Multiband RF/Microwave Front-end Receiver Design for Multi-Standard Applications

Date
2021-12
Authors
Fan, Xiaolin
Journal Title
Journal ISSN
Volume Title
Publisher
Faculty of Graduate Studies and Research, University of Regina
Abstract

With the demand for the wireless communication system to support multiple frequency bands introduced by new standards, multi-standard transceivers with low cost, low power, and high integrity start to receive more attention in recent years. As the number of operating frequency bands increases, the number of external filters and low-noise amplifiers in a commonly used multi-standard receiver with parallel architecture increases. It leads to high power consumption and low feasibility for high integration design. Compared to the RF transmitter, the design of the RF receiver front end is considered to be more challenging due to the increased signal interference/noise in the communication path, which often can be neglected in transmitter design due to the large discrepancy between the noise level and the signal level. Generally, the most important performance parameters of a receiver front end are selectivity and sensitivity. From the view of microwave design, the selectivity of a receiver front end is strongly dependent on the design of the microwave filters, which determines the bandwidth and signal selectivity. The sensitivity of a receiver front end is strongly dependent on the design of a low noise amplifier, which is often the first active device in the receiver front end and determines the noise added to the system. To reduce the number of external filters and low noise amplifiers for multiband requirements, a system architecture formed by multiband RF filters and low-noise amplifiers is exploited. Advanced design theory and methodology are proposed in the thesis to the design of the components including bandpass filters, multi-band filters, and low-noise amplifiers. The proposed design methods and techniques proposed in this thesis include a multistage EM-based bandpass filter design and optimization method based on reflected group delay design procedure and space mapping technique, an EM-based multiband filter design and optimization method using coupling matrix decomposition technique, an EMbased multiband filter design and optimization method using multiband reflected group delay and cascade space mapping, and a multi-objective method for low-noise amplifier design. Generally, the research in this work focuses on developing and implementing novel design theory and techniques that can be exploited to simplify the system architecture and improve the design efficiency of microwave components in a modern RF receiver front end.

Description
A Thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electrical Systems Engineering, University of Regina. xiii, 144 p.
Keywords
Citation