ..., n;

(5) generate yij such that yij = µij + Ui + Zij, i = 1, ...,m, j = 1, ..., n.
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For exponential structure, suppose that yij satisfies the model

yij = µij +Wij, i = 1, ...,m, j = 1, ..., n,

where Wij = ρ ∗Wij−1 + Zij and the Zij are mutually independent N(0, σ2 ∗ (1 − ρ2))

random variables. Then vij = Cov(Yij, Yik) = σ2ρ|j−k|. The steps that generate the random

data xij1, xij2 and yij such that the correlation structure between yij isAr(1) are as follows.

(1) generate xij1 and xij2 such that xij1 follows N(0.1 ∗ j, 1) and xij2 follows N(0.01 ∗

j2, 1) , i = 1, ...,m, j = 1, ..., n;

(2) generate Zij such that Zij follows N(0, σ2 ∗ (1− ρ2)), i = 1, ...,m, j = 1, ..., n;

(3) generate Wij such that Wij = ρ ∗Wij−1 + Zij, i = 1, ...,m, j = 1, ..., n;

(4) generate µij such that µij = β0 + β1 ∗ xij1 + β2 ∗ xij2 , i = 1, ...,m, j = 1, ..., n;

(5) generate yij such that yij = µij +Wij, i = 1, ...,m, j = 1, ..., n.

Binary Variables

Suppose we wish to simulate Yi, i = 1, ...,m , a J-vector of Bernoulli variates with

mean vector πi and covariance matrix Vi. For j = 2, ..., J , defineZij = (yi1, ..., yij−1)T , µij =

E(Zij), Gij = Cov(Zij), and sij = Cov(Zij, yij). Note that Gij and sij are determined

from Vi. For a given (πi, Vi), a (j − 1) vector bij is defined as bij = G−1
ij sij(j = 2, ..., J).

The conditional probability is defined by

νij = νij(zij; πi, Vi) = P (yij|Zij = zij) = πij + bTij(zij − µij) = πij +

j−1∑
k=1

bijk(yik − πik).

The simulation algorithm proceeds as follows. First, simulate yi1 as Bernoulli random

variable with mean πi1, then for j = 2, ..., n, simulate yij as Bernoulli random variable with
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conditional mean νij . It then follows that E(Yi) = πi and for 1 < j ≤ n, Cov(Zij, yij) =

Cov(Zij, b
T
ijZij) = Gijbij = sij . The vector Yi thus obtained has the required mean, πi,

and covariance Vi.

For the exchangeable structure, we have

bijk = (
ρ

1 + (j − 2)ρ
)(
πij(1− πij)
πik(1− πik)

)
1
2 ,

and

νij = πij +

j−1∑
k=1

bijk(yik − πik), (j = 2, ..., J).

For the Ar(1) structure, we have

νij = πij + ρ(yij−1 − πij−1)(
πij(1− πij)

πij−1(1− πij−1)
)
1
2 .

The steps that generate the random data xij1, xij2 and yij such that the correlation

structure between yij is exchangeable are as follows.

(1) generate xij1 and xij2 such that xij1 = (j + N(0, 1))/(n − 1) and xij2 = (j +

N(0, 1)) ∗ (j +N(0, 1))/(n− 1)2 i = 1, ...,m, j = 1, ..., n;

(2) generate πij such that πij = exp(β1 ∗ xij1 + β2 ∗ xij2)/(1 + exp(β1 ∗ xij1 + β2 ∗ xij2));

(3) generate bijk and νij such that bijk = ( ρ
1+(j−2)ρ

)(
πij(1−πij)
πik(1−πik)

)
1
2 and νij = πij +

j−1∑
k=1

bijk(yik − πik);

(4) generate yij according to the conditional probability νij;

(5) repeat step 3 and 4 to generate yij iteratively.

The steps that generate the random data xij1, xij2 and yij such that the correlation

structure between yij is Ar(1) are as follows.
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(1) generate xij1 and xij2 such that xij1 = (j + N(0, 1))/(n − 1) and xij2 = (j +

N(0, 1)) ∗ (j +N(0, 1))/(n− 1)2 i = 1, ...,m, j = 1, ..., n;

(2) generate πij such that πij = exp(β1 ∗ xij1 + β2 ∗ xij2)/(1 + exp(β1 ∗ xij1 + β2 ∗ xij2));

(3) generate νij such that νij = πij + ρ(yij−1 − πij−1)(
πij(1−πij)

πij−1(1−πij−1)
)
1
2 ;

(4) generate yij according to the conditional probability νij;

(5) repeat steps 3 and 4 to generate yij iteratively.
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