• Login
    View Item 
    •   oURspace Home
    • Faculty of Graduate Studies and Research
    • Theses and Dissertations
    • Doctoral Theses and Dissertations
    • View Item
    •   oURspace Home
    • Faculty of Graduate Studies and Research
    • Theses and Dissertations
    • Doctoral Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Applications of Synchrotron Radiation Techniques To The Study Of Taphonomic Alterations and Preservation in Fossils

    Thumbnail
    View/Open
    Popovski_Kolaceke_Anezka_PhD_PHYS_Spring2019.pdf (13.32Mb)
    Date
    2019-02
    Author
    Popovoski Kolaceke, Anezka
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10294/8838
    Abstract
    Fossils have traditionally been seen as sedimentary rocks that preserve little of the original composition of animals, except for their shapes, and perhaps some original material from recalcitant mineralized structures, such as bones, and teeth. However, recent studies have shown that not the case. Researchers have identified preserved organic molecules, such as collagen and melanosomes, as well as mineralized soft tissues, including feathers, muscle tissue and skin, tens of millions of years after the animal's death. These results have improved our understanding of extinct species, and have been obtained using a variety of characterization techniques, including the synchrotron-based approaches that are the focus of the research presented in this thesis. The main goal of the research discussed in this thesis was the application of synchrotron radiation techniques (X-ray uorescence and X-ray absorption spectroscopy, in particular) in order to determine the taphonomic alterations that fossils experience, and examine how different materials are preserved. In this thesis, I discuss the results of the chemical characterization on the remains of the Tyrannosaurus rex known as \Scotty", turtle shells, and a rare specimen of fossilized hadrosaur skin. I also examine the applicability of X-ray uorescence to determine the composition and elemental distribution of insect inclusions in amber. The results presented herein offer possible explanations on how some of these specimens were preserved and the extent of the chemical alterations they underwent during their taphonomic history. Beyond the specific results for each specimen, the overall research presented in this thesis shows that synchrotron radiation techniques have great potential to advance palaeontological research, as it becomes necessary to evaluate the chemistry of specimens in high resolution. These characterization techniques were able to con rm that more original material is preserved after fossilization than would have been believed possibly even a decade ago.
    Collections
    • Doctoral Theses and Dissertations

    Copyright © 2020 University of Regina
    Contact Us | Send Feedback | Archer Library | University of Regina

     

     

    Browse

    All of oURspaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    About

    About oURspacePoliciesLicensesContacts

    Statistics

    View Usage Statistics

    Copyright © 2020 University of Regina
    Contact Us | Send Feedback | Archer Library | University of Regina