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Abstract

The purpose of this dissertation is two fold. Firstly, we prove a permanence result

involving C*-algebras with the weak expectation property. More specifically, we show

that if α is an amenable action of a discrete group G on a unital C*-algebra A, then

the crossed-product C*-algebra AoαG has the weak expectation property if and only

if A has this property. Secondly, the concept of a relatively weakly injective pair of

operator systems is introduced and studied, motivated by relative weak injectivity in

the C*-algebra category. E. Kirchberg [14] proved that the C*-algebra C∗(F∞) of the

free group F∞ on countably many generators characterizes relative weak injectivity

for pairs of C*-algebras by means of the maximal tensor product. One of the main

results in the latter part of this thesis is to show that C∗(F∞) also characterizes

relative weak injectivity in the operator system category. A key tool is the theory of

operator system tensor products [12, 13].
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Chapter 1

Introduction

In 1973, E. C. Lance studied C*-algebras which had the property that, when

tensored with any other C*-algebra carried a unique norm. Such algebras are called

nuclear C*-algebras [16]. A significant part of his work focused on finding conditions

under which the maximal tensor product norm on a given C*-algebra and any other

C*-algebra would extend as the maximal tensor product norm on the tensor product of

a C*-algebra containing the the given one and the other C*-algebra. This phenomenon

was characterized by the existence of certain weak expectations and was entitled the

weak expectation property. Later on it was shown that nuclearity of a C*-algebra

is equivalent to the weak expectation property in conjunction with another property

called exactness [3].

In 1993, E. Kirchberg studied the weak expectation property and established a

remarkable connection of this property to perhaps the single most outstanding open
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problem in operator algebras, the Connes embedding problem [14]. Kirchberg estab-

lished that the Connes embedding problem is equivalent to determining whether the

C*-algebra of the free group on countably many generators has the weak expectation

property or not. He gave a tensorial characterization of C*-algebras with the weak

expectation property and further studied given C*-algebra inclusions which admitted

maximal tensor product norm extension as mentioned above. This is known as the

concept of relative weak injectivity.

A quick survey of the mathematical literature reveals the enormous and penetrat-

ing study of the properties of nuclearity and exactness, thanks to decades of research

by some of the best mathematicians of the century. The weak expectation property

on the other hand is yet to receive a similar level of investigation.

This dissertation aims to make a contribution towards the understanding of the

weak expectation property by exploring a permanence property of crossed product

C*-algebras. Specifically, the following theorem is established in Chapter 3.

Theorem A : If α is an amenable action of a discrete group G on a unital C*-algebra

A, then Aoα G has the weak expectation property if and only if A does.

Employing more direct and instructive techniques, distinct from those employed for

proving Theorem A, a special case of the theorem above is also proved as stated below

:
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Theorem B : If α is an action of an amenable discrete group G on a unital C*-

algebra A, then Aoα G has the weak expectation property if and only if A does.

Further, with the recent advances in the theory of operator system tensor products,

a formulation and study of the concept of relative weak injectivity is carried out in the

operator system setting. The main results in this direction, established in Chapter 4

are given below.

Theorem C : The following statements are equivalent for operator systems S and T

for which S ⊂ T (S unital subsystem of T) :

1. (S,T) is a relatively weakly injective pair of operator systems;

2. S⊗c C∗(F∞) ⊂coi T ⊗c C∗(F∞);

3. For any unital completely positive map φ : S → B(H), there exist a unital

completely positive map Φ : T → φ(S)′′ such that Φ|S = φ;

4. (C∗u(S),C∗u(T)) is a relatively weakly injective pair of C*-algebras.

Existence of relatively weakly injective pairs of operator systems are also established

in :

Theorem D : If S is a separable unital operator subsystem of an operator system

T, then there exists a separable operator system R (unital subsystem of T) such that

S ⊂ R ⊂ T and R is relatively weakly injective in T.

3



This dissertation begins with a review of all preliminary concepts, required for

the topics explored herein, in Chapter 2. Included in this chapter is an expository

self-contained proof of E. Kirchberg’s theorem :

Let F∞ denote the free group on countably infinitely many generators and C∗(F∞)

denote the full group C*-algebra of F∞. Then a C*-algebra A satisfying the tensor

product condition A⊗max C∗(F∞) = A⊗min C∗(F∞) has the weak expectation property.

Chapter 3 studies crossed products of C*-algebras with the weak expectation prop-

erty and Chapter 4 investigates the concept of relative weak injectivity in the operator

system category. A concluding chapter indicates some future research avenues.
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Chapter 2

Preliminaries

This chapter briefly reviews the various well known facts found in mathematical

literature needed for the development of the topics in this thesis. While most of these

basics can be found in any introductory texts in C*-algebra theory as in the likes of

[22], [20], [3], [19] etc., the contents of the last section draws on recent developments in

the theory of tensor products of operator systems from [12], [13]. All vector spaces in

this thesis are over the complex field C unless otherwise stated. All homomorphisms

of C*-algebras are ∗-homomorphisms.
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2.1 C*-algebras and operator systems

2.1.1 Normed algebras

An involutive Banach algebra B is an algebra with involution which is also a

Banach space and for all b1, b2 ∈ B,

‖b1b2‖ ≤ ‖b1‖‖b2‖.

Definition 2.1.1. A C*-algebra is an involutive Banach algebra (say A) such that

for all a ∈ A,

‖a∗a‖ = ‖a‖2.

Two important examples of C*-algebras are given below.

Example 2.1.2. Let X be a locally compact Hausdorff topological space. The space

of all complex valued continuous functions on X vanishing at infinity, denoted by

C0(X), is a commutative C*-algebra with the norm

‖f‖∞ = sup
x∈X
|f(x)|.

Example 2.1.3. Let H be a Hilbert space. The space of all continuous linear oper-

ators, denoted by B(H), is a C*-algebra with respect to the operator norm.

The importance of the above two examples are due to the theorems below.

Theorem 2.1.4. (Gelfand) Every commutative C*-algebra is isomorphic to C0(X)

for some locally compact Hausdorff topological space X.
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Theorem 2.1.5. (Gelfand-Naimark-Segal) Every C*-algebra is isomorphic to a C*-

subalgebra of B(H) for some Hilbert space H.

For any n ∈ N, the space of all n × n matrices over a C*-algebra A, denoted by

Mn(A), has a natural C*-algebra structure. Thus, associated to every C*-algebra is

a natural family of matricial C*-algebras {Mn(A)}n∈N.

Every C*-algebra A has a distinguished cone of positive elements. It is a well

known fact that this cone, denoted by A+, is precisely the set {a∗a | a ∈ A}. Indeed,

there is a family of matricial cones of positive elements over a C*-algebra, namely

{Mn(A)+}n∈N. These family of cones help to define a partial order on the set of

self-adjoint elements at every matricial level. For self-adjoint a, b ∈ A, define a ≥ b if

a− b ∈ A+. The partial order at matricial levels are defined similarly.

2.1.2 Operator systems

Let V be a complex ∗-vector space [19, Chapter 13] with a family of distinguished

cones over the self-adjoint n × n matrices over V, usually denoted by {Mn(V)+}n∈N

and often referred to as the positive cones, satisfying the following properties

1. Mn(V)+ ∩ (−Mn(V)+) = {0} for all n.

2. for every n×m complex matrix λ, one has λ∗Mn(V)+λ ⊂Mm(V)+.

7



The collection {Mn(V)+}n∈N is called a matrix order on V, and V itself is called

a matrix ordered space.

Denote by Vh, the set of all self-adjoint elements of V. An order unit of V is an

element e ∈ Vh such that, for every x ∈ Vh, there exists r ∈ R+ so that re + x ∈

M1(V)+. The order unit is called Archimedean if re + x ∈ M1(V)+ for all r > 0

implies x ∈ M1(V)+. Further, e is called an Archimedean matrix order unit if, for

each n, en = diag(e, e, . . . , e) is an Archimedean order unit for Mn(V).

Definition 2.1.6. An operator system is a matrix ordered space with an archimedean

matrix order unit.

In [4], it was shown that, given any operator system S, for any n, Mn(S) can be

normed by the following recipe :

‖X‖Mn(S) = inf

r :

 ren X

X∗ ren

 ∈M2n(S)+


for X ∈Mn(S).

Example 2.1.7. Let SH be a self adjoint unital subspace of B(H), for some Hilbert

space H. SH is an operator system with positive cones {Mn(SH)+}n∈N given by

Mn(SH)+ = Mn(SH) ∩Mn(B(H))+.

The importance of the example above is due to the fact that the converse is also

true via appropriate morphisms (definition given below).
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Theorem 2.1.8. (Choi-Effros) Every operator system is complete order isomorphic

to a unital self-adjoint subspace of B(H), for some Hilbert space H.

2.1.3 Completely positive maps

Let S and R be operator systems. Let ϕ : S→ R be a linear map. Call ϕ positive

if ϕ(S+) ⊂ R+.

For each n, define ϕ(n) : Mn(S) → Mn(R) by (sij)i,j 7→ (ϕ(sij))i,j. Call ϕ com-

pletely positive (cp) if, ϕ(n)(Mn(S)+) ⊂ Mn(R)+ for every n and unital completely

positive (ucp) if the map is unital.

The map ϕ is called a complete order isomorphism if it is an algebraic isomorphism

and both ϕ and ϕ−1 are completely positive. Further, it is called a complete order

injection if it is a complete order isomorphism onto its range.

2.2 Tensor products and C*-algebras

2.2.1 Algebraic tensor products

Let V andW be vector spaces. Consider the set of all formal finite sums S(V,W ) =

{
∑

i λi(vi ⊗ wi) : vi ∈ V,wi ∈ W,λi scalar}. This set is a vector space with formal

operations of addition (concatenation) and scalar multiplication. Let K(V,W ) denote

the vector subspace of S(V,W ) spanned by all elements of the form :

9



• (v1 + v2)⊗ w − v1 ⊗ w − v2 ⊗ w

• v ⊗ (w1 + w2)− v ⊗ w1 − v ⊗ w2

• λ(v ⊗ w)− (λv)⊗ w

• λ(v ⊗ w)− v ⊗ (λw)

Definition 2.2.1. The algebraic tensor product of V and W , denoted by V ⊗W is

the vector space quotient S(V,W )/K(V,W ).

It is a common practice to denote the equivalence class of the image of the element

v⊗w ∈ S(V,W ) in V ⊗W by the same notation and we shall do the same. Further,

such elements are referred to as the elementary tensors and they span V ⊗W .

2.2.2 Universal property of algebraic tensor products

The cartesian product of V andW , denoted V×W , has a natural bilinear structure

with pointwise operations. Define a bilinear map θ : V ×W → V ⊗W by (v, w) 7→

v ⊗ w. Let Z be any other vector space and φ : V × W → Z be a bilinear map.

Then there is a unique linear map φ̃ : V ⊗W → Z such that φ = φ̃ ◦ θ. This is the

universal property of tensor products, and further V ⊗W is the unique vector space

(up to isomorphism) with this property.
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2.2.3 Involution and multiplication

Suppose that V and W are vector spaces with involution. Then the tensor product

V ⊗W has a unique involution such that

(v ⊗ w)∗ = v∗ ⊗ w∗.

If V and W are algebras, then so is their tensor product by means of

(v1 ⊗ w1)(v2 ⊗ w2) = v1v2 ⊗ w1w2.

It can be shown that both of the above operations are well-defined.

2.2.4 Tensor product maps

Let V1, V2 and W1,W2 be vector spaces. Let φ1 : V1 → W1 and φ2 : V2 → W2 be

linear maps. Then there is a unique linear map φ1 ⊗ φ2 : V1 ⊗ V2 → W1 ⊗W2 such

that

φ1 ⊗ φ2(v1 ⊗ v2) = φ1(v1)⊗ φ2(v2)

for all v1 ∈ V1 and v2 ∈ V2.

Let Z be an algebra and ϕ1 : V1 → Z and ϕ2 : V2 → Z be linear maps. Then

there is a unique linear map ϕ1 · ϕ2 : V1 ⊗ V2 → Z such that

ϕ1 · ϕ2(v1 ⊗ v2) = ϕ1(v1)ϕ2(v2).

In the case when V1, V2 and W1,W2 are involutive algebras and φ1, φ2 are ∗-

homomorphisms, then the map φ1 ⊗ φ2 as defined above is also a ∗-homomorphism.

11



For involutive algebras V1, V2 and Z, let π1 : V1 → Z and π2 : V2 → Z be ∗-

homomorphisms with commuting ranges, then the map π1 · π2 : V1 ⊗ V2 → Z as

defined above is also a ∗-homomorphism.

2.2.5 Tensor product inclusions

Let V1 ⊂ V2 and W1 ⊂ W2 be vector subspaces. Then there is a natural inclusion

(as subspaces) given by

V1 ⊗W1 ⊂ V2 ⊗W2.

2.2.6 C*-algebra tensor products

Given two C*-algebras A and B, their algebraic tensor product A ⊗ B is an

involutive algebra with multiplication and involution defined as above.

Definition 2.2.2. A C*-tensor norm ‖ · ‖α on A⊗ B is a norm such that ‖xy‖α ≤

‖x‖α‖y‖α, ‖x∗‖α = ‖x‖α and ‖x∗x‖α = ‖x‖2
α for all x, y ∈ A⊗B.

The algebraic tensor product A⊗B when endowed with a C*-tensor norm (say α

as above) turns into a pre C*-algebra, the completion of which, is a C*-algebra tensor

product of A and B and is denoted by A⊗α B.

Two very important facts are in order :

1. A C*-norm always exists on A⊗B.
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2. A⊗B may have multiple C*-norms.

Definition 2.2.3. A norm ‖ · ‖ on A ⊗ B is said to be a cross-norm when, for any

a ∈ A and b ∈ B, ‖a⊗ b‖ = ‖a‖A‖b‖B.

Every C*-norm on A⊗B is a cross-norm [23].

2.3 The min and max C*-tensor products

Non-uniqueness of the C*-tensor norms was first discovered by Masamichi Take-

saki in 1964 in [23]. We shall discuss two important canonical C*-tensor norms in

some detail.

2.3.1 Tensor product of Hilbert spaces

Let H and K be Hilbert spaces. Then their algebraic tensor product is a pre-

Hilbert space with respect to the inner product

〈
∑
i

hi ⊗ ki,
∑
j

h′j ⊗ k′j〉 =
∑
i,j

〈hi, h′j〉〈ki, k′j〉.

With slight abuse of notation we shall denote the Hilbert space completion of

above by H ⊗K and henceforth for all Hilbert space tensor product we shall do the

same.
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2.3.2 Tensor product of Hilbert space operators

Let B(X) denote the C*-algebra of all bounded linear operators on the Hilbert

space X. For operators T ∈ B(H) and S ∈ B(K), the operator T⊗S as defined below

on the algebraic tensor product of H and K extends uniquely to a bounded linear

operator on H ⊗K which we shall also denote by T ⊗ S. Thus T ⊗ S ∈ B(H ⊗K)

and

T ⊗ S(h⊗ k) = Th⊗ Sk,

for all h ∈ H and k ∈ K. Moreover it can be shown that

‖T ⊗ S‖ = ‖T‖‖S‖.

2.3.3 The min tensor product

By virtue of the Gelfand-Naimark-Segal construction, every C*-algebra can be

represented faithfully as a C*-subalgebra of B(H) for some Hilbert space H.

Definition 2.3.1. Let πA : A → B(H) and πB : B → B(K) be faithful representa-

tions. The min norm on A⊗B is given by

‖
∑
i

ai ⊗ bi‖min = ‖
∑
i

πA(ai)⊗ πB(bi)‖B(H⊗K).

The definition above is well defined as it can be shown that the min norm is

independent of the faithful representation chosen [3, Proposition 3.3.11]. It is a fact

that this is a genuine norm (and not just a semi-norm) on A ⊗ B. The completion
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of A ⊗ B with respect to the norm above is the min C*-tensor product of A and

B is denoted by A ⊗min B. This is also known as the spatial tensor product in the

literature.

2.3.4 Representations of the algebraic tensor product

A representation ρ of a C*-algebra A on a Hilbert space H is called non-degenerate

when

span{ρ(A)H} = H.

Similarly, one may have non-degeneracy of representations of involutive algebras (like

the algebraic tensor product of two C*-algebras).

Non-degenerate representations of the algebraic tensor product of C*-algebras

always exist. To see this, consider non-degenerate representations ρA : A→ B(H) and

ρB : B→ B(K). Define representations of A and B on H⊗K by ρ̃A : A→ B(H⊗K),

a 7→ ρA(a) ⊗ IK and ρ̃B : B → B(H ⊗K), b 7→ IH ⊗ ρB(b), where I(·) is the identity

operator. Then ρ̃A and ρ̃B have commuting ranges. The representation given by

ρ : A⊗B→ B(H ⊗K), ρ = ρ̃A · ρ̃B is non-degenerate since ρA and ρB are.

The following is a well known result [3, Theorem 3.2.6]:

Theorem 2.3.2. For C*-algebras A and B, let π : A⊗B→ B(H) be a non-degenerate

representation. Then there exists non-degenerate representations πA : A→ B(H) and

πB : B→ B(H), with commuting ranges, such that π = πA · πB.

15



2.3.5 The max tensor product

The max tensor product is defined as

Definition 2.3.3. For x ∈ A⊗B, set

‖x‖max = sup
π
‖π(x)‖

where the supremum is taken over all non-degenerate representations of A⊗B.

The norm above is well defined as the supremum is finite due to Theorem 2.3.2.

The completion of A⊗B with respect to the norm above is called the max C*-tensor

product of A and B and is denoted by A⊗max B.

The max norm is the largest possible norm on A ⊗ B while min is the smallest

[22, Chapter IV]. In other words, for any other C*-norm ‖ · ‖α on A⊗B, it is always

true that

‖x‖min ≤ ‖x‖α ≤ ‖x‖max,

for all x ∈ A⊗B.

Proposition 2.3.4. (Universality) Let A, B and C be C*-algebras. Let ρ : A⊗B→ C

be a homomorphism. Then there is a unique C*-homomorphism ρ̃ : A ⊗max B → C

extending ρ.
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2.4 Crossed product of C*-algebras

The crossed product construction in C*-algebra theory evolves around the action

of a group on a C*-algebra via automorphisms. This procedure aims at constructing

a new C*-algebra from a given C*-algebra A, which encodes the group action on A.

All groups considered in this thesis are discrete.

2.4.1 Group Actions

Let G be a group. An action of G on A is a group homomorphism

α : G→ Aut(A),

where Aut(A) is the group of automorphisms of A.

C*-algebras with a G-action on them are called G-C*-algebra. They are also

referred to as C*-dynamical systems and denoted by (A, α,G).

2.4.2 Covariant representations

Let A be a G-C*-algebra and the action be

α : G → Aut(A)

g 7−→ αg

Definition 2.4.1. A covariant representation (uG, πA,H) of A consists of a unitary

representation g 7−→ ug of the group G on some Hilbert space H and a representation
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πA : A→ B(H) such that

ugπA(a)u∗g = π(αg(a)),

for all g ∈ G and a ∈ A.

Covariant representations forG-C*-algebras always exist as we shall discuss shortly.

2.4.3 The universal crossed product

Let Cc(G,A) denote the vector space of finitely supported functions on G taking

values in A. Denote by δg, the Dirac function at point g ∈ G. The set {aδg}a∈A,g∈G

spans Cc(G,A). A typical element f ∈ Cc(G,A) looks like f =
∑

i aiδgi , where the

sum is finite.

For an action α of G on A, define a product and involution on Cc(G,A) by

f1f2 =
∑
i,j

aiαgi(bj)δgig′j and f ∗ =
∑
l

αt−1
l

(a∗l )δt−1
l
,

where f1 =
∑

i aiδgi , f2 =
∑

j bjδg′j and f =
∑

l alδtl .

The operations defined above turn Cc(G,A) into an involutive algebra. Every non-

degenerate representation of the involutive algebra Cc(G,A) on a Hilbert space gives

rise to a covariant representation of the G-C*-algebra A on the same Hilbert space.

Conversely, every covariant representation of A is obtained from a non-degenerate

representation of Cc(G,A). To see this in the case when A is a unital C*-algebra,

let ρ0 : Cc(G,A) → B(H) be a non-degenerate representation. Since ρ0 is non-

degenerate, the span of {ρ0(aδg)}a∈A,g∈G is dense in H. As a consequence, ρ0(1Aδe) =
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IH, where 1A ∈ A is the unit and e ∈ G is the identity element. So one has, for g ∈ G,

ρ0(1Aδg)
∗ρ0(1Aδg) = ρ0(1Aδe).

Above equality shows that for every g ∈ G, ρ0(1Aδg) is a unitary operator. Define a

unitary representation u0 by

g 7−→ ρ0(1Aδg)

and a representation π0 of A by

a 7−→ ρ0(aδe).

A simple computation shows that u0(g)π0(a)u0(g)∗ = π0(αg(a)). Thus, (u0, π0,H) is

a covariant representation corresponding to ρ0.

Conversely, let (uG, πA,H) be a covariant representation of the C*-dynamical sys-

tem (A, α,G). The linear map given by

ρ : Cc(G,A) → B(H)∑
i

aiδgi 7−→
∑
i

πA(ai)uG(gi)

is a representation of Cc(G,A) on H.

Definition 2.4.2. The universal crossed product of the C*-dynamical system (A, α,G)

is the completion of Cc(G,A) with respect to the norm

‖f‖ = sup
ρ
‖ρ(f)‖,
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where the supremum runs over all non-degenerate homomorphisms ρ : Cc(G,A) →

B(H). The universal crossed product is denoted by Aoα G.

The following universal property justifies the nomenclature above.

Proposition 2.4.3. (Universal property) For every covariant representation (u, π,H)

of a G-C*-algebra A there is a homomorphism

σ : Aoα G → B(H)∑
i

aiδgi 7−→
∑
i

π(ai)ugi

for all
∑

i aiδgi ∈ Cc(G,A).

2.4.4 The reduced crossed product

As mentioned earlier, the following construction shows that covariant representa-

tions of G-C*-algebras always exist.

Let A ⊂ B(H) be a faithfully represented G-C*-algebra. Define a new represen-

tation πA of A on H ⊗ l2(G) ∼=
⊕

g∈GH by

a 7−→
⊕
g∈G

αg−1(a) ∈ B(
⊕
g∈G

H).

Let λ denote the left regular representation of G. The unitary representation of G on

H ⊗ l2(G) given by g 7−→ 1A ⊗ λg and the representation πA constitutes a covariant

representation of A, that is,

(1A ⊗ λg)πA(a)(1A ⊗ λ∗g) = πA(αg(a)).
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This representation is called a regular representation. The regular representation of

A gives rise to a representation of Cc(G,A) on H ⊗ l2(G), which is known as the

regular representation of Cc(G,A).

Definition 2.4.4. The reduced crossed product of a C*-dynamical system (A, α,G)

is the norm closure of the image of the regular representation of Cc(G,A) in B(H ⊗

l2(G)). The reduced crossed product is denoted by Aoα,r G.

Proposition 2.4.5. [3, Proposition 4.1.5] The reduced crossed product A oα,r G is

independent of the choice of the faithful representation A ⊂ B(H).

2.5 The weak expectation property of C*-algebras

The weak expectation property of C*-algebras was introduced by E.C. Lance [16]

to study nuclearity of certain group C*-algebras. In the following, the symbol ‘⊂’

shall denote subalgebra and/or C*-subalgebra as shall be clear from the context.

2.5.1 C*-tensor product inclusions

Let A1 be a C*-subalgebra of A2, denoted by A1 ⊂ A2. For any C*-algebra B,

the algebraic tensor product inclusion holds, that is

A1 ⊗B ⊂ A2 ⊗B.

It is a natural question whether the C*-tensor products preserve the inclusion
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analogous to the purely algebraic case. In other words, if α is a C*-norm, then is it

true that

A1 ⊗α B ⊂ A2 ⊗α B ?

While there is little to no hope of answering this question in its utmost generality,

due to the lack of precise description of every possible C*-tensor norm, the two

important cases of α = min and α = max do have a concrete answer.

2.5.2 The min tensor product inclusion

Given C*-algebras A1 ⊂ A2 and B as above, let π2 : A2 → B(H) and ρ : B →

B(K) be faithful representations of A2 and B. The C*-algebra A2 ⊗min B is the one

generated by the set of operators {π2(a)⊗ ρ(b)}a∈A2,b∈B in B(H ⊗K).

Let π1 = π2|A1 : A1 → B(H). So, π1 is a faithful representation of A1. The

C*-algebra A1 ⊗min B is the C*-subalgebra of B(H ⊗ K) generated by {π1(a′) ⊗

ρ(b)}a′∈A1,b∈B. Since π1(a′) = π2(a′) for all a′ ∈ A1 ⊂ A2, evidently A1 ⊗min B is a

C*-subalgebra of A2 ⊗min B. Therefore, the min tensor product inclusion is always

true in general.

2.5.3 The max tensor product inclusion

In general, the max tensor product inclusion does not have an affirmative solution.

That is to say, it is possible to find C*-algebras A1 ⊂ A2 and B such that, A1⊗max B
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is not a C*-subalgebra of A2 ⊗max B.

To be more precise, the norm induced by the restriction of ‖ · ‖A2⊗maxB on A1⊗B

is not equal to ‖ · ‖A1⊗maxB. In other words, if ι : A1 ↪→ A2 denotes the inclusion map,

then the homomorphism (see Proposition 2.3.4)

˜ι⊗ idB : A1 ⊗max B→ A2 ⊗max B

has a non-trivial kernel. The following example illustrates the statement above.

Example 2.5.1. Let F2 denote the free group on two generators. Let λ and β

denote the left and the right regular representations of F2 on l2(F2) respectively [20].

Consider the C*-algebra inclusion C∗λ(F2) ⊂ B(l2(F2)), where C∗λ(F2) is the reduced

group C*-algebra of F2. For the inclusion ι : C∗λ(F2) ↪→ B(l2(F2)), it is true that

ker ˜ι⊗ idB 6= {0},

where B = C∗β(F2) is the C*-subalgebra of B(l2(F2)) generated by the right regular

representation β of F2. The reader is referred to [3, Proposition 3.6.9] for the proof.

Given the example above, it is natural to ask if there are any conditions under

which the max tensor product inclusion might hold. A couple of closely related

necessary and sufficient conditions were found by E.C. Lance and E. Kirchberg which

we discuss below.
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2.5.4 Weak expectations

Definition 2.5.2. (Weak expectations) Let A ⊂ B(H) be a non-degenerate C*-

algebra. A unital completely positive map

ϕ : B(H)→ A
SOT

is called a weak expectation when ϕ(a) = a for all a ∈ A. Here A
SOT

denotes the

strong operator topology closure of A in B(H).

Definition 2.5.3. (Weak expectation property of representations) Let A be a C*-

algebra and π : A → B(H) be a faithful non-degenerate representation of A on H.

The representation π is said to have the weak expectation property if there exists a

weak expectation for the C*-algebra π(A).

Definition 2.5.4. (Weak expectation property of C*-algebras) A C*-algebra A is said

to have the weak expectation property if every faithful non-degenerate represen-

tation π of A has the weak expectation property.

The weak expectation property of C*-algebras is the key to the max tensor product

inclusion problem as can be seen from the following result.

Theorem 2.5.5. (E. C. Lance, [16]) Let A be a C*-algebra. For any C*-algebra B

containing A as a C*-subalgebra, the following statements are equivalent :

1. A has the weak expectation property.
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2. For any C*-algebra C, A⊗max C ⊂ B⊗max C.

The proof of the well known theorem above is easy but fairly long and can be

found in [16, Theorem 3.3] or [3, Proposition 3.6.2, Corollary 3.6.8].

Remark 2.5.6. The definition of the weak expectation property of C*-algebras in-

volves all faithful non-degenerate representations. Therefore it may also be rephrased

in terms of the universal representation of the C*-algebra as follows.

Let A be a C*-algebra with the weak expectation property and let πu : A→ B(Hu)

denote the universal representation of A. The universal representation is a faithful

non-degenerate representation of A and thus by hypothesis has the weak expectation

property. Conversely, let πu have the weak expectation property. Denote by Φu :

B(Hu) → A∗∗ the weak expectation of πu, where A∗∗ = πu(A)
SOT

is the universal

enveloping von Neumann algebra of A. Let π : A → B(H) be any faithful non-

degenerate representation. By universal properties of A∗∗, let π̃ : A∗∗ → π(A)
SOT

be the unique normal unital homomorphism (owing to the non-degeneracy of π)

extending π. Further let ρ : π(A) → B(Hu) be the homomorphism π(a) 7−→ πu(a)

for all a ∈ A. Since B(Hu) is injective, the homomorphism ρ extends to a unital

completely positive map Φρ : B(H) → B(Hu). It is easy to see that the unital

completely positive map

π̃ ◦ Φu ◦ Φρ : B(H)→ π(A)
SOT
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is a weak expectation of π. Thus, the universal representation of A having the weak

expectation property is equivalent to A having the weak expectation property.

Remark 2.5.7. From the statement of Theorem 2.5.5, one notes that the question

of max tensor product inclusion involving a C*-algebra A1 with the weak expectation

property, among the pair A1 ⊂ A2, somewhat ignores the C*-algebra A2 containing

it. A related property, known as relative weak injectivity, which we discuss in a later

section, addresses the issue of max tensor product inclusion of a given pair of C*-

algebras A1 ⊂ A2, where the C*-subalgebra A1 may not have the weak expectation

property.

2.5.5 Kirchberg’s tensor product characterization

E. Kirchberg gave the first tensorial characterization of the weak expectation

property in his seminal work on exactness of group C*-algebras [14]. In this section

we extract and present a partially detailed proof (we prove only one direction of

equivalence) of this important fact as the full proof requires a very deep and difficult

result of Kirchberg besides a long background preparation which we omit for the sake

of the length of this exposition.

Theorem 2.5.8. (Tensor product criterion, [14]) Let F∞ denote the free group on

countably infinitely many generators and C∗(F∞) denote the full group C*-algebra of

F∞. Then the following statements are equivalent :
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1. A has the weak expectation property.

2. A⊗max C∗(F∞) = A⊗min C∗(F∞).

Proof. (2) ⇒ (1). Let the C*-algebra A be faithfully and non-degenerately repre-

sented on H, denoted by π : A → B(H). The goal is to show that π has the weak

expectation property, that is to say π(A) ⊂ B(H) has a weak expectation.

Denote the commutant of π(A) in B(H) by π(A)′. Further, denote the group of

unitaries of π(A)′ by U(π(A)′). Let the cardinality of U(π(A)′) be N. Consider the

free group FN on N generators, and C∗(FN), the full group C*-algebra of FN.

Let ι : π(A) ↪→ B(H) be the inclusion homomorphism and πN : C∗(FN) → π(A)′

be the canonical surjective homomorphism mapping the universal unitaries in C∗(FN)

onto U(π(A)′). Then the map

ι · πN : π(A)⊗ C∗(FN)→ B(H)

is a homomorphism since ι and πN have commuting ranges. By the universal property

of the max tensor product, ι · πN extends uniquely as a homomorphism

ρ : π(A)⊗max C∗(FN)→ B(H).

From definition of ρ it is clear that ρ(a ⊗ 1) = ι(a) = π(a) for all a ∈ A and

ρ(1⊗ C∗(FN)) = π(A)′.

Let θ : π(A)⊗max C∗(FN)→ π(A)⊗min C∗(FN) be the canonical homomorphism.

Let x ∈ ker θ. Next, choose a countable subset X ⊂ N such that x belongs to the
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closure of the set π(A) ⊗ span FX in π(A) ⊗max C∗(FN), where FX denotes the free

group on X generators. Note that, such a choice is always possible by virtue of the fact

that there exist a sequence xn → x in the max norm such that {xn}n ⊂ π(A)⊗C∗(FN)

and choosing X to be such that xn ∈ π(A)⊗ span FX for all n.

Since X is countable, we identify the free groups FX and F∞. Also, note that

F∞ = FX is a subgroup of FN, therefore by the property of full group C*-algebra

inclusions [3, Proposition 2.5.8], there is a natural inclusion Λ0 : C∗(F∞) ↪→ C∗(FN)

mapping the free unitaries in F∞ onto the set FX ⊂ FN ⊂ C∗(FN).

Consider the natural homomorphism

Λ : π(A)⊗max C∗(F∞)→ π(A)⊗max C∗(FN),

where Λ = idπ(A) ⊗ Λ0 on π(A) ⊗ C∗(F∞). Then x ∈ range Λ, since {xn}n ⊂

π(A)⊗ span FX ⊂ range Λ. Let y ∈ π(A)⊗max C∗(F∞) such that x = Λy.

Now, we have

π(A)⊗max C∗(F∞)
Λ−→ π(A)⊗max C∗(FN)

θ−→ π(A)⊗min C∗(FN).

Let {ym}m ⊂ π(A)⊗C∗(F∞) be a sequence such that ym → y in π(A)⊗max C∗(F∞).

By hypothesis, π(A) ⊗max C∗(F∞) = π(A) ⊗min C∗(F∞), so ym → y in π(A) ⊗min

C∗(F∞). Since the min tensor product respects inclusion, we have π(A)⊗minC∗(F∞) ⊂

π(A) ⊗min C∗(FN) because C∗(F∞) is a C*-subalgebra of C∗(FN). Also, one has y ∈

π(A) ⊗max C∗(F∞) = π(A) ⊗min C∗(F∞) ⊂ π(A) ⊗min C∗(FN). So, in particular,
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ym → y in π(A)⊗min C∗(FN). By definitions of θ and Λ, the map θ ◦ Λ|π(A)⊗C∗(F∞) =

idπ(A)⊗C∗(F∞). Thus, θ◦Λ(ym)→ θ◦Λ(y) in π(A)⊗min C∗(FN). But, θ◦Λ(y) = θ(x) =

0, so, θ ◦Λ(ym) = idπ(A)⊗C∗(F∞)(ym) = ym → 0 in π(A)⊗min C∗(FN). This shows that

y = 0, which in turn shows that x = 0.

The arguments above show that the map θ is injective. Thus, we have

π(A)⊗max C∗(FN) = π(A)⊗min C∗(FN).

From the equality above, we have

π(A)⊗max C∗(FN) = π(A)⊗min C∗(FN) ⊂ B(H)⊗min C∗(FN).

Let Φ0 : B(H)⊗minC∗(FN)→ B(H) be a unital completely positive Arveson extension

of ρ : π(A)⊗max C∗(FN)→ B(H). Define a unital completely positive map

Φ : B(H) → B(H)

T 7−→ Φ0(T ⊗ 1)

From the definition above, one has, for a ∈ A,

Φ(π(a)) = Φ0(π(a)⊗ 1) = ρ(π(a)⊗ 1) = π(a).

Finally, to conclude our claim, we need to show that range Φ ⊂ π(A)′′, thereby

obtaining the required weak expectation for the arbitrary but fixed π. To this end,

note that the C*-subalgebra 1 ⊗ C∗(FN) is in the multiplicative domain of Φ0 since
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Φ0|1⊗C∗(FN) = πN. Let f ∈ π(A)′ = ρ(1 ⊗ C∗(FN)). Then f = ρ(1 ⊗ f0) for some

f0 ∈ C∗(FN). Next, for T ∈ B(H) one has

Φ(T )f = Φ0(T ⊗ 1)ρ(1⊗ f0) = Φ0(T ⊗ 1)Φ0(1⊗ f0) = Φ0((T ⊗ 1)(1⊗ f0))

= Φ0((1⊗ f0)(T ⊗ 1))

= Φ0(1⊗ f0)Φ0(T ⊗ 1)

= fΦ(T ).

This shows that Φ(T ) commutes with all f ∈ π(A)′, thereby proving that

range Φ ⊂ π(A)′′.

(1)⇒ (2). The interested reader is directed to [14, Proposition 1.1] for a proof.

2.5.6 A matrix completion characterization

Recall that the definition of the weak expectation property of C*-algebras involves

all faithful non-degenerate representations or equivalently the universal representa-

tion. In some recent works of much interest [7], [8] D. Farenick, A. Kavruk and

V. Paulsen obtained a different characterization of the weak expectation property of

unital C*-algebras, which is somewhat in stark contrast to the classical approach. In-

deed, the contrast lies in the fact that their characterization requires the verification

of a certain matrix completion property for any one chosen faithful non-degenerate

representation of the C*-algebra.
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Definition 2.5.9. Let A be a unital C*-algebra. A strictly positive element a in A,

is a positive element such that, there exist a δ > 0 satisfying a ≥ δ1A.

In the following result, choose and fix a faithful non-degenerate representation of

the C*-algebra A on H and consider A as a C*-subalgebra of B(H).

Theorem 2.5.10. (Matrix completion criterion, [8]) If A is a unital C*-subalgebra

of B(H), then the following statements are equivalent:

1. A has the weak expectation property.

2. If, given p ∈ N and X1, X2 ∈ Mp(A), there exist strongly positive operators

A,B,C ∈Mp(B(H)) such that A+B + C = 1 and

Y =


A X1 0

X∗1 B X2

0 X∗2 C


is strongly positive in M3p(B(H)), then there also exist Ã, B̃, C̃ ∈ Mp(A) with

the same property.

2.6 Relative weak injectivity of C*-algebras

The concept of relative weak injectivity of C*-algebras was introduced by E. Kirch-

berg in [14] as an extension of Lance’s weak expectation property with subtle differ-

ences as pointed out in Remark 2.5.7.
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2.6.1 The max tensor product inclusion revisited

Recall that, if A is a C*-algebra with the weak expectation property then, for any

C*-algebra B ⊃ A, the C*-algebra inclusion A⊗max C ⊂ B⊗max C always holds true

for any C*-algebra C.

In this section, we discuss the case of max tensor product inclusion for a given

pair of C*-algebras A ⊂ B, when A does not necessarily have the weak expectation

property. An example illustrating this inclusion phenomenon is given below.

Example 2.6.1. Let A be a C*-algebra and J be a ideal in A. By an ideal we always

mean a closed two sided ideal. It is a well known fact that an ideal is a C*-subalgebra.

For the pair J ⊂ A, it is always true that for any C*-algebra C,

J⊗max C ⊂ A⊗max C.

To see this, we directly appeal to the definition of the max C*-norm. Recall that,

every non-degenerate representation π : J⊗C→ B(H) is of the form π = πJ ·πC from

Theorem 2.3.2, where πJ and πC are non-degenerate representations with commuting

ranges. For x ∈ J⊗ C,

‖x‖J⊗maxC = sup
π
‖π(x)‖

= sup
πJ,πC

‖πJ · πC(x)‖

Now, every non-degenerate representation πJ : J→ B(H) has a unique extension

to a representation π̃J : A → B(H) by [5, Lemma I.9.14]. Further, for a ∈ A, c ∈
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C, j ∈ J and h ∈ H

π̃J(a)πC(c)πJ(j)h = π̃J(a)πJ(j)πC(c)h = π̃J(aj)πC(c)h = πJ(aj)πC(c)h

= πC(c)πJ(aj)h

= πC(c)π̃J(aj)h

= πC(c)π̃J(a)πJ(j)h.

Since πJ is a non-degenerate representation, the above equality show that

π̃J(a)πC(c) = πC(c)π̃J(a).

Therefore π̃J and πC have commuting ranges.

Define a non-degenerate representation π̃ : A ⊗ C → B(H) by π̃ = π̃J · πC corre-

sponding to the non-degenerate representation π = πJ · πC : J ⊗ C → B(H). Thus,

every representation π of J ⊗ C has an extension π̃ to A ⊗ C. As a consequence, we

have the norm inequality (considering x ∈ J⊗ C ⊂ A⊗ C) :

‖x‖J⊗maxC = sup
π
‖π(x)‖ = sup

π̃
‖π̃(x)‖ ≤ sup

ρ
‖ρ(x)‖ = ‖x‖A⊗maxC

where the last supremum runs over all non-degenerate representation ρ of A⊗C. The

opposite inequality, that is ‖x‖A⊗maxC ≤ ‖x‖J⊗maxC follows easily from the universal

property of the max tensor product mentioned in Proposition 2.3.4 and the fact that

C*-homomorphisms are always contractive. Thus, for any x ∈ J ⊗ C, ‖x‖J⊗maxC =

‖x‖A⊗maxC, which proves J⊗max C ⊂ A⊗max C.
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2.6.2 Relative weak injectivity

Definition 2.6.2. (Relative weak injectivity) Let A be a C*-subalgebra of a unital C*-

algebra B. Call A relatively weakly injective in B if every faithful non-degenerate

representation π : A→ B(H) has a unital completely positive extension to B, taking

values in π(A)
SOT

. In other words, there exists unital completely positive map Φπ :

B→ π(A)
SOT
⊂ B(H) such that Φπ(a) = π(a) for all a ∈ A.

Remark 2.6.3. In the definition above, we assumed B to be unital. In general, it need

not be so, in which case the map Φπ needs be a contractive completely positive map.

However, one may simply consider the unitization of B and consider the canonical

unital extension of the contractive completely positive map thereby reducing the

general situation to the unital one as defined above. Thus, without loss of generality,

one may assume B to be unital.

Remark 2.6.4. Relative weak injectivity may as well be defined by just considering

the universal representation of A similar to Remark 2.5.6. In that case, if πu : A →

B(Hu) denotes the universal representation of A, then there exists a unital completely

positive map Φπu : B→ A∗∗ extending πu when A is relatively weakly injective in B.

Remark 2.6.5. Let A ⊂ B(H) be a non-degenerate C*-subalgebra of B(H). Com-

bining Remarks 2.5.6 and 2.6.4 one sees that A has the weak expectation property if

and only if A is relatively weakly injective in B(H).
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The following theorem, due to E. Kirchberg, reminiscent of Theorem 2.5.5 and

Theorem 2.5.8, is a characterization of relatively weakly injective pairs of C*-algebras

and demonstrates its significance in max tensor product inclusion.

Theorem 2.6.6. (Relative weak injectivity of a C*-algebra pair, [14]) Given C*-

algebras A ⊂ B, where B is a unital C*-algebra, the following statements are equiva-

lent :

1. A is relatively weakly injective in B.

2. For any C*-algebra C, A⊗max C ⊂ B⊗max C.

3. A⊗max C∗(F∞) ⊂ B⊗max C∗(F∞).

2.6.3 Existence of relatively weakly injective pairs

As discussed in the previous section, the concept of relative weak injectivity com-

pletely settles the question of max tensor product inclusion.

Definition 2.6.7. (Nuclear C*-algebras) A C*-algebra A is said to be nuclear if for

any other C*-algebra C, the algebraic tensor product A ⊗ C has a unique C*-norm.

In other words, A⊗min C = A⊗max C for all C.

Examples 2.6.8. Some commonly known nuclear C*-algebras are :

1. Commutative C*-algebras.
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2. Finite dimensional C*-algebras.

3. Group C*-algebras of discrete amenable groups like Z.

The class of nuclear C*-algebras is rich with numerous more interesting examples

and is an extensively studied, relatively well understood class.

By the definition of the nuclear C*-algebras it is easy to see using Theorem 2.5.8

that nuclear C*-algebras have the weak expectation property. Another example of

C*-algebras with the weak expectation property are the injective C*-algebras.

Both the examples of C*-algebras listed above have the weak expectation prop-

erty by virtue of more powerful intrinsic properties namely nuclearity and injectivity.

Therefore, it is natural to ask if there exists any non-nuclear and non-injective C*-

algebra with the weak expectation property. More generally, considering Remark

2.6.5, one may ask if there are non-trivial examples of relatively weakly injective

C*-algebra pairs. Example 2.6.1 confirms the existence of non-trivial pairs. A very

general and powerful existential result is known due to E. Kirchberg.

Theorem 2.6.9. (Existence of relatively weakly injective pairs, [14]) Let A0 be a

separable C*-subalgebra of B. Then, there exist a separable C*-subalgebra A of B,

such that, A0 ⊂ A ⊂ B and A is relatively weakly injective in B.

Remark 2.6.10. The existence result above shows the abundance of relatively weakly

injective pairs. In particular, choosing B = B(H), and considering any separable
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non-degenerate C*-subalgebra A0 ⊂ B(H), we get a C*-algebra A ⊃ A0 such that

A is relatively weakly injective in B(H). By Remark 2.6.5, A (6= B(H) since A is

separable, while B(H) is not) is a C*-algebra with the weak expectation property,

thereby showing the abundance of C*-algebras with the weak expectation property.

2.7 Tensor products of operator systems

Let S and R be operator systems. The algebraic tensor product S⊗R is a ∗-vector

space. The goal is to put an operator system structure on S ⊗ R. In other words, a

tensor product structure on S⊗ R comprises of a family of cones τ = {Cn}n∈N, with

Cn ⊂Mn(S⊗ R) such that :

1. (S⊗ R, {Cn}n∈N, 1S ⊗ 1R) is an operator system denoted by S⊗τ R,

2. Mn(S)+ ⊗Mm(R)+ ⊂ Cnm, for all n,m ∈ N and

3. If φ : S → Mn and ψ : R → Mm are unital completely positive maps, then

φ⊗ ψ : S⊗τ R→Mnm is a unital completely positive map.

Given a tensor product operator system, say S ⊗τ R as in above, it is often con-

venient to denote the positive cones Cn by Mn(S⊗τ R)+.

A point to be noted here is that, unlike the C*-tensor product, the operator system

tensor product does not require the resulting operator system to be closed.
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The rich theory of tensor products in the operator systems category was introduced

and extensively developed in [12], [13].

Just as in the C*-realm, the algebraic tensor product of two operator systems can

be endowed with multiple tensor product structures. Similar to the C*-analogues, one

has a spatial or the operator system min tensor product and an operator system max

tensor product. But, in this category, there is another natural candidate, namely the

commuting tensor product.

In [12] the authors explicitly describe the family of positive cones which define each

of the three important tensor products above. It was also shown that, if any one (or

both) of the operator system(s) is a C*-algebra, then the commuting tensor product

coincides with the operator system max tensor product. Thereby, loosely speaking,

the generalization of the max C*-tensor product has two distinct [12, Corollary 6.10]

avatars in the operator system category.

For now we briefly describe below the operator system min and max tensor prod-

ucts and defer a detailed review of the commuting tensor product, which plays an

integral role in this thesis, to Chapter 4.

2.7.1 The operator system min tensor product

The operator system min tensor product is the analog of the minimum tensor

product in the C*-category. In fact, just like in the C*-scenario the operator system
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min tensor product is a spatial tensor product. The matricial positive cones are

defined below.

Let S and R be operator systems. Denote by Sk(S) the set of all unital completely

positive maps from S into Mk (and similarly for R). For n ∈ N define cones by :

Cmin
n = {(ηij) ∈Mn(S⊗ R) : (φ⊗ ψ(ηij)) ∈M+

nkm,

for all φ ∈ Sk(S), ψ ∈ Sm(R) for all k,m ∈ N}

Remark 2.7.1. It was shown in [12] that these cones define a matrix ordering on

S⊗R with 1S ⊗ 1R as an archimedean matrix order unit such that, if τ = {Cn}n∈N is

any other operator system tensor product structure on S ⊗ R then, for each n ∈ N,

Cn ⊂ Cmin
n .

Definition 2.7.2. The operator system (S⊗R, {Cmin
n }n∈N, 1S⊗ 1R) is called the min

tensor product of S and R and is denoted by S⊗min R.

The spatial nature of the operator system min tensor product follows from the

result below.

Theorem 2.7.3. (Spatial nature of min tensor product, [12]) Let S and R be operator

systems. Let iS : S → B(H) and iR : R → B(K) be unital complete injections. The

family {Cmin
n }n∈N is the operator system structure on S⊗R arising from the embedding

iS ⊗ iR : S⊗ R→ B(H ⊗K).
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2.7.2 The operator system max tensor product

For operator systems S and R, define a family of matricial cones {Cmax
n }n∈N by :

Cmax
n = {λ(P ⊗Q)λ∗ ∈Mn(S⊗ R) : P ∈Mk(S)+,

Q ∈Mm(R)+, λ ∈Mn,km; k,m ∈ N}

Remark 2.7.4. It was shown in [12] that these cones define a matrix ordering on

S⊗R with 1S ⊗ 1R as an archimedean matrix order unit such that, if τ = {Cn}n∈N is

any other operator system tensor product structure on S ⊗ R then, for each n ∈ N,

Cn ⊃ Cmax
n .

Definition 2.7.5. The operator system (S⊗R, {Cmax
n }n∈N, 1S⊗1R) is called the max

tensor product of S and R and is denoted by S⊗max R.

2.7.3 Inclusion of cones

Tensor product structures are defined on the algebraic tensor product of two

operator systems by specifying the positive cones at every matricial level. Let γ

and δ be two distinct tensor product structures (for example the min and the max

tensor product). For operator systems S and R, it may happen that for every n ∈ N,

Mn(S ⊗γ R)+ ⊂ Mn(S ⊗δ R)+. When such a situation arises, we say that the cones

of the former are included in those of the latter. It is easy to see that this inclusion

reflects on the norms on the operator system tensor product as ‖x‖S⊗δR ≤ ‖x‖S⊗γR

for any x ∈ S⊗R, where the norms are defined as in Subsection 2.1.2. In particular,
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the above statements always hold true when γ = max and δ = min. Indeed, a

consequence of Remarks 2.7.1 and 2.7.4 is that, for every x ∈ S⊗ R

‖x‖S⊗minR ≤ ‖x‖S⊗τR ≤ ‖x‖S⊗maxR

for any operator system tensor product τ .
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Chapter 3

Weak expectation property and crossed

product C*-algebras

In this chapter we discuss a permanence property of unital C*-algebras with

the weak expectation property and their crossed products by discrete groups. We

briefly review amenable groups and amenable actions and proceed to study the cases

of amenable actions due to amenable groups followed by the general case of amenable

actions. The contents of this chapter appears in [2].
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3.1 A permanence question

A C*-algebra A has the quotient weak expectation property (QWEP) if A is

a quotient of a C*-algebra with the weak expectation property. The class of C*-

algebras with QWEP enjoys a number of permanence properties, many of which

are enumerated in [17, Proposition 4.1] and originate with E. Kirchberg [14]. For

example, if A is a unital C*-algebra with QWEP and if α is an amenable action of a

discrete group G on A, then the crossed product C*-algebra AoαG has QWEP [17,

Proposition 4.1(vi)].

In contrast to QWEP, the weak expectation property appears to have few per-

manence properties. For example, A ⊗min B may fail to have the weak expectation

property if A and B have the same; one such example is furnished by A = B = B(H)

[18]. In comparison, if A and B are nuclear, then so is A⊗min B, and if A and B are

exact, then so is A⊗min B [3, Sections 10.1,10.2].

The purpose of this chapter is to establish the following permanence result for the

weak expectation property (Theorem 3.6.3):

If α is an amenable action of a discrete group G on a unital C*-algebra A, then

Aoα G has the weak expectation property if and only if A does.

In this regard, the weak expectation property is consistent with the analogous

permanence results for nuclear and exact C*-algebras [3, Theorem 4.3.4].
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3.2 Amenable groups and amenable actions

Definition 3.2.1. (Amenable groups) A group G is amenable if there exist a state µ

on l∞(G) which is invariant under the left translation action, that is, for all g ∈ G

and f ∈ l∞(G)

µ(g.f) = µ(f)

where g.f is the left translation given by g.f(t) = f(g−1t), t ∈ G.

The state µ in the definition above is called an invariant mean.

Examples 3.2.2. (Amenable groups)

1. Finite groups.

2. Abelian groups.

3. Solvable groups.

An example of a non-amenable group is given below.

Example 3.2.3. (Non-amenable group) The free group on two generators F2 is non-

amenable.

Amenable groups have numerous characterizations and nice properties. We men-

tion (without proof) a few of the equivalent formulations below which are relevant to

our study. First we define a well known important concept for groups.
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Definition 3.2.4. (Følner condition) A group G satisfies the Følner condition if for

any finite subset E ⊂ G and ε > 0, there exist a finite subset F ⊂ G such that

max
g∈E

|gF∆F |
|F |

< ε

where gF = {gt : t ∈ F} and ∆ denotes the symmetric difference of two sets. A net

of finite subsets {Fω}ω∈Ω of G such that

|gFω∆Fω|
|Fω|

→ 0

for every g ∈ G is called a Følner net.

Theorem 3.2.5. (Characterizations of amenable groups, [3, Theorem 2.6.8]) Let G

be a discrete group. The following conditions are equivalent :

1. G is amenable.

2. G satisfies the Følner condition.

3. C∗(G) = C∗λ(G).

4. C∗λ(G) is nuclear.

Remark 3.2.6. A discrete group G is amenable if and only if it admits a Følner net.

However, for the purpose of this chapter, we only need the fact that amenable groups

admit a Følner net.
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Remark 3.2.7. A well known, simple but useful reformulation (as used in Theorem

3.4.3) of the characteristic property of Følner nets

|gFω∆Fω|
|Fω|

→ 0

is that

|gFω ∩ Fω|
|Fω|

→ 1

for every g ∈ G. To see this, simply note that

gFω∆Fω = [gFω \ gFω ∩ Fω] ∪ [Fω \ gFω ∩ Fω],

therefore

|gFω∆Fω| = |gFω \ gFω ∩ Fω|+ |Fω \ gFω ∩ Fω| = 2|Fω| − 2|gFω ∩ Fω|

from which the required limit follows.

3.3 Crossed products of C*-algebras by amenable groups

Throughout the next two sections let G be a discrete amenable group. Recall that

a G-C*-algebra A is a C*-algebra such that there is an action

α : G→ Aut(A)

of G on A by automorphisms. In this section we shall record (without proof) some well

known permanence properties of crossed product C*-algebras by discrete amenable

groups.
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The following lemma is the key to one of our main results presented in the following

section and the permanence properties mentioned above.

Lemma 3.3.1. (Factorization of the identity map on crossed products by amenable

groups, [3, Lemma 4.2.3]) If A is a G-C*-algebra and F ⊂ G is a finite set, then

there exist contractive completely positive maps ϕ : A oα,r G → A ⊗M|F |(C) and

ψ : A⊗M|F |(C)→ Cc(G,A) ⊂ Aoα,r G such that for all a ∈ A and g ∈ G we have

ψ ◦ ϕ(aλg) =
|F ∩ gF |
|F |

aλg.

We omit the proof of the lemma above as a similar factorization will be used in

Theorem 3.4.3 whereby the factoring maps shall be described in detail.

The following permanence result motivates our main results in this chapter.

Theorem 3.3.2. (Permanence properties of nuclear and exact C*-algebras, [3, The-

orem 4.2.4]) The following statements are equivalent :

1. Aoα G = Aoα,r G

2. A is nuclear if and only if Aoα G is nuclear.

3. A is exact if and only if Aoα G is exact.
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3.4 Crossed product C*-algebras and the weak expectation

property : the amenable group case

In this section we present one of the main results of this chapter. The following

lemmas are useful for the proof.

Lemma 3.4.1. ([3, Exercise 4.1.3]) Let (A, α,G) be a dynamical system. Let id :

G → Aut(B) denote the trivial action of G on another C*-algebra B. The action

α⊗ id defined by (α⊗ id)g = αg ⊗ idB on A⊗min B is such that

(A⊗min B) oα⊗id,r G ∼= (Aoα,r G)⊗min B.

Proof. If A ⊂ B(H) and B ⊂ B(K) are faithful representations of A and B then,

A ⊗min B ⊂ B(H ⊗ K) is a faithful representation. For notational convenience we

refer to the regular representations of Cc(G,A) simply as Cc(G,A) (and similarly for

other C*-algebras when necessary). Recalling the construction of the reduced crossed

product, we consider the representation

π : A⊗min B → B((H ⊗K)⊗ l2(G))∑
i

ai ⊗ bi 7−→
⊕
g∈G

(α⊗ id)−1
g (
∑
i

ai ⊗ bi)

=
⊕
g∈G

∑
i

α−1
g (ai)⊗ bi

=
∑
i

(⊕
g∈G

α−1
g (ai)

)
⊗ bi
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A typical element of Cc(G,A⊗min B) ⊂ (A⊗min B)oα⊗id,rG ⊂ B(H⊗K⊗ l2(G))

is a finite linear span of elements like(
π(
∑
i

ai ⊗ bi)

)
(1A⊗minB ⊗ λg0) =

(∑
i

(⊕
g∈G

α−1
g (ai)

)
⊗ bi

)
(1A⊗minB ⊗ λg0)

=

(∑
i

(∑
g∈G

α−1
g (ai)⊗ Eg,g

)
⊗ bi

)
(1A⊗minB ⊗ λg0)

=
∑
i

(∑
g∈G

α−1
g (ai)⊗ Eg,gλg0

)
⊗ bi

=
∑
i

((⊕
g∈G

α−1
g (ai)

)
(1A ⊗ λg0)

)
⊗ bi

where Eg,g’s are the diagonal matrix units in B(l2(G)). Noting that,((⊕
g∈G

α−1
g (ai)

)
(1A ⊗ λg0)

)
∈ Cc(G,A) ⊂ Aoα,r G ⊂ B(H ⊗ l2(G))

and thus

∑
i

((⊕
g∈G

α−1
g (ai)

)
(1A ⊗ λg0)

)
⊗ bi ∈ Cc(G,A)⊗B ⊂ (Aoα,r G)⊗B

⊂ B(H ⊗K⊗ l2(G))

This shows that the subalgebras Cc(G,A⊗min B) and Cc(G,A)⊗B of B(H⊗K⊗

l2(G)) are the same, which in turn proves the required result as (A⊗min B)oα⊗id,r G

and (Aoα,r G)⊗min B are the norm closures of Cc(G,A⊗min B) and Cc(G,A)⊗B in

B(H ⊗K⊗ l2(G)) respectively.
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Lemma 3.4.2. (Positive elements in A oα,r G, [3, Lemma 4.2.2]) If A is a G-C*-

algebra, and F ⊂ G is a finite set, then for each set {ag}g∈F ⊂ A, the element

∑
g,g′∈F

αg(a
∗
gag′)λgg′−1 ∈ Cc(G,A)

is a positive element in Aoα,r G.

Proof. The element above is equal to (
∑

g∈F agλg−1)∗(
∑

g∈F agλg−1).

We now present our first main result of this chapter.

Theorem 3.4.3. If α is an action of an amenable discrete group G on a unital

C*-algebra A, then Aoα G has the weak expectation property if and only if A does.

Proof. Assume first that A oα G has the weak expectation property. To show that

A has the weak expectation property, it is sufficient to show that if A is represented

faithfully as a unital C*-subalgebra of B(K), for some Hilbert space K, and if πA
u :

A → B(HA
u ) is the universal representation of A, then there a unital completely

positive map ω : B(K)→ A∗∗ such that ω(a) = πA
u (a) for every a ∈ A.

To this end, let Aoα G ⊂ B(HAoαG
u ) be the universal representation of Aoα G.

Because A is unital, A is a unital C*-subalgebra of Aoα G. Hence,

A ⊂ Aoα G ⊂ (Aoα G)∗∗ ⊂ B(HAoαG
u )

and we therefore, on the one hand, consider A as a unital C*-subalgebra of B(K),
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where K = HAoαG
u . On the other hand,

A ⊂ Aoα G = Aoα,r G ⊂ B(HAoαG
u )⊗min C∗r (G)

⊂ B(HAoαG
u )⊗B (l2(G))

⊂ B (K⊗ l2(G)) ,

where ⊗ denotes the von Neumann algebra tensor product, yields another faithful

representation of A oα G, in this case, as a unital C*-subalgebra of B (K⊗ l2(G)).

Let (Aoα G)′′ denote the double commutant of Aoα G in B (K⊗ l2(G)).

Using the vector state τ on B (l2(G)) defined by τ(x) = 〈xδe, δe〉 together with the

identity map idB(K) : B(HAoαG
u )→ B(HAoαG

u ), we obtain a normal unital completely

positive map

ψ = idB(K)⊗τ : B(K)⊗B
(
l2(G)

)
→ B(K).

If E : Aoα,r G→ A denotes the conditional expectation of Aoα,r G onto A whereby

E
(∑

g agλg

)
= ae, then, using the identification Aoα G = Aoα,r G, the restriction

of ψ to (Aoα G)′′ is a normal extension of ρ ◦ E, where ρ : A→ B(K) is the faithful

representation of A ⊂ B (K⊗ l2(G)) as a unital C*-subalgebra of B(K). That is, we

have the following commutative diagram:

Aoα G
E−−−→ Ay yρ

(Aoα G)′′ −−−→
ψ

B(K) .
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Because ψ is normal, the range of ψ|(AoαG)′′ is determined by

ψ ((Aoα G)′′) = (ψ(Aoα G))
SOT

= (ρ(A))
SOT

.

In other words, the range of ψ|(AoαG)′′ is the strong-closure of the C*-subalgebra A of

A oα G in the enveloping von Neumann algebra (A oα G)∗∗ of A oα G. Therefore,

by [20, Corollary 3.7.9], there is an isomorphism θ : (ρ(A))
SOT
→ A∗∗ such that

πA
u = θ|ρ(A).

Now let π0 : (A oα G)∗∗ → (A oα G)′′ be the normal epimorphism that extends

the identity map of A oα G. Because A oα G has the weak expectation property,

there is a unital completely positive map φ0 : B(HAoαG
u ) → (Aoα G)∗∗ that fixes

every element of A oα G. Hence, if Υ = θ ◦ ψ|(AoαG)′′ ◦ π0 ◦ φ0, then Υ is a unital

completely positive map of B(K) → A∗∗ for which Υ(a) = πA
u (a) for every a ∈ A.

That is, A has the weak expectation property.

Conversely, assume that A has the weak expectation property and that A is

(represented faithfully as) a unital C*-subalgebra of B(H) for some Hilbert space H.

Thus, we consider A and Aoα G faithfully represented via

A ⊂ Aoα G = Aoα,r G ⊂ B
(
H ⊗ l2(G)

)
.

Note that u : G → B(HAoαG
u ) whereby u(g) = πAoαG

u (1 ⊗ λg) is a unitary represen-

tation of G such that (1⊗ λ)× π is the regular (covariant) representation associated

with the dynamical system (A, α,G).

52



Let πAoαG
u : Aoα G→ B(HAoαG

u ) be the universal representation of Aoα G and

define π : A→ B(HAoαG
u ) by π = πAoαG

u |A. For simplicity, put H = HAoαG
u . Because

π is a faithful representation of A and A has the weak expectation property, there is

a unital completely positive map

φ0 : B(H)→ π(A)′′ ⊂ πAoαG
u (Aoα G)′′

such that φ0 (π(a)) = π(a) for every a ∈ A.

As in [3, Proposition 4.5.1], if F ⊂ G is a finite nonempty subset and if pF ∈

B(l2(G)) is the projection with range Span{δf : f ∈ F}, then pFB(l2(G))pF is

isomorphic to the matrix algebra Mn for n = |F |, and so we obtain a unital completely

positive map

φF : B(H ⊗ l2(G))→ B(H)⊗Mn

defined by

φF (x) = (1⊗ pF )x(1⊗ pF ).

Next, let {ef,h}f,h∈F denote the matrix units of Mn and define an action β of G on

π(A)′′ by

βg(y) = u(g)yu(g)∗,

for y ∈ π(A)′′. Observe that π(A)′′ oβ G ⊂ πAoαG
u (Aoα G)′′.

The linear map

ψF : π(A)′′ ⊗Mn → π(A)′′ oβ G
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for which

ψF (y ⊗ ef,h) = |F |−1βf (y)u(fh−1)

for y ∈ π(A)′′, is a unital completely positive map. To see this, it is enough to verify

that it is positive because, by virtue of Lemma 3.4.1 one has a commutative diagram

Mp ⊗ (π(A)′′ ⊗Mn)
∼=−−−→ (Mp ⊗ π(A)′′)⊗Mn

ψ
(p)
F

y yψ̃F
Mp ⊗ (π(A)′′ oβ G)

∼=−−−→ (Mp ⊗ π(A)′′) oid⊗β G .

where the map ψ̃F is defined exactly like ψF but replacing π(A)′′⊗Mp for π(A)′′ and

the action id ⊗ β for β. Thus, p-positivity of ψF is equivalent to positivity of ψ̃F .

Now, every positive element in (Mp ⊗ π(A)′′)⊗Mn is of the form

∑
g,g′∈F

w∗gwg′ ⊗ eg,g′

where {wg}g∈F ⊂Mp ⊗ π(A)′′. The image of this element under ψ̃F is of the form

|F |−1
∑
g,g′∈F

(id⊗ β)g(w
∗
gwg′)

(
1Mp ⊗ u(gg′

−1
)
)

which is positive by Lemma 3.4.2.

Hence,

θF := ψF ◦ (φ0 ⊗ idMn) ◦ φF

is a unital completely positive map B (H ⊗ l2(G))→ πAoαG
u (Aoα G)′′.

Hence, if {Fω}ω is a Følner net in G and if θω : B (H ⊗ l2(G))→ πAoαG
u (AoαG)′′

is the unital completely positive map constructed above, for each ω, then the net
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{θω}ω admits a cluster point θ relative to the point-ultraweak topology. Now, for

every ω ∈ Ω, aλg ∈ Aoα,r G, and ξ, η ∈ HAoαG,

∣∣〈(θ(aλg)− πAoαG
u (aλg)

)
ξ, η〉

∣∣ ≤ |〈(θ(aλg)− θFω(aλg)) ξ, η〉|

+
∣∣〈(θFω(aλg)− πAoαG

u (aλg)
)
ξ, η〉

∣∣

=

∣∣∣∣(1− |Fω ∩ gFω|
|Fω|

)
〈πAoαG

u (aλg)ξ, η〉
∣∣∣∣ .

Because θ is a cluster point of {θω}ω, we deduce that θ(aλg) = πAoαG
u (aλg). Hence,

by continuity, θ : B (H ⊗ l2(G)) → πAoαG
u (A oα G)′′ is a unital completely positive

map for that extends the identity map on πAoαG
u (AoαG), which proves that AoαG

has the weak expectation property.

3.5 Crossed products of C*-algebras by amenable actions

There are groups which are non-amenable but have actions nice enough to exhibit

properties close to those of amenable groups. Such groups are said to have amenable

actions. Before embarking on the precise definition and properties, the following norm

needs be introduced.

Definition 3.5.1. Let A be a G-C*-algebra. Let f1, f2 be finitely supported functions

on G, that is, f1, f2 ∈ Cc(G,A). Set

〈f1, f2〉 =
∑

a∗i bi ∈ A,
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where f1 =
∑

i aiδgi and f2 =
∑

j bjδg′j . Finally, define

‖f1‖2 = ‖〈f1, f1〉‖
1
2 .

Definition 3.5.2. (Amenable actions, [3, Definition 4.3.1]) An action α : G →

Aut(A) on a unital G-C*-algebra A is amenable if there exist finitely supported

functions fl : G→ A, fl =
∑

i aliδgi with the following properties :

1. 0 ≤ ali ∈ Z(A) for all l ∈ N and gi ∈ G.

2. 〈fl, fl〉 =
∑

i a
2
li = 1A.

3. ‖δgfl − fl‖2 → 0 for all g ∈ G (the product δgfl ∈ Cc(G,A) is as defined in

Subsection 2.4.3).

In the definition above Z(A) stands for the center of A, that is

Z(A) = {a ∈ A : ab = ba for all b ∈ A}.

Remark 3.5.3. The set of functions {fl}l exhibit Følner like properties. As a con-

sequence a factorization result like Lemma 3.3.1 is true for crossed products of C*-

algebras by groups with amenable actions. However, the details may be omitted

due to it’s similarity with Lemma 3.3.1 (or the factorization described in Theorem

3.4.3) or simply because of the lack of necessity of appealing directly to this for our

next main result described in the following section, which involves the theorem below

(which in turn is a consequence of the factorization in this case).
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Theorem 3.5.4. (Permanence properties of nuclear and exact C*-algebras for amenable

actions, [3, Theorem 4.3.4]) For any amenable action α of G on A, the following

statements are equivalent :

1. Aoα G = Aoα,r G

2. A is nuclear if and only if Aoα G is nuclear.

3. A is exact if and only if Aoα G is exact.

3.6 Crossed product C*-algebras and the weak expectation

property : the amenable action case

In this section we generalize Theorem 3.4.3 in the case of groups with amenable

actions. The proof relies on (Theorem 3.5.4(1)), Kirchberg’s characterization of the

weak expectation property (Theorem 2.5.8) and the matrix completion criterion for

detecting weak expectation property (Theorem 2.5.10). The following lemmas are

also used in the proof.

Lemma 3.6.1. Let α be an amenable action of G on A. If ι : G→ Aut(B) denotes

the trivial action of G on a unital C*-algebra B, then the action α ⊗ ι, given by

α⊗ ι(g)[a⊗b] = αg(a)⊗b for all g ∈ G, a ∈ A, b ∈ B, of G on A⊗maxB is amenable.

(See [24, Remark 2.74]).
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Proof. Let {fl}l denote a net of finitely supported positive-valued functions fl : G→

Z(A), fl =
∑

i aliδgi such that 〈fl, fl〉 =
∑

i a
2
li = 1A and

‖δgfl − fl‖2 → 0

for all g ∈ G as in Definition 3.5.2.

Define finitely supported positive-valued functions f̃l : G→ Z (A⊗max B) by

f̃l(gi) = ali ⊗max 1B.

Then 〈f̃l, f̃l〉 = 1A⊗maxB and the limiting equation above holds with fl replaced

with f̃l, δg replaced by δ̃g (A⊗max B valued dirac function at g ∈ G) and α replaced

with α⊗ ι. Hence, the action α⊗ ι of G on A⊗max B is amenable.

Lemma 3.6.2. ([24, Lemma 2.75]) For a dynamical system (A, α,G) and a C*-

algebra B, we have

(A⊗max B) oα⊗ι G ∼= (Aoα G)⊗max B.

We now present the main result of this section.

Theorem 3.6.3. If α is an amenable action of a discrete group G on a unital C*-

algebra A, then Aoα G has the weak expectation property if and only if A does.

Proof. Assume that A has the weak expectation property. By Kirchberg’s criterion

(Theorem 2.5.8), A⊗min C∗(F∞) = A⊗max C∗(F∞). Let ι : G→ Aut (C∗(F∞)) denote
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the trivial action of G on C∗(F∞). Then by Lemma 3.6.1, α⊗ ι is an amenable action.

Hence,

(Aoα G)⊗min C∗(F∞) = (Aoα,r G)⊗min C∗(F∞)

= (A⊗min C∗(F∞)) oα⊗ι,r G

= (A⊗max C∗(F∞)) oα⊗ι,r G

= (A⊗max C∗(F∞)) oα⊗ι G

= (Aoα G)⊗max C∗(F∞) ,

where the first equality is due to Theorem 3.5.4(1) and the final equality holds by

Lemma 3.6.2. Another application of Kirchberg’s Criterion implies that Aoα G has

the weak expectation property.

Conversely, assume that A oα G has the weak expectation property and that

Aoα,r G is represented faithfully on a Hilbert space H. Thus,

A ⊂ Aoα,r G = Aoα G ⊂ B(H)

also represents A faithfully on H. Let E : A oα,r G → A denote the canonical

conditional expectation of A oα,r G onto A [3, Proposition 4.1.9]. We now use the

criterion of Theorem 2.5.10 for the weak expectation property.
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Suppose that p ∈ N, X1, X2 ∈ Mp(A), and A,B,C ∈ Mp(B(H)) are such that

A+B + C = 1 and the matrix

Y =


A X1 0

X∗1 B X2

0 X∗2 C

 ∈M3p(B(H))

is strongly positive. Because A ⊂ Aoα G and because Aoα G has the weak expec-

tation property, there are, by Theorem 2.5.10, Ã, B̃, C̃ ∈Mp(Aoα G) such that

Ỹ =


Ã X1 0

X∗1 B̃ X2

0 X∗2 C̃

 ∈M3p(Aoα G)

is strongly positive and Ã + B̃ + C̃ = 1. Because unital completely positive maps

preserve strong positivity, the matrix

(E⊗ idM3)[Ỹ ] =


E(Ã) X1 0

X∗1 E(B̃) X2

0 X∗2 E(C̃)

 ∈M3p(A)

is strongly positive and the diagonal elements sum to 1 ∈M3p(A). Thus, A ⊂ B(H)

satisfies the criterion of Theorem 2.5.10 for the weak expectation property.

Remark 3.6.4. The arguments to establish the main results of this chapter depend

crucially on the fact that A is a unital C*-algebra, and it would be of interest to know

to what extent such results remain true for non-unital C*-algebras.
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Chapter 4

Relative weak injectivity in the operator

system category

This chapter attempts to resolve a natural question about operator system tensor

product inclusions in the case of commuting tensor product (a generalization of the

max C*-tensor product to the operator system category). This is achieved by the

generalization of the concept of relative weak injectivity for operator systems. The

contents of this chapter appears in [1].
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4.1 Motivation

As recent as in 2011, the theory of operator system tensor products was intro-

duced in [12, 13] and various aspects systematically studied. Generalizing the min

and max C*-tensor products to the operator system category was a cornerstone of this

establishment and fundamental to the rich and extensive development of the theory

therein. However, interestingly enough the max C*-tensor product has two distinct

counterparts in the operator system category, namely the max and commuting op-

erator system tensor products, which collapses to the same when either or both the

operator systems under consideration is order isomorphic to a C*-algebra. This curi-

ous departure from the C*-algebra theory somewhat make the study of the maximal

tensor products of the operator system stand out from their C*-algebra analogs. The

category O1 comprises of operator systems as objects and unital completely positive

maps as morphisms.

Recall that in Section 2.5, the case of max tensor product inclusion for C*-algebras

were discussed. It was recorded that, in general it is not true that for a given C*-

algebra pair A1 ⊂ A2, A1 ⊗max B is a C*-subalgebra of A2 ⊗max B for every other

C*-algebra B. Such a property holds true when A1 is relatively weakly injective in

A2 (Section 2.6).

With the advent of the operator system tensor products, it is natural to ask the

same question as above in the category O1. More precisely, one may ask : for an
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operator system pair S ⊂ T, is it true that S⊗βR is an operator subsystem of T⊗βR,

for any choice of an operator system R, where β is the min, commuting or max

operator system tensor product.

Owing to Theorem 2.7.3 and arguing exactly like as in Subsection 2.5.2, one sees

that the answer to the question above is always affirmative for the case β = min. An

attempt to answer the question for the cases of commuting and max tensor products

leads to a generalization of the concept of relative weak injectivity to the category

O1. However, it turns out that the commuting case is more tractable than the case

of max in O1.

This chapter aims at settling the question of tensor product inclusions for the

commuting case under a mild condition, while pointing out a major obstruction to

the methods applied here for the case of the max tensor product in O1.

4.2 The commuting tensor product of operator systems

If S and T are operator systems, then the notation S ⊂ T means that S is a unital

operator subsystem of T. That is, if 1S and 1T denote the distinguished Archimedean

order units for S and T respectively, then 1S = 1T. Unless the context is not clear,

the order unit for an operator system will be denoted simply by 1.

If S1 ⊂ T1 and S2 ⊂ T2 are inclusions of operator systems, and if ιj : Sj → Tj are

the inclusion maps, then for any operator system structures τ and σ on S1 ⊗ S2 and
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T1 ⊗ T2, respectively, the notation (as used in [9] also)

S1 ⊗τ S2 ⊂+ T1 ⊗σ T2

expresses the fact that the linear vector-space embedding ι1 ⊗ ι2 : S1 ⊗ S2 → T1 ⊗ T2

is a ucp map S1 ⊗τ S2 → T1 ⊗σ T2. That is, S1 ⊗τ S2 ⊂+ T1 ⊗σ T2 if and only if

Mn(S1⊗τ S2)+ ⊂Mn(T1⊗σ T2)+ for every n ∈ N. If, in addition, ι1⊗ ι2 is a complete

order isomorphism onto its range, then this is denoted by

S1 ⊗τ S2 ⊂coi T1 ⊗σ T2 .

Thus, S⊗τ T = S⊗σ T means S⊗τ T ⊂coi S⊗σ T and S⊗σ T ⊂coi S⊗τ T.

The commuting operator system tensor product ⊗c was introduced and studied in

[12] and will be defined below. A slight simplification in the definition is afforded by

the following lemma, which allows one to restrict to unital completely positive maps

rather than use all completely positive maps.

Lemma 4.2.1. (Unital vs non-unital completely positive maps, [4, Lemma 2.2], [6,

Lemma 5.1.6]) Let S ⊂ B(K) be an operator system and φ : S→ B(H) be a completely

positive map. Then there exists a unital completely positive map φ̃ : S→ B(H) such

that

φ(·) = φ(1)
1
2 φ̃(·)φ(1)

1
2 .

Remark 4.2.2. The proof of the lemma above describes the map φ̃ as a strong limit
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of φ̃n in B(H), that is

φ̃ = SOT− lim
n
φ̃n,

where

φ̃n : S→ B(H)

φ̃n(s) =

(
φ(1) +

1

n

) 1
2

φ(s)

(
φ(1) +

1

n

)− 1
2

+ 〈sη, η〉(1− Pφ(1)),

for η ∈ K, and Pφ(1) is the projection onto the closure of the range of φ(1). Thus, for

operator systems S ⊂ B(KS) and T ⊂ B(KT), if φ : S→ B(H) and ψ : T → B(H) are

completely positive maps with commuting ranges, then the projections Pφ(1) and Pψ(1)

commute since φ(1) commutes with ψ(1). Further, Pφ(1) commutes with ψ(1) and

Pψ(1) commutes with φ(1). This leads to the fact that the maps φ̃n and ψ̃n (defined

similarly) have commuting ranges for all n ∈ N. As a consequence, the corresponding

unital completely positive maps φ̃ and ψ̃ which are strong limits of φ̃n’s and ψ̃n’s

respectively, also have commuting ranges.

Denote by ucp(S,T) the set of all pairs (φ, ψ) of unital completely positive maps

from S and T, respectively, into B(H) for some Hilbert space H, such that φ(S)

commutes with ψ(T).

Recall that, for each (φ, ψ) ∈ ucp(S,T) let φ · ψ : S ⊗ T → B(H) be the unique

linear map whose value on elementary tensors is given by

φ · ψ(x⊗ y) = φ(x)ψ(y).
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Define cones by

Ccomm
n = {η ∈Mn(S⊗ T) : (φ · ψ)(n)(η) ≥ 0, for all (φ, ψ) ∈ ucp(S,T)}.

It was shown in [12] that the collection of cones above is a matrix ordering on

S⊗ T with Archimedean matrix order unit 1S ⊗ 1T.

Definition 4.2.3. (Commuting operator system tensor product) The operator system

(S ⊗ T, {Ccomm
n }n∈N, 1S ⊗ 1T) is called the commuting operator system tensor product

of S and T and is denoted by S⊗c T.

Remark 4.2.4. The definition above considers all pairs of commuting unital com-

pletely positive maps. However, in [12], the definition of the commuting tensor

product, all pairs of commuting completely positive maps were used. Nonetheless,

by virtue of Remark 4.2.2, the two definitions are equivalent. More precisely, for

η ∈ Mn(S ⊗ T), and for given completely positive maps φ0 and ψ0 with commuting

ranges, (φ0 · ψ0)(n)(η) ≥ 0 if and only if their unital counterpart (φ̃0 · ψ̃0)(n)(η) ≥ 0.

Thus the defining cones in our case and the ones in [12] are the same.

The following notation, introduced in [13], will be used.

Notation 4.2.5. If X and Y are operator systems, then X⊗̂cY shall denote the norm-

completion of X ⊗c Y. For any subspaces X0 ⊂ X and Y0 ⊂ Y, X0⊗Y0 denotes the

closure of X0⊗Y0 in X⊗̂cY .
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As mentioned earlier, an important fact is : if two unital C*-algebras A and B

are considered as operator systems, then A⊗̂cB = A⊗max B [12, Theorem 6.6].

In principle an abstract operator system S generates many different C*-algebras.

The largest such C*-algebra is called the universal C*-algebra generated by S. That

is, a unital C*-algebra A is universal for S if :

1. there is a unital complete order injection ιu : S→ A,

2. A is generated by ιu(S), and

3. if φ : S→ B is a ucp map into another C*-algebra B, then there is a homomor-

phism π : A→ B such that φ = π ◦ ιu.

It was shown in [15, Proposition 8] that every operator system has a universal C*-

algebra, unique up to isomorphism, and an explicit construction was given. Therefore,

C∗u(S) shall unambiguously denote the universal C*-algebra generated by S.

The following key fact facilitates the analysis carried out in this chapter.

Theorem 4.2.6. (Structural inheritance of the commuting tensor product, [13, Lemma

2.5]) For all operator systems S and T,

S⊗c T ⊂coi S⊗c C∗u(T) ⊂coi C∗u(S)⊗max C∗u(T) .

Corollary 4.2.7. For every unital C*-algebra A, operator system S, and n ∈ N, the

operator systems Mn(S⊗c A) and S⊗c Mn(A) are completely order isomorphic.
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4.3 Relative weak injectivity in the operator system category

The definition of relative weak injectivity in the category of operator systems is

given below :

Definition 4.3.1. A pair (S,T) of operator systems is a relatively weakly injective

pair if, for every operator system R, S⊗c R is a unital operator subsystem of T⊗c R,

that is

S⊗c R ⊂coi T ⊗c R .

It is also convenient to say that S is relatively weakly injective in T if (S,T) is a

relatively weakly injective pair.

Remark 4.3.2. Comparing the definition above with Definition 2.6.2, one observes

that in the case of C*-algebras, an equivalent reformulation of the definition of relative

weak injectivity in terms of max tensor product inclusion of C*-algebras is equally

good due to Theorem 2.6.6.

4.4 Some preliminary results

In this section we will use the fact that the matricial order on an operator system

S gives rise to a norm ‖ · ‖Mn(S) on each matrix space Mn(S) (See page 8).

The following lemma is an obvious perturbation of [12, Corollary 6.5]. We include

a proof for the convenience of the reader.
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Lemma 4.4.1. Let S be an operator system and A be a unital C*-algebra. A linear

map φ : S ⊗c A → B(H) is a ucp map if and only if there is a Hilbert space K,

homomorphisms π : C∗u(S) → B(K) and ρ : A → B(K) with commuting ranges, and

an isometry V : H→ K such that φ(s⊗ a) = V ∗π(s)ρ(a)V for all s ∈ S and a ∈ A.

Proof. Because S ⊗c A ⊂coi C∗u(S) ⊗max A by Proposition 4.2.6, φ admits a ucp

extension Φ : C∗u(S) ⊗max A → B(H). A minimal Stinespring dilation implies the

existence of a Hilbert space K and an isometry V : H → K and a homomorphism

π0 : C∗u(S) ⊗max A → B(K) such that Φ(u) = V ∗π0(x)V for all x ∈ C∗u(S) ⊗max A.

By Theorem 2.3.2, there exist representations π : C∗u(S)→ B(K) and ρ : A→ B(K)

with commuting ranges such that π0 = π · ρ. Evaluating on elementary tensors gives

the required result.

Conversely, if π, ρ and V are as in the statement above, π ·ρ is completely positive

on C∗u(S)⊗max A and thus on S⊗c A. Conjugation by V gives the result.

Lemma 4.4.2. Let S be a operator system. Let {Si}i∈I be the set of all separable non-

trivial operator subsystems of S (that is, Si ⊂ S). Then, there is a co-final ultrafilter

U on I such that the map Ψ : S→
∏U C∗u(Si) given by

x 7−→ (ψi(x))U,

where ψi(x) = x if x ∈ Si or 0 otherwise, is a unital completely positive linear map,

where
∏U denotes the C*-ultraproduct.
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Proof. Note that the set I is partially ordered by inclusion of the corresponding

operator subsystems Si and that S =
⋃

Si. Consider a co-final ultrafilter U on the

directed set I. The map Ψ defined in the statement of the lemma is linear because of

the structure of C∗-ultraproducts (see [10] for relevant definitions of ultraproducts).

To show that Ψ is ucp it is sufficient to show that Ψ is a complete isometry (following

the discussion after [21, Remark 2.8.4]).

If x ∈ S, note that the set {i | x ∈ Si} ∈ U. To see this, simply observe that

{i | x ∈ Si} = {i | i ≥ ix}, where Six = span{1, x, x∗}. Now, for n = 1,

‖Ψ(x)‖ = ‖(ψi(x))U‖ = lim
U
‖ψi(x)‖ = ‖x‖

by the preceding comment.

For n > 1, we use a similar argument as follows. Let X = (xkl) ∈ Mn(S). Now,

an ultrafilter is closed under finite intersections. So,

IX = {i | xkl ∈ Si ∀ k, l} =
⋂
k,l

{i | xkl ∈ Si}

is in U. Finally, using the identification Mn(
∏U C∗u(Si)) =

∏UMn(C∗u(Si)) (see Re-

mark on page 60 of [21]) we obtain

‖Ψ(n)(X)‖ = ‖(Ψ(xkl))k,l‖ = ‖((ψi(xkl))U)k,l‖ = ‖((ψi(xkl))k,l)U‖

= lim
U
‖(ψi(xkl))k,l‖ = ‖(xkl)k,l‖Mn(Si),i∈IX = ‖X‖ ,

thereby showing that Ψ is a complete isometry.
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The following result is of central importance in what follows.

Lemma 4.4.3. Assume that A is a C*-algebra and T is an operator system, and fix

x ∈ T ⊗A. If {Ti}i∈I(x) is the directed set of all separable unital operator subsystems

of T for which x ∈ Ti ⊗A, then

‖x‖T⊗cA = lim
I(x)
‖x‖Ti⊗cA.

Proof. Let us denote by ‖x‖(·) the norm ‖x‖(·)⊗cA. If x ∈ T1 ⊂ T2, then

T1 ⊗c A ⊂+ T2 ⊗c A implies that ‖x‖T2 ≤ ‖x‖T1 .

Thus, limI ‖x‖Ti exists, since it is a decreasing net, and

‖x‖T ≤ lim
I
‖x‖Ti .

To establish the opposite inequality, following the techniques in the proof of [17,

Proposition 3.4],we proceed as follows.

Assume that ‖x‖Ti ≥ 1 for all i ∈ I. Thus, ‖x‖Ti = ‖x‖C∗u(Ti)⊗maxA ≥ 1. There-

fore, there exists representations πi, ρi of C∗u(Ti) and A respectively, on B(Hi) with

commuting ranges such that

‖πi · ρi(x)‖ ≥ 1.

Using the map Ψ from Lemma 4.4.2 above and the injective ∗-homomorphism ι : A ↪→∏U
A, where U is the same ultrafilter over the same index set I as in Lemma 4.4.2 or
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above, we have unital completely positive maps φ : T → B(HT) and ρ : A→ B(HT)

with commuting ranges and such that

‖φ · ρ(x)‖ ≥ 1,

where HT =
∏U

Hi, φ = (
∏U πi) ◦Ψ and ρ = (

∏U ρi) ◦ ι.

Now, φ · ρ is a unital completely positive map of T ⊗c A. By Lemma 4.4.1,

there exist representations π0 and ρ0 of C∗u(T) and A with commuting ranges and an

isometry V such that

φ · ρ(x) = V ∗π0 · ρ0(x)V.

Since ‖φ · ρ(x)‖ ≥ 1, we have ‖π0 · ρ0(x)‖ ≥ 1 because V is an isometry. But then,

‖x‖T = ‖x‖C∗u(T)⊗maxA ≥ 1,

thereby showing that ‖x‖T = limI ‖x‖Ti .

Remark 4.4.4. Lemma 4.4.3 is also true if A is only an operator system, as in that

case, one may simply carry out the argument above with C∗u(A) and arrive at the

conclusion by virtue of Theorem 4.2.6.

Remark 4.4.5. Observe that at the beginning of the proof of Lemma 4.4.3, the

inequality ‖x‖T2 ≤ ‖x‖T1 may not hold true if 1T1 6= 1T2 . This is where the unital

subsystem criterion comes into play.

72



4.5 A characterization of relative weak injectivity for opera-

tor systems

Our first main result is an operator system version of Kirchberg’s theorem [14,

Proposition 3.1]. For a subset X ⊂ B(H), the double commutant of X in B(H) is

denoted by X′′.

Theorem 4.5.1. The following statements are equivalent for operator systems S and

T for which S ⊂ T :

1. (S,T) is a relatively weakly injective pair of operator systems;

2. S⊗c C∗(F∞) ⊂coi T ⊗c C∗(F∞);

3. For any unital completely positive map φ : S → B(H), there exist a unital

completely positive map Φ : T → φ(S)′′ such that Φ|S = φ;

4. (C∗u(S),C∗u(T)) is a relatively weakly injective pair of C*-algebras.

Proof. The order of implications to be proved is (4)⇒ (2)⇒ (1)⇒ (3)⇒ (4).

(4) ⇒ (2). Assume that X ∈ Mn(S ⊗ C∗(F∞)) is positive in Mn(T ⊗c C∗(F∞)).

We need to show that X ∈Mn(S⊗c C∗(F∞))+. Because

X ∈Mn(T ⊗c C∗(F∞))+ ⊂Mn(C∗u(T)⊗max C∗(F∞))+ ,

hypothesis (4) implies X ∈Mn(C∗u(S)⊗maxC∗(F∞))+, and so X is positive in Mn(S⊗c

C∗(F∞)) because S⊗c C∗(F∞) ⊂coi C∗u(S)⊗c C∗(F∞).
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(2)⇒ (1). Let R be an arbitrary operator system. By Theorem 4.2.6, W⊗cR ⊂coi

W⊗c C∗u(R) for every operator system W; thus, if we can show that S⊗c C∗u(R) ⊂coi

T ⊗c C∗u(R), then we deduce immediately that S⊗c R ⊂coi T ⊗c R.

To begin, assume that R is separable. Hence, there is an ideal K of C∗(F∞) such

that C∗u(R) = C∗(F∞)/K. By [13, Corollary 5.17], and using Notation 4.2.5,

S⊗c C∗u(R) ⊂coi S⊗̂cC
∗
u(R) =

S⊗̂cC
∗(F∞)

S⊗K
.

The hypothesis S⊗c C∗(F∞) ⊂coi T⊗c C∗(F∞) implies that S⊗c C∗(F∞) ⊂coi C∗u(T)⊗c

C∗(F∞), again by Theorem 4.2.6. Therefore, [13, Proposition 5.14] yields

S⊗̂cC
∗(F∞)

S⊗K
⊂coi

C∗u(T)⊗̂cC
∗(F∞)

C∗u(T)⊗K
= C∗u(T)⊗max C∗u(R) .

Thus, S ⊗c C∗u(R) ⊂coi C∗u(T) ⊗c C∗u(R), which implies S ⊗c C∗u(R) ⊂coi T ⊗c C∗u(R)

and, hence, S⊗c R ⊂coi T ⊗c R.

Now assume that R is an arbitrary nonseparable operator system. We have proved

above that S⊗cR0 ⊂coi T⊗cR0 for every separable operator system R0. Fix x ∈ S⊗R

and choose a separable operator subsystem R1 ⊂ R such that x ∈ S ⊗ R1. Thus,

S ⊗c R1 ⊂ T ⊗c R1. By the beginning of the proof of Lemma 4.4.3 we have the

inequality

‖x‖S⊗cR ≤ ‖x‖S⊗cR1 = ‖x‖T⊗cR1 .

This inequality above holds for any separable operator subsystem R1 ⊂ R for which

x ∈ S ⊗ R1. Lemma 4.4.3 (or Remark 4.4.4) thus implies ‖x‖S⊗cR ≤ ‖x‖T⊗cR, which
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in turn implies

‖x‖S⊗cR = ‖x‖T⊗cR.

Next, for n > 1, fix X ∈ Mn(S ⊗ R) ⊂ Mn(S ⊗ C∗u(R)) ∼= S ⊗Mn(C∗u(R)). One

also has Mn(S⊗c C∗u(R)) ∼= S⊗c Mn(C∗u(R)) (see [13, Theorem 7.1]). Now, just as in

the case n = 1, there exists a separable operator system R0
n ⊂Mn(C∗u(R)) such that

X ∈ S ⊗ R0
n and therefore, for any separable operator system Rn ⊂ Mn(C∗u(R)) for

which X ∈ S⊗ Rn, we have the inequality

‖X‖Mn(S⊗cC∗u(R)) = ‖X‖S⊗cMn(C∗u(R)) ≤ ‖X‖S⊗cRn = ‖X‖T⊗cRn .

This implies (as in case of n = 1) that

‖X‖Mn(S⊗cC∗u(R)) ≤ ‖X‖T⊗cMn(C∗u(R)) = ‖X‖Mn(T⊗cC∗u(R)),

which in turn implies that ‖X‖Mn(S⊗cC∗u(R)) = ‖X‖Mn(T⊗cC∗u(R)). That is, the inclusion

map S⊗ R→ T ⊗ R is a unital complete isometry S⊗c R→ T ⊗c R and, hence, is a

complete order injection.

(1)⇒ (3). Let φ : S→ B(H) be a unital completely positive map. Since (S,T) is

a relatively weakly injective pair, and because the commutant φ(S)′ ⊂ B(H) of φ(S)

is a C*-algebra,

S⊗c φ(S)′ ⊂coi T ⊗c φ(S)′ ⊂coi C∗u(T)⊗max φ(S)′.

By the definition of commuting tensor product, φ·idφ(S)′ is a unital completely positive

map on S⊗c φ(S)′ with values in B(H). Take an Arveson extension Ψ of φ · idφ(S)′ to
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C∗u(T)⊗max φ(S)′ and define a unital completely positive map Φ on T by

Φ(t) = Ψ(t⊗ 1),

for all t ∈ T. Obviously, Φ|S = φ. Finally, to see that Φ takes values in φ(S)′′, one

invokes the usual multiplicative domain argument for completely positive maps as

given below. For f ∈ φ(S)′, one has f = Ψ(1⊗ f) and compute :

Φ(t)f = Ψ(t⊗ 1)Ψ(1⊗ f) = Ψ((t⊗ 1)(1⊗ f))

= Ψ((1⊗ f)(t⊗ 1))

= Ψ(1⊗ f)Ψ(t⊗ 1)

= fΨ(t).

This concludes our claim that (1)⇒ (3).

(3)⇒ (4). Since S ⊂ T, C∗u(S) is a unital C*-subalgebra of C∗u(T) [15, Proposition

9]. Let πU : C∗u(S) → B(HU) be the universal representation of C∗u(S). Then πU |S :

S → B(HU) is a unital completely positive map. By hypothesis, πU |S extends to

φ : T → (πU |S(S))′′ ⊂ (πU(C∗u(S)))′′. Now, since C∗u(T) is generated as an algebra by

T, the unique homomorphism from C∗u(T) extending φ takes values in (πU(C∗u(S)))′′.

Further, since this homomorphism extends πU |S, it fixes πU , which completes the

proof.
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4.6 Existence of relatively weakly injective pairs of operator

systems

Our second main result shows the abundant existence of pairs of relatively weakly

injective operator systems and is a generalisation of [14, Lemma 3.4].

Theorem 4.6.1. If S is a separable unital operator subsystem of an operator system

T, then there exists a separable operator system R such that S ⊂ R ⊂ T and R is

relatively weakly injective in T.

Proof. Let {sk}k∈N be a dense sequence in S ⊗c C∗(F∞). Using Lemma 4.4.3, we

choose separable operator subsystems Sn of T such that, S ⊂ S1 ⊂ S2 ⊂ . . . and

‖sk‖Sn ≤ ‖sk‖T + 1
n

for 1 ≤ k ≤ n. Let S(1) =
⋃
Si. Then S(1) is a separable operator

system containing S, such that, for all x ∈ S⊗c C∗(F∞), one has ‖x‖S(1) = ‖x‖T. By

iterating the argument above with S(1) instead of S we obtain a sequence of separable

operator systems S ⊂ S(1) ⊂ S(2) ⊂ . . . such that ‖ · ‖S(n) = ‖ · ‖T on S(n−1)⊗c C∗(F∞).

Define X1 =
⋃

S(k). Thus, X1 is a separable operator system containing S such that

‖ · ‖X1 = ‖ · ‖T.

Replacing X1 for S and M2(C∗(F∞)) for C∗(F∞), repeat the procedure described

above to obtain a separable operator system X2 such that, for all x ∈ X2⊗cM2(C∗(F∞)),

we have

‖x‖X2⊗cM2(C∗(F∞)) = ‖x‖T⊗cM2(C∗(F∞)).
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In other words, using the identification W ⊗c M2(C∗(F∞)) = M2(W ⊗c C∗(F∞)) for

operator systems W, we have that the inclusion map X2 ⊗c C∗(F∞) → T ⊗c C∗(F∞)

is a 2-isometry.

Further iterations of the procedure above gives us S ⊂ X1 ⊂ X2 ⊂ X3 ⊂ . . .T such

that the inclusion map Xk ⊗c C∗(F∞)→ T ⊗c C∗(F∞) is a k-isometry.

Finally, set R =
⋃

Xk. To show that R is relatively weakly injective in T, it is

enough, by Theorem 4.5.1, to show that the inclusion map R⊗cC
∗(F∞)→ T⊗cC

∗(F∞)

is a complete isometry.

For Y ∈ R ⊗Mn(C∗(F∞)) there exists an integer kY > n such that Y ∈ Xk ⊗

Mn(C∗(F∞)) for all k > kY . Now recall the fact that the inclusion maps Xk ⊗c

C∗(F∞) → T ⊗c C∗(F∞) are k-isometries. As a consequence, for n < kY < k the

inclusions Xk ⊗c C∗(F∞)→ T⊗c C∗(F∞) are also n-isometries. Therefore, by Lemma

4.4.3 we have

‖Y ‖R⊗cMn(C∗(F∞)) = lim
k
‖Y ‖Xk⊗cMn(C∗(F∞))

= lim
k>kY

‖Y ‖Xk⊗cMn(C∗(F∞))

= ‖Y ‖T⊗cMn(C∗(F∞)).

This shows that R is relatively weakly injective in T, contains S, and is separable,

thereby concluding the proof.

Remark 4.6.2. Several aspects of the proofs of the preliminary and main results

depend in the fact that the commuting tensor product cones are inherited from the
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positive cones of a C*-max tensor product. This is not true for the operator system

max tensor product, wherein lies the problem of applicability of the techniques em-

ployed here to study relative weak injectivity with respect to the operator system max

tensor product.

4.7 Examples

4.7.1 Operator systems generated by free unitaries

Denote the generators of the free group F∞ by {uj}j∈N. In C∗(F∞), each uj is a

unitary and so, for each n ∈ N, define

Sn = span{u−n, . . . , u−1, 1, u1, . . . , un},

which is an operator subsystem of C∗(Fn)) ⊂ C∗(F∞).

Example 4.7.1. If n < m, then (Sn,Sm) is a relatively weakly injective pair of

operator systems.

The proof of this assertion is adapted from the proof of [8, Lemma 4.1] and makes

use of our main result, Theorem 4.5.1. Let φ : Sn → B(H) be a unital completely

positive map. By Theorem 4.5.1, it is enough to show that φ extends to Sm, taking

values in φ(Sn)′′. For each contraction φ(ui), i ∈ N, consider its Halmos unitary
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dilation Wi on H ⊕H given by

Wi =

 φ(ui) (1− φ(ui)φ(u−i))
1
2

(1− φ(u−i)φ(ui))
1
2 −φ(u−i)



Let T ∈ φ(Sn)′ and consider the operator T̃ =

 T 0

0 T

 ∈ B(H ⊕ H). Now,

by functional calculus, T̃ commutes with Wi for all 1 ≤ i ≤ n. Since u1, . . . , um

are universal unitaries in C∗(Fm) ⊂ C∗(F∞), there is a unique homomorphism π :

C∗(Fm)) → B(H ⊕ H), such that π(ui) = Wi, for 1 ≤ i < n, and π(uj) = Wn for

n ≤ j ≤ m. Let P =

 I 0

0 0

. Define unital completely positive map φ̃ : C∗(Fm)→

B(H) by φ̃(·) = Pπ(·)|H. Note that, φ̃ extends φ and T̃ commutes with P . Since, T̃

commutes with every Wi, it commutes with π(C∗(Fm))). Thus, for x ∈ Sm we have

φ̃(x)T = Pπ(x)PT̃P = Pπ(x)T̃P = PT̃π(x)P = PT̃Pπ(x)P = T φ̃(x).

So, φ̃(x) ∈ φ(Sn)′′ as T was chosen arbitrarily in φ(Sn)′. This concludes our claim.

4.7.2 Inclusion in the double dual

The dual S∗ of an operator system is a matricially normed space, but the double

dual S∗∗ is an operator system containing S as an operator subsystem [13]. The

following example is established in [13, Corollary 6.6].
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Example 4.7.2. (S, S∗∗) is a relatively weakly injective pair of operator systems, for

every operator system S.

4.7.3 Operator systems with DCEP

An operator system S is said to have the double commutant expectation property

(DCEP) if, for every complete order embedding S→ B(H), there exists a completely

positive linear map Φ : B(H)→ S′′ ⊂ B(H), fixing S.

Example 4.7.3. If S has the double commutant expectation property, then (S,T) is

a relatively weakly injective pair of operator systems, for every operator system T that

contains S as an operator subsystem.

The assertion above is a consequence of [13, Theorem 7.3, Theorem 7.1], which

states that if S ⊂ T and S has the double commutant expectation property, then

S⊗c R ⊂coi T ⊗c R for every operator system R.
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Chapter 5

Conclusion and further questions

5.1 Summary

This dissertation delves on multiple facets of weak expectations and related con-

cepts. In the first half of this thesis we investigated a permanence result of unital

C*-algebras with the weak expectation property. For a unital C*-algebra A, we

showed that for either an amenable group or a group with amenable action, say G,

the crossed product C*-algebra AoG has the weak expectation property if and only

if A has the weak expectation property. Two distinct methods were applied for prov-

ing the two cases. Similar results were known for nuclear and exact C*-algebras. So,

our result generalizes those known results to the case of C*-algebras with the weak

expectation property, which are a substantially larger class of C*-algebras than the

nuclear C*-algebras.

The second half of this dissertation formulates and studies the concept of relative
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weak injectivity in the category of operator systems. Relative weak injectivity for C*-

algebras characterizes C*-algebraic inclusions, say A ⊂ B, which respects the max

C*-tensor product inclusion, that is, for any C*-algebra C,

A⊗max C ⊂ B⊗max C

if and only if A is relatively weakly injective in B or (A,B) is a relatively weakly

injective pair. In the operator system scenario, the maximal tensor product has

two distinct counterparts, the commuting tensor product and the operator system

max tensor product, which reduces to the same if one of the operator system in

the tensor product is a C*-algebra. We formulate this property for the commuting

tensor product of operator systems and prove that the C*-algebra of the free group

on countably many generators characterizes this formulation, just like in the case of

C*-algebras. In other words, we show that for a unital inclusion of operator systems

S ⊂ T, and for every other operator system R,

S⊗c R ⊂coi T ⊗c R

is true if and only if

S⊗c C∗(F∞) ⊂coi T ⊗c C∗(F∞).

Further, we extend results on the existence of relatively weakly injective pairs of C*-

algebras to the operator system pair setting and show that, for any operator system
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inclusion S0 ⊂ T, where S0 is separable, there exist a separable operator system

S0 ⊂ S ⊂ T,

such that (S,T) is a relatively weakly injective pair, where each of the above inclusions

are unital. Finally, we mention a few naturally occurring examples to consolidate the

validity of this study.

5.2 Further questions and methodology

Several research questions culminating in possible future work are outlined below.

Constructing new C*-algebras with the weak expectation property from old C*-

algebras with the weak expectation property is a topic explored in this thesis in

the form of crossed product C*-algebras by groups with amenable actions. Various

constructions have already been investigated in detail for the cases of nuclear and

exact C*-algebras. One such is the construction of continuous bundles of nuclear or

exact C*-algebras due to E. Kirchberg and S. Wassermann. A natural question which

presents itself is the construction of continuous bundles of C*-algebras with the weak

expectation property. More precisely, for a given family of C*-algebras (the fiber C*-

algebras) with the weak expectation property, one may aim to determine if the bundle

C*-algebra thus constructed (possibly under some equivalent conditions) has the weak

expectation property or not. In a recent paper [7], D. Farenick and V. Paulsen

studied an operator matrix completion problem, as an application of which a new
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characterization of the C*-algebras with the weak expectation property was obtained.

One may attempt to study conditions under which such a matrix completion problem

may have an affirmative solution over a continuous bundle of C*-algebras, where

each of the fiber C*-algebras has the aforementioned matrix completion property. An

application of this, if answered in the positive, is likely to answer the question posed

above.

It is known that the multiplier algebra of a C*- algebra with a strictly positive

element has the weak expectation property if and only if the original C*-algebra has

the weak expectation property. A C*-algebra sits as an essential ideal [3, Defini-

tion 8.4.1] in its multiplier algebra. As shown in this thesis, an ideal (in particular,

the essential ones) always has the weak expectation property if the parent C*-algebra

does. Conversely, the extent to which the study of essential ideals affects a C*-algebra

with the weak expectation property is currently unknown. More precisely, is it true

that, if all essential ideals of a C*-algebra have the weak expectation property, then

the C*-algebra has weak expectation property? The definition of weak expectation

property involves the existence of “weak expectations” for every non-degenerate rep-

resentation of a C*-algebra. A partial result that, if an essential ideal of a C*-algebra

has the weak expectation property, then every representation of the C*-algebra has

a sub-representation admitting a weak expectation, is recorded below :

Proposition 5.2.1. Let J be a essential ideal in a C*-algebra A. If J has the weak
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expectation property, then every faithful non-degenerate representation of A has a

faithful non-degenerate sub-representation which admits a weak expectation.

Proof. Let π : A → B(H) be a faithful non-degenerate representation of A. Now,

consider H0 = π(J)H. Since J is an ideal of A, the subspace H0 is invariant for π(A).

Thus, π decomposes as π = π0 ⊕ π⊥0 on H = H0 ⊕H⊥0 .

Since π⊥0 (J) = 0, we have that πo|J = π|J . Thus, π0|J is a faithful representation

of J in B(H0) (and incidentally in B(H) also).

We have the obvious inclusion π0(J) E π0(A) ⊆ B(H0). Since J has WEP,

there exists a ucp map Φ0 : B(H0) → π0(J)′′ ⊆ π0(A)′′ extending the identity on

π0(J). Thus we may consider Φ0 as taking values in π0(A)′′. Next, we show that

Φ0|π0(A) = idπ0(A) as below :

Φ0(π0(a)π0(j)) = Φ0(π0(aj)) = π0(aj) = π0(a)π0(j).

Now, π0(j) is in the multiplicative domain of Φ0. So, one has :

Φ0(π0(a)π0(j)) = Φ0(π0(a))Φ0(π0(j)) = Φ0(π0(a))π0(j).

Combining the above two equations we get

(Φ0(π0(a))− π0(a))π0(j) = 0

for all j ∈ J , which shows that Φ0|π0(A) = idπ0(A).

Finally, to complete the proof, we show that π0 is a faithful representation of A

on H0. To this end, we proceed as follows.
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For a ∈ A, a > 0, consider :

π(a) = π0(a)⊕ π⊥0 (a)

For λ ∈ C, λ ∈ σ(a) = σ(π(a)). The inverse of an element in π(A), if exists,

must be in π(A), since a C*-algebra is inverse closed. Thus, it must be of the formB 0

0 D

. Thus π(a) − λIH is not invertible implies, either or neither π0(a) − λIH0

and π⊥0 (a)−λIH⊥0 are not invertible. This means that λ ∈ σ(π0(a))∪σ(π⊥0 (a)). Thus,

σ(π(a)) = σ(π0(a)) ∪ σ(π⊥0 (a)).

Next, suppose ∃ λ0 ∈ σ(π⊥0 (a)) \ σ(π0(a)). By Urysohn’s lemma, there exists a

continuous function f0 on σ(π(a)) such that f0(λ0) = 1 and f0(σ(π0(a))) = 0. Define

a0 = f0(a). Note that a0 6= 0 and π(a0) =

0 0

0 π⊥0 (a0)

.

The ideal K0 generated by π(a0) given by π(a0Aa0) is such that K0 ∩ π(J) =

{0}, which is a contradiction, for π(J) is an essential ideal in π(A). Thus, we have

σ(π⊥0 (a)) ⊆ σ(π0(a)), which implies σ(a) = σ(π(a)) = σ(π0(a)). Therefore,

‖a‖ = ‖π0(a)‖

for all a > 0, and hence for all a ∈ A in general.

An affirmative progress towards this direction is likely to extend the permanence

property from the multiplier algebra of a C*-algebra scenario to the case of the “local

multiplier algebra” of a C*-algebra with the weak expectation property.
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