Show simple item record

dc.contributor.authorFallat, Shaun
dc.contributor.authorOlesky, Dale
dc.contributor.authorvan den Driessche, Pauline
dc.date.accessioned2016-01-28T23:42:25Z
dc.date.available2016-01-28T23:42:25Z
dc.date.issued2015-08-15
dc.identifier.citationhttp://dx.doi.org/10.1016/j.laa.2015.08.014en_US
dc.identifier.urihttp://hdl.handle.net/10294/6588
dc.description.abstractThe enhanced principal rank characteristic sequence (epr-sequence) was originally defined for an n ×n real symmetric matrix or an n ×n Hermitian matrix. Such a sequence is defined to be l1l2···ln where lk is A,S, or N depending on whether all, some, or none of the matrix principal minors of order k are nonzero. Here we give a complete characterization of the attainable epr-sequences for real skew-symmetric matrices. With the constraint that lk=0 if k is odd, we show that nearly all epr-sequences are attainable by skew-symmetric matrices, which is in contrast to the case of real symmetric or Hermitian matrices for which many epr-sequences are forbidden. ©2015en_US
dc.description.sponsorshipNSERCen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectprincipal ranken_US
dc.subjectskew-symmetric matrixen_US
dc.subjectminoren_US
dc.subjectranken_US
dc.titleThe enhanced principal rank characteristic sequence for skew-symmetric matricesen_US
dc.typeArticleen_US
dc.description.authorstatusFacultyen_US
dc.description.peerreviewyesen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record