• Login
    View Item 
    •   oURspace Home
    • Faculty of Graduate Studies and Research
    • Theses and Dissertations
    • Master's Theses
    • View Item
    •   oURspace Home
    • Faculty of Graduate Studies and Research
    • Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Comprehensive Study and Mechanism Investigation for Alkaline-Heavy Oil Recovery Process

    Thumbnail
    View/Open
    Xi_Zhiyu_MASC_PSE_Spring2020.pdf (6.626Mb)
    Date
    2019-12
    Author
    Xi, Zhiyu
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10294/9278
    Abstract
    Alkaline flooding is an important branch of chemical enhanced oil recovery (EOR). The complexity of alkaline flooding study is mainly embodied by its chemical reaction required by alkalis to react with oil acids. Consequently, in-situ surfactants are generated for various emulsification phenomenon. It is known that alkaline flooding performance in oil recovery is subjected to the emulsion type generation, thus, of great importance to alkaline flooding study is its mechanism investigation and saponification rate examination. In this study, a modified bottle test method that assesses major emulsion type formation for preliminary prediction of alkaline flooding performance in oil recovery is introduced. Homogenization and Karl-Fischer water content titration techniques were applied in the modified bottle test to overcome the emulsion preparation and analysis difficulties. In addition, sandpack alkaline flooding tests were conducted to prove the prediction reliability of the modified bottle test through identifying effluent emulsions. It is found either water in oil emulsion or oil in water emulsion could be representatively prepared in bottle test based on reaction environments identical to flooding tests’ conditions. Taking advantages of bottle test’s superior efficiency in simultaneous multi-case study, alkaline flooding screening test can be easily conducted applying statistical techniques to provide prior visions regarding dominating driving mechanism of oil recovery. This research verified a practical solution to representative emulsion preparation and phase volume quantification in the bottle test especially when it comes to high viscous heavy oil; therefore, mechanism investigation regarding alkaline flooding could be easily conducted. Besides, the CMGTM alkaline flooding simulation model was built considering the saponification reaction rate of immiscible fluids. A novel experiment design of alkali- heavy oil reaction system was proposed and implemented to measure reagents’ reaction rate at various temperatures through monitoring pH change by electrode. Through which the Arrhenius constant and activation energy were calculated. In addition, the stoichiometry for emulsification reaction was proposed according to bottle test results. The simulation model was history matched founded on reaction data thus model uncertainty was mitigated by reducing number of unconstrained parameters. Oil recovery predictions have been conducted using the history matched model and the optimized injection strategies were addressed.
    Collections
    • Master's Theses

    Copyright © 2020 University of Regina
    Contact Us | Send Feedback | Archer Library | University of Regina

     

     

    Browse

    All of oURspaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    About

    About oURspacePoliciesLicensesContacts

    Statistics

    View Usage Statistics

    Copyright © 2020 University of Regina
    Contact Us | Send Feedback | Archer Library | University of Regina