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Abstract 

Spruce trees play a vital role in Canada’s forest ecosystems, which is widely used in construction, 

paper production, and other industries. However, spruce trees are particularly susceptible to 

wildfires, which pose a major risk to both natural landscapes and human settlements. Therefore, 

to evaluate the spruce forest biomass volume is an important step to estimate its yield and 

combustibility. This paper aims to use Machine Learning (ML) approaches to estimate the biomass 

volume of spruce trees from aerial top-view images. Since the aerial images are only show the tree 

crown shapes, we set up the relationship between tree crown diameter (TCD) and Diameter of tree 

Breast Height (DBH), and this DBH can be further used to estimate the tree biomass volume. Here, 

Spruce trees top-view images were taken by a DJI Mavic 3, at an altitude of 50m above ground. 

We measured the actual TCD and DBH in the field. 2,155 spruce trees were labelled in our dataset 

according to its location in the aerial images. The actual TCD values of 2155 samples were 

measured with a Hypsometer device that uses ultrasound at the extremities of the tree branches, 

which will be further used to compare and calculate the accuracy of the TCD values that are 

measured from top-view images after our model training. 

After experimenting with tree detection methods, we conclude that YOLO performed better than 

MaskRCNN by 4%. And then we proposed two methods that use YOLOs: First method, a 

combination of  YOLOv5 bounding box to identify the trees and watershed technique to segment 

tree crowns from aerial images. Compared to the second method YOLOv11 that uses instance 

segmentation to segment the trees.  

A study is conducted to showcase a relationship between TCD and DBH of the field measurements. 

This linear relationship can be used to estimate DBH out of TCD and then could futher calculate 

tree biomass volume with the estimated DBH. 
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We conclude that Instance Segmentation model can estimate TCD with an accuracy of 91.64% 

(compared to the actual TCD value), which is higher than 89.1% of another image processing 

model based on watershed technique method. 

 

Key words: YOLOv11, YOLOv5, Watershed Technique, Identification, Segmentation, TCD, 

DBH, Spruce Trees, Aerial Images.
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Chapter One: Introduction 

1.1. Statement of the Problem.  

Spruce trees play a vital role in Canada’s forest ecosystems and economy, serving as both an 

ecological keystone species and a major contributor to the forestry industry. As one of the most 

abundant tree species in Canada, spruce trees: black spruce (Picea mariana) and white spruce 

(Picea glauca) are highly valued for their versatile and durable wood, which finds extensive use in 

the construction of homes, furniture, and industrial applications. Additionally, spruce wood is a 

primary raw material in paper, which contributes significantly to Canada’s economy by supporting 

manufacturing industries and generating employment in rural areas. 

Despite their many benefits, spruce trees face significant challenges in maintaining their health 

and resilience. They are particularly vulnerable to wildfires, which have become more frequent 

and intense in recent years due to climate change. The resinous nature of spruce trees makes them 

highly flammable, allowing fires to spread rapidly through spruce forests, posing a significant 

threat to both natural landscapes and human settlements. This problem can be avoided by 

controlling the forestry which represents in form of cutting trees around a high flammable risk 

area. In addition to wildfires, spruce trees are susceptible to pests such as the spruce beetle, further 

endangering forest health and reducing timber quality. 

The importance of monitoring and managing spruce forests has therefore become increasingly 

urgent. Forestry professionals and researchers are developing strategies to predict wildfire risks, 

manage pest outbreaks, and promote sustainable forestry practices. Through a combination of 

technological advancements and conservation efforts, Canada aims to protect its spruce forests, 

ensuring they continue to contribute both economically and ecologically for future generations. 
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1.2. Research objective 

The main objective in this thesis is to use Machine Learning (ML) approaches to estimate the 

biomass volume of spruce trees from aerial top-view images. There are three sub-objectives, which 

are:  

• Setting up the relationship between tree crown diameter (TCD) and Diameter of tree Breast 

Height (DBH), 

• Building the relationship between DBH and tree biomass volume. 

• Developing an image processing model based on this YOLOv11 method to identify the 

TCD values from aerial images.   

• Comparing the developed model to another image processing model of 

YOLOv5+Watershed Technique. 

Accurately measuring the crown area and diameter is essential because it enables the 

estimation of other key parameters, such as tree height, diameter at breast height (DBH), and dry 

biomass volume. These parameters play a critical role in a variety of applications, including 

biomass estimation, carbon sequestration assessments, and forest health monitoring. 

By accurately predicting the DBH from crown dimensions, forest managers can estimate timber 

volume, plan a sustainable harvesting practice, and monitor changes in forest structure over time.  

This thesis focuses on developing advanced computer vision machine learning models to enhance 

the precision of tree crown diameter and area calculations. By leveraging tools such as watershed 

technique and YOLO instance segmentation, this work aims to provide a robust framework for 

tree crown detection and measurement. The ultimate goal is to offer a solution that not only 

improves the accuracy of crown measurements but also facilitates the estimation of other critical 
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tree metrics ensuring that these models can support forest inventory, conservation efforts, and 

ecosystem management effectively. 

1.3. Structure of this Thesis 

This thesis is organized into Three main chapters, each addressing a specific component of the 

research. 

Chapter Two: Literature Review provides an overview of relevant studies and concepts. It begins 

by discussing spruce tree allometric relationships and existing research on tree detection and 

measurement. The chapter identifies research gaps that this study aims to address, followed by a 

review of the YOLO model, which plays a central role in the proposed methodology. The chapter 

concludes with a summary highlighting key points from the literature. 

Chapter Three: Methodology outlines the research design and approach. It covers the materials 

and data acquisition process, followed by detailed steps in data preparation. This chapter also 

explains the YOLOv5 model, the application of watershed segmentation and Non-Maximum 

Suppression (NMS) for contour adjustments, and methods for crown diameter estimation using 

GSD value. Finally, we explain the YOLOv11 model and concludes with a summary of the 

methodology. 

Chapter Four: Results and Findings presents the outcomes of the research. It begins with the results 

of the spruce tree detection models, followed by the estimation of tree crown diameter (TCD). The 

chapter then explores Diameter at Breast Height (DBH) estimation from TCD using machine 

learning models. The key findings are summarized at the end of the chapter. 

Chapter Five: Discussion and Conclusion provides a detailed discussion of the results and also 

highlights limitations of the study and suggests directions for future research. 
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Chapter Two: Literature Review 

Accurately estimating tree crown diameter (TCD) and other related metrics, such as the diameter 

at breast height (DBH), is crucial for biomass estimation. Therefore, a literature review is needed 

to know the allometric relationships and equations of the spruce tree. Another literature review to 

consider is about the crown segmentation methods which are varied from different types of 

datasets and segmentation models.  

By analyzing existing methods and identifying research gaps, this chapter sets to push the 

boundaries of tree crown segmentation and measurement techniques, offering a refined approach 

to estimating spruce tree metrics from aerial images. 

  

2.1 Spruce Tree Allometric Relationships papers 

There is few research about the relationship between Spruce trees metrics. We noticed that 

many of the research is dated between 1993 and 2010. And we suspect that the allometric 

relationship may change and this is due to global warming, soil quality change, and the location 

of the study. However, we need to conduct this literature review to know how the forester’s 

scientist took their measures and how they quantify it into a regression model. 

The relationship between Diameter at Breast Height (DBH) and dry biomass is studied by 

Gower et al. (1993) mentioned in [1] was the best example that we will compare. Widlowski et al 

[1] made a comprehensive direct result of the allometries. Gower et al. (1993) in the paper, 

developed this equation, which is based on DBH, to estimate the biomass in kilograms per tree. 

𝑊𝑠 = 0.105196 ⋅ 𝐷𝐵𝐻2.310 [kg tree−1] (𝑟2 = 0.975)                 (Equation 2-1) 

𝑊𝑙𝑏 = 0.011350 ⋅ 𝐷𝐵𝐻2.570 [kg tree−1] (𝑟2 = 0.976)                (Equation 2-2) 

𝑊𝑑𝑏 = 0.027669 ⋅ 𝐷𝐵𝐻2.226 [kg tree−1] (𝑟2 = 0.765)               (Equation 2-3) 
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𝑊𝑓 = 0.029174 ⋅ 𝐷𝐵𝐻2.292 [kg tree−1] (𝑟2 = 0.960)             (Equation 2-4) 

where: 

• 𝑊𝑠 = Stem Dry Weight 

• 𝑊𝑙𝑏 = Live Branch Dry Weight 

• 𝑊𝑑𝑏 = Dead Branch Dry Weight 

• 𝑊𝑓 = Foliage Dry Weight 

The total tree biomass is given by: 

𝑊𝑡 = 𝑊𝑠 + 𝑊𝑙𝑏 + 𝑊𝑑𝑏 + 𝑊𝑓                                    (Equation 2-5) 

Please note that we can’t verify the dry biomass ourselves in the dataset. Because of this 

limitation, we can rely on this equation to calculate the biomass. 

On the other side, we verify if the relationship between crown diameter and DBH that we 

obtained matches the equation developed by Nagel et al. (2002) mentioned in [1] below: 

𝐶𝑟 = (0.6122 + 0.0536 ⋅ 𝐷𝐵𝐻) [m]                             (Equation 2-6) 

where: 

• 𝐶𝑟 = Crown diameter 

• 𝐷𝐵𝐻 = Diameter at Breast Height 

 

This equation can be compared to our results and verify if our measurements are true or not. 

Although, these equations came from Norway Spruce trees, we believe that White and blue Spruce 

share similar features. However, the results later on in chapter 4 shows that they are different and 

need different allometric approach.  
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Figure 1: Explains the relationship between DBH and crown radius Cr for Norway spruce.  

 

The figure above will be used to compare our results and see if we are in the right direction or not. 

This will increase the credibility of our measurements of DBH and Tree Crown Diameter TCD. 

The trend should be similar to this graph. We choose this paper, mainly because we can use the 

previous findings and see if the trees are affected by weather, soil, location of the studied spruce 

trees. 

There are some other papers that tackle this issue concerning spruce trees. Sharma RP et al. [2] 

shows that crown dimensions correlate with tree growth and are used as predictors in growth 

models. The crown-to-bole diameter ratio (CDBDR), which compares crown width to DBH, was 

modeled using data from Norway spruce and European beech stands, achieving R² values of 0.73 
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(spruce) and 0.78 (beech) with a spatially explicit mixed-effects model, outperforming the non-

spatial model with R² values of 0.71 (spruce) and 0.76 (beech). F Colin et al. [3] proposes a new 

method for assessing wood quality using regional inventory data and includes a wood quality 

simulation software that requires detailed input on tree branchiness and morphology. The study 

focuses on 117 Norway spruce trees sampled in northeastern France and constructs models to 

predict key crown characteristics, such as crown position, size, insertion angle, and branch whorls, 

based on DBH, total height, age, and growth unit position along the stem. Filipescu CN et al. [4] 

highlights how remote sensing advancements provide detailed forest information efficiently, but 

individual tree stem diameter cannot be directly measured from remote data and must instead be 

estimated using tree crown, height, and stand structure attributes. Predictive models using a 

nonlinear mixed-effects approach were developed for black spruce, Douglas-fir, and lodgepole 

pine, achieving root mean squared error (RMSE) values between 0.9 and 1.8 cm, representing 10–

11% of the mean diameter. The study emphasizes the importance of including crown area and 

spacing/thinning variables to enhance the predictive performance of diameter models. Hall RJ et 

al. [5] studied on the performance of 12 diameter prediction models, which included linear and 

logarithmic transformations of tree height and crown area. The models were tested for several 

species, including white spruce, lodgepole pine, trembling aspen, and balsam poplar. While all 

models were statistically significant, their performance varied across species and model forms. 

Two models were identified for further investigation. The study found that tree height was 

generally more correlated with DBH than crown area, except for lodgepole pine. Additionally, it 

highlighted that using both tree height and crown area improves prediction accuracy but increases 

the measurement cost significantly, from $10.29 to $17.50 per plot. 
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Koji Shimano [6] explored the relationship between DBH and crown projection area (CPA) for 

both deciduous and coniferous trees using several models, including a newly proposed one. Among 

the four models tested, the power-sigmoid function proved to be the most suitable due to its good 

fit and mechanistic meaning. This model demonstrates that CPA increases with the second power 

of DBH, but the rate of increase slows as DBH continues to grow. The power-sigmoid function 

can also be transformed to describe individual basal area (IBA)-CPA relations as a single-saturate 

function, showing high compatibility between the two approaches. 

When analyzing the differences in DBH-CPA relationships between deciduous and coniferous 

trees, it was observed that both groups had similar initial CPA growth rates. However, CPA growth 

slowed earlier for coniferous trees compared to deciduous trees. The power-sigmoid function 

provides a meaningful way to examine the DBH-CPA relationship, allowing researchers to analyze 

both the initial CPA growth rate and the final form of the tree independently.  

Samantha J. et al. [7] focused on developing models for tree crown radius for several conifer 

species in California, using typical forest inventory variables such as DBH, tree height, height-to-

crown base, crown class, basal area per hectare, and trees per hectare. The models were fitted using 

both ordinary and weighted least squares methods. For most species, the ordinary least squares 

linear regression with DBH as the sole independent variable was found to be sufficient. While 

adding other independent variables provided some minor improvements, the impact was limited. 

Turan Sönmez [8] tested seven models for predicting crown diameter using DBH for Picea 

orientalis L. (Link.) in Artvin, based on data from 4,208 trees measured across 117 temporary 

sample plots. The sample plots were categorized by 20-year mean age class intervals and further 

grouped by 2 cm DBH intervals. Statistical analysis was conducted on the mean DBH and crown 

diameter across age classes. 
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Among the seven models, one linear and six non-linear functions were tested to model the DBH-

crown diameter relationship. The regression analysis indicated a statistically significant (P > 0.05) 

and strong relationship (R² > 0.80) between DBH and crown diameter. Several models—cubic, 

compound, growth, and exponential—were found to have similar R² values. However, the cubic 

model provided the best fit, demonstrating the strongest predictive capability for the relationship 

between DBH and crown diameter. Vezina PE [9] found a strong correlation between crown width 

and diameter at breast height (DBH) for open-grown balsam fir and white spruce. Using this 

relationship, Crown Competition Factor (CCF) values were applied to even-aged balsam fir stands 

across various ages and site indices to evaluate their relationship with other stand density measures. 

The preliminary results suggest that CCF is an effective metric for expressing stand density in 

even-aged balsam fir stands. However, the utility of CCF will become even more significant if it 

can be successfully linked with growth and yield, providing a more comprehensive understanding 

of forest stand productivity. 

 

2.2 Existing Research on TCD detection 

Several papers in 2024 have attempted to estimate the diameter of the tree crown by two 

measurement methods. The first one is called LIDAR technology, which is expensive equipment 

but produces high quality dataset and has the highest accuracy. Here are some papers that focus 

on this method: 

Table 1:  Research Papers using LIDAR Technology 

Author method Results 

Solares et al. 

[10] 

CAE (Convolutional Autoencoder) (P%) = 98.9 
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Yang et al. [11] Point Transformer deep learning network Intersection over Union 

(IoU) of 96.0% 

Zhu et al. [12] segmentation based on hierarchical strategy (SHS) 

(which achieved precision = 1) 

extracted crown 

diameters with R² 

values of 0.91 

Fu Y et al. [13] multiscale adaptive local maximum filter for 

treetop detection, the Dalponte region-growing 

method for crown delineation, and mean-shift 

voxelization with supervoxel-weighted fuzzy c-

means clustering to refine crown boundaries 

Accuracy = 87.28% 

Deng S et al. 

[14] 

trunk point distribution indicator (TPDI) for 

identifying potential tree trunk positions, followed 

by RANSAC-based 3D line fitting to differentiate 

trunks from understory vegetation, and a region-

growing segmentation method refined through 

crown shape and vertical profile analysis 

F-scores ranging from 

0.920 to 1.000 across 12 

plots 

Deng S et al. 

[15] 

combining trunk point distribution indicators with 

treetop extraction from canopy height models 

(CHM) and marker-controlled watershed 

segmentation to refine trunk positions and 

differentiate true and false detections through 3D 

trunk and branch analysis 

F-scores ranging from 

0.723 to 0.829 across 

three plots 
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Yu J et al. [16] adaptive crown-shaped algorithm for individual 

tree segmentation and applying a region-growing 

method 

individual tree 

segmentation accuracy 

= 87.7% 

Dersch S et al. 

[17] 

Mask R-CNN with the normalized cut clustering 

method to segment and classify individual trees 

F1 scores of 79% 

Zhang C et al. 

[18] 

hierarchical filtering and clustering (HFC) 

algorithm using intensity filtering, SVD filtering, 

SOR, and clustering techniques 

F1-score variations of 

1–3 percentage points 

Chen Q et al. 

[19] 

bottom-up ITDS framework based on DBSCAN 

clustering for initial trunk detection, KNN 

reclassification of non-core points, RANSAC 

cylinder fitting for trunk correction, and centroid-

based seed point calculation for individual tree 

segmentation (ITS) 

overall recall of 95.2%, 

precision of 97.4%, and 

an F-score of 0.96 

Burmeister et 

al. [20] 

coarse-to-fine algorithm for tree instance 

segmentation, combining the marker-controlled 

Watershed algorithm for coarse segmentation with 

3D region growing for refinement in areas with 

overlapping crowns, along with Voronoi 

segmentation-based error removal 

Precision = 83.9 % 

Cheng D et al. 

[21] 

TreeScope v1.0, a robotics dataset for precision 

agriculture and forestry, providing LiDAR data 

collected by UAVs, mobile robots, and human-

Overall accuracy = 

95.5% 
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operated platforms along with 1,800 manually 

annotated semantic labels and field-measured tree 

diameters, aiming to improve tree counting, 

mapping, and diameter estimation 

Wang L et al. 

[22] 

CHM segmentation,  

point cloud clustering segmentation,  

and layer stacking fitting segmentation 

The point cloud 

clustering segmentation 

algorithm achieved the 

highest segmentation 

accuracy at 93%, 

followed by CHM 

segmentation at 88% 

and layer stacking 

fitting segmentation at 

84% 

Saeed T et al. 

[23] 

3 × 3m fixed window size method on unsmoothed 

CHM 

Dalponte 2016 method 

AMS3D algorithm 

AMS3D algorithm 

achieved the highest F-

score of 0.67 with 

crown radii errors 

within 0.1 m 

Li Q et al. [24] deep learning-based street tree segmentation 

method that maps 3D MLS point clouds to 2D RGB 

images for segmentation using algorithms like 

YOLOv8, YOLACT, and BlendMask, and then 

The YOLOv8 model 

achieved the best 

performance with an 

IoU range of 
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maps the 2D segmentation mask back to the 3D 

point cloud to generate and optimize tree proposals 

0.85:0.05:0.95, a 

precision of 0.9988, 

recall of 0.9986, F1-

score of 0.9987, and a 

segmentation time of 26 

ms per image and 4.05 

ms per scanline 

Seidl J et al. 

[25] 

DBSCAN clustering combined with graph theory, 

where clusters are connected into a 3D graph 

The segmentation 

accuracy, compared 

with manual labels 

collected from 

orthophoto images, 

ranged between 82% 

and 93% 

Terekhov V et 

al. [26] 

specialized tree clustering algorithm Accuracy not clear 

Kurdi FT et al. 

[27] 

rotating surface simulations of segmented tree point 

clouds, calculating X, Y, and Z matrices based on 

the tree's projection on the horizontal plane to 

enable modeling, visualization, and geometric 

parameter calculation 

fit between 0.3 and 0.89 

m 
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Tarsha Kurdi et 

al. [28] 

algorithm for 3D modeling of tree trunks using laser 

scanning point clouds from ALS and TLS data 

achieved a modeling 

accuracy better than 4 

cm 

 

Zhu Y et al. 

[29] 

feature extraction module of PointNet++ to detect 

understory branches and employing a graph-based 

segmentation algorithm that constructs a directed 

acyclic graph from grey image clustering 

components to segment individual tree crowns 

PointNet++ achieved an 

average recall of 94.6% 

for tree trunk detection 

and precision of 96.2% 

Shao J et al. 

[30] 

Mobile Laser Scanning (MLS) and deep learning, 

with the ForestSPG model performing large-scale 

semantic segmentation on LiDAR data to map 

individual stems and measure Diameter at Breast 

Height (DBH) 

Backpack LiDAR 

achieved an RMSE of 

1.82 cm and UAV 

LiDAR achieved an 

RMSE of 3.13 cm for 

DBH measurements on 

trees with DBH greater 

than 38.1 cm (15 in) 

Fallah M et al. 

[31] 

multi-scale individual tree detection (MSITD) 

algorithm, which combines raster-based and point-

based approaches for accurate tree detection from 

LiDAR data, and uses the SAFER semi-supervised 

regression algorithm to estimate Diameter at Breast 

Height (DBH) and Aboveground Biomass (AGB) 

MSITD algorithm 

improved extraction 

and matching rates by 

13%. 

For DBH, SAFER 

achieved an RMSE of 
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3.38 cm, MAE of 2.84 

cm, and R² of 0.59 

 

Wang Z et al. 

[32] 

Multilevel Intuitive Attention Network (MIA-Net) 

for point cloud segmentation, utilizing local 

trigonometric encoding for fine-grained semantics, 

feature sampling with a point offset mechanism, 

and intuitive attention interaction to capture both 

local and global features efficiently 

Overall Accuracy (OA) 

of 96.2% 

Tang S et al. 

[33] 

generating a structured 3D synthetic tree dataset of 

13,000 tree models from ten common species, 

including detailed point clouds with hierarchical 

structures, branch-leaf separation, and tree skeleton 

information for enhanced testing and evaluation. 

validated through 

airborne laser scanning 

simulations and the 

application of state-of-

the-art algorithms for 

tasks such as 3D 

reconstruction, 

individual tree 

segmentation 

Sun H et al. 

[34] 

improved PointNeXt model that fuses ALS and 

TLS point cloud data, employs a Mean Shift 

algorithm with KdTree to remove gaps, and 

calculates canopy volume through convex hull area 

summation 

mean IoU of 98.19%, a 

RMSE of 0.18 m³, and 

an R² value of 0.92 
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Mukhandi H et 

al. [35] 

SyS3DS (Systematic Sampling for 3D Semantic 

Segmentation) 

Overall accuracy = 

91.3% 

Wielgosz M et 

al. [36] 

3D CNN architecture inspired by PointGroup The model 

outperformed 

Point2Tree and 

TLS2trees by 20-30% 

in detection, omission 

Yan Y et al. 

[37] 

watershed algorithm and CHM-based methods F-score of 0.761 

 

Although LIDAR technology is known for its high costs, researchers have sought to reduce 

expenses by utilizing aerial drones to capture data from a top-down perspective, operating within 

a 2D plane. Modern drones are equipped with advanced sensors that provide highly accurate 

measurements of height, location coordinates, camera angle, and image quality. This precision 

enables researchers to gather reliable data. By using computer vision techniques and deep learning 

models, researchers have been able to segment tree with high accuracy, making drone-based 

methods a good alternative to traditional LIDAR for this application. Below is the table of recent 

studies on top view-based and side view-based dataset: 

Table 2:  Image Segmentation Research Papers Based on Top and Side Views 

Author Method Results 

Condat R et 

al. [38] 

ConvexMask, a convolutional neural 

network (CNN) for real-time tree 

instance segmentation, using a label 

Accuracy = 68.4% 
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representation approach that combines a 

convex exterior polygon to define tree 

extremities and a binary mask to handle 

occlusions and details 

Guo Z et al. 

[39] 

ATT-MRCNN model, which integrates 

channel and spatial attention 

mechanisms with Mask RCNN for 

target detection and identification of 

citrus images, using transfer learning to 

optimize training efficiency and 

parameter initialization 

recognition rate exceeding 95% 

Lavania P et 

al. [40] 

U-Net-based deep learning model for 

semantic segmentation 

accuracy of 84–89%, an F1 score of 

0.91–0.94, and an Intersection over 

Union (IoU) of 0.79–0.89 

Chen J et al. 

[41] 

YOLOv8 for apple tree organ 

segmentation during the bud stage by 

integrating ConvNeXt V2, Multi-scale 

Extended Attention Module (MSDA), 

and Dynamic Snake Convolution 

(DSConv) to improve the network’s 

ability to extract contextual information 

82.58% mean Precision (mP), 

74.58% mean Recall (mR), 77.94% 

mean Dice (mDice), 64.91% mean 

IoU (mIoU), and 79.75% mean 

Average Precision (mAP) 

Bu X et al. 

[42] 

DFSNet (Dynamic Fusion 

Segmentation Network) 

accuracy rate of 89.43% and mIoU of 

74.05% 
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Liu H et al. 

[43] 

cluster transformer for the encoder, 

which includes a cluster token mixer 

and spatial-channel feed-forward 

network (SC-FFN) to reduce redundant 

information and extract multiscale 

spatial and channel data. The D-cluster 

transformer in the decoder transfers 

robust features without traditional 

upsampling methods 

accuracy rate of 63.15% 

Steier J et al. 

[44] 

manual tree crown annotations used for 

training deep learning models in forest 

stand mapping, comparing them against 

tree reference data from an official tree 

register and UAV laser scanning (ULS) 

segments at two study sites 

manual annotations correctly 

detected only 37% of tree crowns in 

the forest-like plantation and 10% in 

the natural forest 

Arakawa T et 

al. [45] 

YOLOv4 object detection algorithm R² value of 0.98 

Moysiadis V 

et al. [46] 

machine learning-based tree detection 

method using Detectron2 and YOLOv8 

to isolate individual trees in an orchard 

and generate tree masks, followed by 

OTSU thresholding to improve crown 

coverage 

F1-Score of 94.85% for cherry tree 

detection and IoU of 85.30% for 

crown extraction. 
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Wu W et al. 

[47] 

DR-YOLO instance segmentation 

algorithm 

DR-YOLO model achieved a 2.0% 

improvement in AP@0.5 and 1.1% 

improvement in Precision over 

YOLOv8-seg 

Zhang Y et 

al. [48] 

mask R-CNN 

 

average overall accuracy of 0.953 

Xu J et al. 

[49] 

BlendMask algorithm to accurately 

segment tree crowns and introduced a 

Bayesian neural network to model the 

relationship between tree crown size 

and diameter at breast height (DBH) 

BlendMask algorithm achieved an 

accuracy of 0.893, compared to 0.721 

for the traditional watershed 

algorithm. The model's DBH 

predictions for Ginkgo biloba, Pinus 

tabuliformis, and Populus nigra 

showed average discrepancies of 

0.15 cm, 0.29 cm, and 0.49 cm 

Mai Y et al. 

[50] 

Taoism-Net, a minimalist deep learning 

model designed for real-time, pixel-

level segmentation 

4.8% in mIoU 

Vasavi S et 

al. [51] 

semantic segmentation, U-Net with 

ResNet34 as its backbone 

accuracy of 92% in detecting tree 

canopy and an accuracy of 84% in 

classifying the objects 

Cloutier M et 

al. [52] 

Convolutional Neural Network (CNN) F1-score of 0.72 
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Zhang H et 

al. [53] 

Double-Branch Multi-Scale Contextual 

Network (DB-MSC Net) 

overall accuracy (OA) was improved 

by at least 0.16% compared to 

previous methods 

Nashat AA et 

al. [54] 

instance segmentation algorithm based 

on transfer learning using the Mask 

RCNN architecture with ResNet101 as 

the backbone and Feature Pyramid 

Network (FPN) for feature extraction 

test accuracy of 97.76% and 

mAP@50:95 of 100% 

Lin Y et al. 

[55] 

YOLO and Mask R-CNN Accuracy of YOLOv9 on branch 

detection = 98.8% 

Zhang C et 

al. [56] 

Mask R-CNN model with ResNeXt-50 

as the backbone network 

Accuracy of 92.2% 

Wang J et al. 

[57] 

YOLO-DCAM precision of 96.1%, recall of 93.0% 

Prousalidis K 

et al. [58] 

YOLOv8n, RepViT-SAM, and 

EdgeSAM 

YOLOv8n outperformed other 

models by 95% IoU 

Khan Z et al. 

[59] 

YOLOv8 mean average precision (mAP) of 

93.3%, a precision (P) of 93.6% 

Zhu F et al. 

[60] 

CEDAnet bounding box AP of 0.498 and a 

segmentation AP of 0.493 on the 

iSCHID dataset, and a bounding box 

AP of 0.706 and a segmentation AP 

of 0.703 on the iSMMID dataset 
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Yang T et al. 

[61] 

YOLO and SegNet mean intersection over union (mIoU) 

of 92.0%, mean pixel accuracy 

(mPA) of 95.9% 

Xie Y et al. 

[62] 

Mask R-CNN with ResNet50, 

ResNet101, and ResNeXt101 for 

instance segmentation 

Bounding Box Average Precision 

(Box-AP) of 51.697% and 

Segmentation Average Precision 

(Segm-AP) of 54.946% 

Deka B et al. 

[63] 

modified Mask R-CNN instance 

segmentation model with a channel 

attention mechanism 

mean average precision (mAP) of 

81.47%, a recall of 92.81%, and an 

F1 score of 88.40% 

Fu H et al. 

[64] 

Mask R-CNN precision of 0.896, recall of 0.916, F1 

score of 0.906, and IoU of 0.822 

Wen F et al. 

[65] 

Mask R-CNN precision of 0.677 

Chadwick AJ 

et al. [66] 

Mask R-CNN (mAP) of 72%, with F1 scores of 

69% for lodgepole pine and 78% for 

white spruce 

Chen W et al. 

[67] 

Att-Mask R-CNN 65.29% mean average precision for 

detection, 80.44% mean intersection 

over union for segmentation, and a 

90.67% 

Sapkota R et 

al. [68] 

YOLOv8 (one-stage) and Mask R-CNN 

(two-stage) 

YOLOv8 outperformed Mask R-

CNN across both datasets, achieving 
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a precision of 0.90 and a recall of 

0.95 

 

Most of the method consists in using mask R-CNN for higher precision but slow calculation, 

or YOLO for higher speed and real time detection. The papers that achieved high accuracy are the 

ones with the individual trees, which makes easy for any model to detect and segment those trees. 

Some studies consist of calculating the biomass of a group of trees that can’t be clearly identified. 

Depending on the difficulty of the dataset, the model was able to perform very well, and sometimes 

too well due to the nature of the dataset. But if it’s in canopy area, in which the trees are dense. 

Then the model will find it difficult to detect and segment a tree crown. 

2.3 Research Gap 

Most of the existing research on tree detection and crown segmentation relies heavily on R-CNN-

based models to mask out trees or utilize expensive LiDAR data to achieve high accuracy. While 

these approaches have proven effective, they come with limitations. R-CNN models often require 

complex layers, longer training times, and higher computational resources, which can limit their 

practicality for large-scale forest monitoring. Similarly, LiDAR data, though highly precise, is 

costly to collect and process, making it less accessible for routine applications or in regions with 

limited resources. 

Our method aims to fill this gap by offering an alternative approach that balances accuracy, 

efficiency, and cost-effectiveness. By using YOLOv11 instance segmentation, we provide a 

lightweight, fast, and accessible solution for tree crown segmentation, it can analyze the image in 

0.63 seconds using only CPU processor. This approach eliminates the need for costly LiDAR data 

while maintaining competitive accuracy. Additionally, it simplifies the detection process, making 
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it more feasible for real-time monitoring and practical forestry applications. This study contributes 

to the existing body of knowledge by demonstrating that accurate tree crown and diameter 

predictions can be achieved using affordable tools and modern deep learning techniques. 

2.4 Summary 

Based on the reviewed literature, we can summarize the research gaps with the following key 

points: 

- Few studies have utilized YOLO for tree segmentation tasks, with most research focusing 

on other deep learning methods or LIDAR type of dataset. 

- Very few papers extend beyond tree segmentation to include calculations of critical tree 

parameters such as Diameter at Breast Height (DBH) and biomass estimation, limiting the 

practical applications in forestry and ecosystem management. 

- Only one paper briefly mentioned the Canadian Spruce tree, without going deeply into the 

unique aspects or ecological significance of the species, indicating a lack of focused 

research on this important tree type. 

The allometric study will provide us with a way to calculate and compare the relationship of the 

spruce features and measures. The literature review confirms that DBH correlates with the TCD 

value, and that we can use DBH to calculate the dry biomass of the spruce. 

 



SPRUCE FOREST BIOMASS ESTIMATION H. ZOUAGHI 

 24 

Chapter Three: Methodology 

This section outlines the systematic approach employed to predict the tree crown areas using 

two methods: FRIST METHOD is YOLOv5 + WST compared to SECOND METHOD YOLOv11 

instance segmentation. The process involves capturing high-resolution aerial images using drones, 

annotating these images for tree crown detection, and applying YOLO models to automate the 

identification and segmentation of tree crows. Then, empirical correction method is used to refine 

the predictions of the first method, ensuring more accurate estimation of tree crown areas. 

Below are two visual representations of the workflow utilized in this study, illustrating each 

step from entry data (which is an image) to the predicted TCD after YOLO training. 

 

          Figure 2: First method YOLOv5 + WST 

YOLOv5 

Bounding Box 
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NMS(Non-Maximum 

Suppression)Adjustment 

Convert to 
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Segmentation 

TCD estimation 

Result process 
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        Figure 3: Second Method YOLOv11 Instance Segmentation Technique 

3.1 Materials 

Drone: DJI MAVIC 3 CLASSIC with a 4/3 CMOS Hasselblad camera was used for 

capturing high-resolution images of the study area: 

- Specs: 20 MP effective pixels, 24 mm equivalent format, and an 84-degree field of view 

Measurement Tools: 

- Haglof Vertex V Hypsometer: Used for measuring the crown diameter of the trees with an 

accuracy of ± 1cm 

- Richter 5m Tree Diameter Tape: Used to measure the Diameter at Breast Height (DBH) of 

trees with an accuracy of ± 2 to 5 mm 

YOLOv11 instance segmentation  

Convert to 

Meters (GSD) 
Diameter in 

Pixels 

Max Distance of the 

segmented crown 

GSD x Diameter 
Compare with 

real 

measurements 

Final Predictions 

TCD estimation 

Result process 
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Figure 4: Tools Used for the Project 

 

3.2 Data Acquisition 

Images were taken from two different heights (50 meters and 70 meters) in batches for each 

area. The images were taken at 11 am on three consecutive sunny days. A total of 72 drone images 

were captured and 2,155 of two different spruce tree species (White spruce and blue spruce) in the 

area marked by the map figure. These two types of spruce share the same allometric property, the 

only difference is in their color. The division of these spruces will increase the precision of our 

model in terms of identification and not confuse the color of the spruce. We had before conducted 

the detection training without the separation of two types only for the model to mistakenly miss 

some Spruces and detect some other species such as Pine trees. We also believe that the color of 

each spruce tree gives different textures and different edges in the image, which explains why we 

decided to separate two types. The datasets are obtained from the pure spruce region, mixed region, 

condensed tree area, spreading tree area, lined up tree area, and half-infected abnormal tree areas. 
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The goal of covering various regions is to ensure diversity in tree crown shapes and sizes and 

challenge our model to perform in all types of areas. The reason why the study area is limited is 

due to the prohibition of the flight area. This area is the only area with a good number of public 

spruce trees that is not located near the housing area. 

 

Figure 5: Overview of the study area: Geographical location of University of Regina Saskatchewan taken by google 

map 3737 Wascana Pkwy, Regina, SK S4S 0A2 

 

The same number of trees on-site measurements are conducted with help of Haglof Vertex V 

Hypsometer tool to measure TCD. In addition, 303 samples of DBH are taken using diameter 

reeling tape. The measuring took a total of 21 hours carefully labeling each tree by its 

corresponding number.  

These on-site measurements are to ensure the validation of our model with real data; these 

measurements were taken and recorded in multiple .csv files that will allow us to compare the 

prediction that the model made within the same tree from that area.  The statistical distribution of 
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the crown diameter is shown in figure. We can see from the figure that the distribution is following 

a normal distribution. 

 

Figure 6: Onsite measurement for crown diameter and DBH (excel file and on paper) 
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Figure 7: An overview on the measured crown diameter distribution (using Haglof Vertex V Hypsometer) 

This histogram suggests that most trees in the sample have medium-sized crowns, with a central 

tendency around 3.4 to 3.9 meters in diameter. There are fewer trees with very small or very large 

crown diameters, and the distribution slightly skews toward larger diameters. Most trees (more 

than 80%) have crown diameters within the range of (2.9, 5.4] meters. This general distribution 

pattern is consistent with natural growth distributions in tree populations, where the majority of 

trees are of moderate size, with fewer extremes. Therefore, we can ensure that our measurement is 

credible. 
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Figure 8: An overview on the measured DBH distribution of 303 samples 

 

This DBH histogram of 303 samples, has the same distribution as the Crown Diameter histogram. 

Note that this does not show that there is a relationship between them. But it shows our model 

domain, which say that our accuracy is correct in that distribution and interval. If the majority of 

the trees has smaller or bigger to either extremity of the distribution, our model might behave 

differently.  

3.3 Data Preparation 

Labeling with bounding box for YOLOv5: 

In the first method, manual labeling of tree crowns was conducted using the LabelImg tool 

(example shown in figure 9), a graphical annotation software for drawing bounding boxes around 

objects of interest in images.  

The bounding box manual labeling took 3 hours. Each tree crown was enclosed in a bounding 

box, and the labels were saved in a YOLO-compatible format as `.txt` files. These files included 
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essential information such as the class of the object (tree crown), the x and y coordinates of the 

bounding box center, as well as its width and height. All coordinates and dimensions are 

transformed to 640 pixels height to ensure compatibility with the YOLO model (because YOLO 

model can accept only this type of image dimensions). A dataset was subsequently created, 

comprising images and their corresponding labeled bounding boxes. This dataset was split into 

80% training and 10% validation sets and 10% testing, where the training data was used to teach 

the YOLO model how to identify tree crowns. The validation set was reserved to evaluate the 

model's performance on unseen data, ensuring its ability to generalize. This dataset is well planned 

to ensure accurate predictions of crown dimensions, which were later used to analyze crown 

diameter distribution in forested areas. 

We manually label 2,155 trees across 72 different images for training: White spruce: 1,248 

samples, these trees are very common in Canadian land. Their leaves are dark green even though 

they are called White type.  

The other type is blue spruce: 907 samples, they have a light blue close to white when it is struck 

by sunlight. They are a special gene that is common in country areas. They do share the same 

characteristic in terms of allometric measurements. These trees are usually found in gardens and 

playgrounds. And due to its domestic nature and beauty, gardeners choose them as decoration. We 

took those trees into consideration because it is sometime grows next to the white common spruce 

trees. 
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Figure 9: Bounding Box Labeling 

 

Labeling with Segmentation for YOLOv11(second method): 

The second method utilized for instance segmentation, where each tree crown is not only detected 

but also segmented and labelled individually. This process was also carried out using the Labelme 

tool, but instead of bounding box we are using it for instance segmentation tasks. The segmentation 

labelling took around 16 hours. Please note that this is a different labelling than the bounding box. 

In this method, instead of simple bounding boxes, precise polygonal outlines were drawn around 

each tree crown, allowing for a more accurate representation of the crown's shape and boundaries. 

The file segmentation coordinates then saved in JSON Source File. After labeling the tree crowns, 

the segmented dataset was further processed using the Roboflow platform. Roboflow provides a 

suite of tools for data management, including data augmentation to create 121 images for the 

training set indicated in figure 11. This data augmentation happened in both datasets ( the bounding 
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box dataset and the segmentation dataset), which helps increase the variability of the dataset by 

applying transformations such as rotation, flipping, and scaling. This augmentation process 

ensures that the model trained on this dataset becomes more robust and can generalize better to 

unseen data. Finally, the augmented dataset was automatically split into training, testing, and 

validation sets within Roboflow. This split enables the model to learn from the training set, while 

the validation set helps tune the model during training, and the test set is used to assess the model’s 

performance on completely unseen data. This data can be extracted in google Colab with the 

combability with YOLOv11 model. 

 

Figure 10: Segmentation using Labelme app (red is blue spruce, green is white spruce) 

 

Figure 10 shows the intensity of the labeling task, which is took 16 hours to label all 2,155 trees 

of the spruce and other type won’t be labeled and will be treated as a background. The labeling 
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task is done by clicking on the contour of each tree. Each tree consists of an average of 30 

connected dots to make a detailed contour. We also respect the classification of the white spruce 

and the blue spruce, and not treat those two types as one.  

 

Figure 11: Data processing in Roboflow website after segmenting in labelme tool 

 

3.4 YOLOv5 Model Training (FOR FRIST METHOD) 

The objective of training a YOLOv5 model is to automate the detection of tree crowns, thereby 

reducing the need for manual labeling. In the study area, there are two types of spruce trees: white 

spruce and blue spruce. Although differentiating between these two species is not a primary focus 

of the research, the dataset was created with separate labels for white and blue spruce. This 

approach allows the model to better distinguish spruce trees from other species that are not of 

interest, enhancing its ability to identify specific characteristics of spruce trees and minimizing 

false detection of other tree species. In the following table the key elements of the YOLOv5 

architecture are shown, where 'Layer' is the index of each layer, 'Params' indicates the number of 
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trainable params, 'Module' specifies the type of operation (e.g., Conv for convolution), and 

'Arguments' define the configuration for each module, such as input/output channels and kernel 

size; for example, in the layer 0, 3 is number of input channels, 32 is number of output channels, 

6 is kernel size, the first 2 is stride, and another 2 is padding. The rest Arguments are not padding 

value. 

Table 3: YOLOv5 Model Architecture 

Layer Params Module Arguments [input channels, output channels, 

kernel size, stride, padding] 

0 3,520 Conv [3, 32, 6, 2, 2] 

1 18,560 Conv [32, 64, 3, 2] 

3 73,984 Conv [64, 128, 3, 2] 

5 295,424 Conv [128, 256, 3, 2] 

7 1,180,672 Conv [256, 512, 3, 2] 

9 656,896 SPPF [512, 512, 5] 

... ... ... ... 

18 147,712 Conv [128, 128, 3, 2] 

20 296,448 C3 [256, 256, 1, False] 

23 1,182,720 C3 [512, 512, 1, False] 

24 18,879 Detect [2, [[10, 13, 16, 30, 33, 23], ... [128, 256, 512]] 

 

The process of training and evaluation is the following: 

• Manually label 2,155 trees across 72 different images for training 

– White spruce: 1,248 samples 
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– Blue spruce: 907 samples 

• Train for 50 and 100 epochs to evaluate performance 

Use different evaluation metrics such as: 

IoU =
Area of Intersection

Area of Union
                                                   (Equation 3-1) 

Precision =
Correct Detections

Detected Trees
                                           (Equation 3-2) 

Recall =
Correct Detections

Total Trees
                                                (Equation 3-3) 

F1 = 2 ×
Precision×Recall

Precision+Recall
                                                 (Equation 3-4) 

where: 

IoU (Intersection over Union): This metric is used to assess how well the predicted bounding 

box overlaps with the ground truth bounding box. If the result is more than 0.5 it is counted as a 

correct detection. 

• Area of Intersection: The area where the predicted and actual bounding boxes overlap. 

• Area of Union: The combined area covered by both the predicted and actual bounding 

boxes. 

Precision: it measures how accurate the model is at detecting objects. 

• Correct Detections: The number of correctly predicted trees (based on IoU threshold). 

• Detected Trees: The total number of trees detected by the model. 

Recall: measures how well the model captures all the actual objects (in this case, trees). 

• Correct Detections: The number of correct tree detections. 

• Total Trees: The total number of actual trees present in the image. 

F1 Score provides a balance between precision and recall, helping to evaluate the overall 

effectiveness of the model. 
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3.5 Watershed Segmentation and Contour Adjustment with Non Maximum Suppression 

(NMS) 

WST is used to refine tree crown boundaries from each tree identified by the bounding box of the 

YOLOv5 model.  

Watershed Segmentation works on separating overlapping objects in an image. The inspiration for 

this approach comes from geography. Therefore, the name "watershed lines" refers to those that 

define drainage basins within a landscape. This technique is particularly applicable when 

segmenting touching or overlapping objects, in this case, trees. 

The Watershed algorithm works by viewing the grayscale image as a 3D topographic surface as 

shown in figure 12: 

• Bright areas are interpreted as high points (e.g., ridges). 

• Dark areas are interpreted as low points (e.g., valleys). 
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Figure 12: Watershed technique side view topology from [71] 

The process of WST generally includes the following steps. 

Preprocessing: 

The preprocessing methods are: blurring (to reduce noise), thresholding (to create a binary image). 

Marker-based Segmentation: 

Markers are pixels that are pre-defined as belonging to specific objects or the background. 

There are two types of markers: 

- Foreground markers which are Parts that are certainly part of the object(s). 

- Background markers, Parts that are certainly part of the background. 

Flooding Process: 
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The flooding is carried out in such a way that the regions grow uniformly, and boundaries are 

formed where two different regions meet. 

Constructing Watershed Lines: 

The points where different regions meet during the flooding process are marked as watershed lines, 

effectively forming the boundaries between objects. 

While (NMS) Non-maximum suppression ensures no overlapping contours by supressing 

redundant detection, also helps to adjust the contours for better accuracy. 

3.6 Crown Diameter Estimation for pixel values 

To estimate the area of the tree crown (with watershed or instance segmentation), a critical 

step is calculating the largest distance between two points on the convex hull(it’s the extremities 

of the segmentation which forms a mountain like shape in the pixel values) of the detected contour 

in an image. This distance is initially measured in pixels. However, in order to convert this 

measurement into real-world units (meters), a Ground Sampling Distance (GSD) calculation is 

required. The GSD represents the distance between the centers of two consecutive pixels on the 

ground, as captured by an aerial imaging system, and is fundamental for converting pixel 

measurements into metric units. 

The formula for GSD is given by: 

GSD =
Sensor Width×Flight Altitude

Focal Length×Image Width
                                   (Equation 3-5) 

In this formula: 

• Sensor Width represents the width of the camera sensor. 

• Flight Altitude refers to the altitude at which the aerial images were captured. 

• Focal Length is the distance between the camera lens and the image sensor. 

• Image Width represents the total number of pixels in the width of the image. 
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With these parameters, it becomes possible to calculate the GSD and convert the detected crown 

diameters from pixels to meters. In this project, we will be using the following values: 

• Sensor Width = 13.2 mm 

• Flight Altitude = 50 or 70 meters 

• Focal Length = 12 mm 

• Image Width = 5280 pixels (for first method), 640 pixels (for second method) 

The GSD can be computed, providing a scale factor to translate pixel-based measurements into 

real-world dimensions. This GSD value is crucial when estimating tree crown dimensions or other 

spatial features in the aerial imagery. 

To convert the diameter of the tree crown from pixels to meters, one simply multiplies the 

measured crown diameter (in pixels) by the calculated GSD value. This conversion enables 

accurate estimation of tree crown sizes in meters, given that the camera is calibrated. 

Finally, to compare the original and the predictions, the following evaluation metrics will be used: 

Mean Absolute Error (MAE): 

MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦�̂�|

𝑛
𝑖=1                                            (Equation 3-6) 

Mean Squared Error (MSE): 

MSE =
1

n
∑ (yi − yî)

2n
i=1                                           (Equation 3-7) 

Root Mean Squared Error (RMSE): 

RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)2𝑛

𝑖=1                                    (Equation 3-8) 

Mean Percentage Error (MPE): 

MPE =
1

𝑛
∑ (

𝑦𝑖−𝑦�̂�

𝑦𝑖
)𝑛

𝑖=1 × 100                                 (Equation 3-9) 

where: 
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- 𝑦𝑖 represents the actual value or the true observation at the i-th instance in your dataset. 

- 𝑦�̂� represents the predicted value from your model for the i-th instance. 

- n is the total number of observations in your dataset. 

3.7 YOLOv11 Model Training 

The reason of the usage of v11 instance segmentation is because v5 doesn’t have that option. The 

second reason is that v5 is just a showcase where the performance in detection doesn’t change. 

The third reason is that if we use v11 in detection only, then watershed technique becomes 

obsolete. 

The difference between WST and instance segmentation is that WST use algorithms and pixel hills 

to estimate the contour of the tree crown. But Instance segmentation uses Deep Learning network 

to estimate the same contour but using features instead of pixel values denting. 

In this method, the primary objective of training a YOLOv11 instance segmentation model is to 

detect and segment Spruce tree crowns, mimicking the combined function of bounding box and 

WST. The YOLOv11 model is a cutting-edge deep learning architecture designed for both object 

detection and instance segmentation, making it highly suitable for accurately identifying and 

segmenting tree crowns in aerial images. By leveraging this model, the segmentation process can 

be automated, leading to faster and more scalable tree crown analysis. 

The dataset for training the YOLOv11 model was annotated using the Roboflow platform. 

Roboflow provides a comprehensive set of tools for dataset management, including labeling and 

data augmentation. Through this process, 121 labeled images were generated for training, 2 for 

testing, and 10 for validation. The data augmentation techniques applied, such as rotation, flipping, 

and scaling, increased the variability within the dataset, enhancing the model's ability to generalize 

to unseen data. This augmentation is crucial for improving the robustness of the YOLOv11 model, 
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allowing it to perform well on new images with varying lighting conditions, angles, and tree 

structures. 

Table 4: YOLOv11 Model Summary 

Layer 

(backbone, 

neck, 

head) 

explained 

in figure 

13) 

Params Module Arguments [input 

channels, output channels, 

stride, kernel size] 

0 928 ultralytics.nn.modules.conv.Conv [3, 32, 3, 2] 

1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] 

2 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25] 

3 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 

4 103360 ultralytics.nn.modules.block.C3k2 [128, 256, 1, False, 0.25] 

5 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2] 

6 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True] 

7 1180672 ultralytics.nn.modules.conv.Conv [256, 512, 3, 2] 

8 1380352 ultralytics.nn.modules.block.C3k2 [512, 512, 1, True] 

9 656896 ultralytics.nn.modules.block.SPPF [512, 512, 5] 

10 990976 ultralytics.nn.modules.block.C2PSA [512, 512, 1] 

11 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 

12 0 ultralytics.nn.modules.conv.Concat [1] 
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13 443776 ultralytics.nn.modules.block.C3k2 [768, 256, 1, False] 

14 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 

15 0 ultralytics.nn.modules.conv.Concat [1] 

16 127680 ultralytics.nn.modules.block.C3k2 [512, 128, 1, False] 

17 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 

18 0 ultralytics.nn.modules.conv.Concat [1] 

19 345472 ultralytics.nn.modules.block.C3k2 [384, 256, 1, False] 

20 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2] 

21 0 ultralytics.nn.modules.conv.Concat [1] 

22 1511424 ultralytics.nn.modules.block.C3k2 [768, 512, 1, True] 

23 1474678 ultralytics.nn.modules.head.Segment [2, 32, 128, [128, 256, 

512]] 

 

YOLO11s-seg summary: 355 layers, 10,083,062 parameters, 10,083,046 gradients, 35.6 GFLOPs 

(Floating point operations per second) 
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Figure 13: YOLOv11 architecture according to early analysis from Dr.Priyanto Hidayatullah [69] (low resolution fix) 

 

Figure 11 shows the detailed structure of the new YOLOv11, this is not taken from the YOLO 

author himself, but it was an early analysis of the structure. This is due to Ultralytics company not 

releasing the paper of this model. However, in there model code, we can understand how this 

model works.  

The model is divided into three parts: Backbone, Neck, and Head. 
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The Backbone: is the feature extraction component which downsample the initial inputs into flat 

one. It has certain layers which I will explain here: 

Convolutional Layers (Conv): 

The input image of size (640 x 640 x 3) passes through a sequence of convolutional layers, 

gradually reducing the spatial dimensions while increasing the depth. 

Each Conv layer is followed by a stride (s=2), which reduces the spatial resolution, effectively 

downsampling the image to extract higher-level features while losing spatial resolution. 

C3k2 Blocks: 

Are repeats block that are used to define n parameter to contact with the bottom neck when the 

layers are upscaling. It is a new block which is introduced to YOLOv11. It is also controlled by 

the expansion value that will influence the concatenation process. 

Neck: is responsible for feature fusion, helping to concat the feature maps from convolution layer 

of the backbone into the neck. 

SPPF (Spatial Pyramid Pooling Fast): 

The SPPF layer combines information from multiple scales using different kernel sizes, capturing 

global information from the feature maps. 

C2PSA Block: 

The C2PSA block follows the SPPF block. It is used to define the end parameters. This repeat 

block is also a new block introduced in this new model. 

Upsample Layers: 

The Upsample operations are used to increase the spatial resolution of feature maps. 

Concat Layers: 
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The Concat operations are used to combine feature maps coming from different levels of the 

backbone and neck. 

The Head: is responsible for making final predictions for object detection, including predicting 

Summery Flow of Information in the Network: 

Input to Backbone: 

The input image goes through a series of convolutions and C3k2 blocks that progressively extract 

features at multiple scales (P1 to P5). 

Feature Extraction in the Backbone: 

The backbone ends with SPPF and C2PSA, which aggregate multi-scale information and apply an 

attention mechanism. 

Feature Fusion in the Neck: 

In the Neck, features from different levels (P3, P4, P5) are combined using concatenation and 

upsampling, to ensure that both spatial details and abstract features are included. 

Prediction in the Head: 

The Head makes predictions at 3 scales using the Detect layers, which ensures that objects of 

different sizes are properly detected. 

One potential challenge in this approach lies in identifying a suitable evaluation metric to compare 

the performance of the YOLOv11 instance segmentation model against the previous technique, 

which relied on the Watershed method. The evaluation metric is essential for determining how 

well the new model performs in terms of both detection accuracy and segmentation quality. 

There will be two stages of evaluation in order to compare this technique with the first one:  

- Spruce tree detection: Inersection over Union (IoU), Precision, Recall 
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- Crown diameter estimation (comparing the predicted TCD to the real measured TCD): 

MAE, MSE, RMSE, and MPE 

3.8 Mask RCNN  

This method is old and have been a lot of use for tree segmentation. It is 7 years old code that uses 

dependencies that aren’t compatible with the updates that are available today. MaskRCNN uses 

TensorFlow as the library. The most famous one which can be found in github account called 

matterport [70]. However, many coders faced the same dependency problem and try to update it 

from TensorFlow 1.0 to 2.0. However, these attempts also faced the same problems afterwards. 

This technique didn’t have many updates due to the lack of interest of the researchers in recent 3 

years. The technique suffers from slow training and slow detection. This is because the numbers 

of parameters were very high and wasn’t optimised.  

However, we are going to test if this method can stand up in terms of detecting spruce trees. We 

expect that this method will show poor results in terms of tree detection and speed. If the model 

could not perform well in detecting, then we can disregard it in terms of segmentation. The results 

will show in the next chapter. 

3.9 Summery 

In this chapter we have explained two workflows of each method: YOLOv5 + WST and 

YOLOv11 instance segmentation. Then we proceed on the materials description to gather dataset 

and combine it with our measuring. The images are labeled with segmentations for instance 

segmentation data and bounding box for YOLOv5 tree detection data, then processed into data 

augmentation. Lastly we describe each method and the YOLOs layers structure of each version.  
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Chapter Four: Results and Findings 

In this chapter, we will present our results on the detection of spruce trees, followed by the 

estimation of Tree Crown Diameter (TCD). The performance of the proposed methods will be 

evaluated and compared to determine their effectiveness in accurately identifying tree crowns and 

estimating their size. Specifically, we will compare the results obtained from the YOLOv5 + 

Watershed Transform (WST) approach against the outcomes from the YOLOv11 instance 

segmentation model. Note that the difference in these two methods can be summarize by that the 

watershed is just an algorithm and instance segmentation is a deep learning that require training. 

This comparison will highlight the strengths and weaknesses of each method in terms of detection 

accuracy, segmentation precision, and computational efficiency. 

In addition to evaluating the detection and segmentation methods, we will also explore the most 

effective Machine Learning (ML) models for predicting the DBH. The accurate prediction of DBH 

is important, as it plays a central role in calculating biomass estimation. This is because dry 

biomass is calculated using specific allometric equations that rely on the DBH value as a key input 

variable. 

Ultimately, the results from this chapter will help identify which combination of methods and 

models yields the highest accuracy in both tree crown detection and DBH estimation.  

4.1 Spruce tree detection model Results 

The first objective of this project is to determine the spruce tree (both white and blue) which 

will be segmented for further analysis. In this section, we will present a detailed comparison of 

each model used for tree crown segmentation, examining their performance and analyzing the 

results obtained from training and validation processes. 
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A key part of our evaluation involves comparing the training duration of each model, assessing 

how well they perform at different epoch counts, and examining their Loss_Box values for both 

training and validation datasets. The Loss_Box value(which is compared by the validation dataset, 

it calculates the offset of the predicted box and the true box) measures how well the predicted 

bounding boxes align with the ground truth during training. For a model to be effective, the 

Loss_Box values in the training and validation sets should closely align and follow similar trends. 

A significant divergence between the two sets would indicate a potential issue with overfitting, 

where the model becomes overly specialized in the training data and fails to generalize well with 

new, unseen data. 

 

      Figure 14: Train and Validation Box_Loss for YOLOv5 bounding box 
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Figure 15: Train and Validation Box_Loss for YOLOv11 instance segmentation 

Figure 14 shows that YOLOv5 has better Box_Loss than YOLOv11 instance segmentation. This 

is because the pretrained initial model of YOLOv5 was more recognizing in aerial detection and 

does not take account on segmenting a tree. While YOLOv11 instance segmentation was 

pretrained on trees that are photographed from ground. We can also notice a slight or the beginning 

of overtraining by YOLOv11 starting from 75 epoch. Which means it was a good call for it to end 

the training on 100 epoch. This can show us later on a credible comparison between both methods. 
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Figure 16: Training of MaskRCNN 

 

MaskRCNN Results 

We have also wanted to compare the MaskRCNN model to our two methods of YOLO and check 

if it is worth to consider the use of MaskRCNN.  

The training took about 6 hours using the same amount of GPU and batches and other parameters 

as YOLO. While YOLO model interestingly takes less than 5 minutes to finish 100 epoch.  

This example of tree detection shows the poor performance of this model in a simple term of 

bounding box and detection in Figure 16. 

The figure shows the repeated boxes that overlap each other and misses. And that image explain 

why it couldn’t reach the same accuracy that the YOLOs can do. It notes that the RCNN can not 

preform segmentation on these tree crowns, therefore, we can’t count the accuracy of 

segmentation.  
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Figure 17: Detection by MaskRCNN 

 

Next table we show the comparison of identification among these three methods: 

Table 5: Identification Comparison  

Metric YOLOv5 YOLOv11 MaskRCNN 

Precision (P) 0.95 0.95 0.91 

Recall (R) 0.96 0.94 0.9 

mAP@50 (Mean 

Average Precision at 

IoU 50%) 

0.94 0.98 

0.89 

Mask Precision - 0.95 - 

Mask Recall - 0.94 - 

Mask mAP@50 - 0.98 - 
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In the table 5, we can see that both YOLOv5 and YOLOv11 achieved 0.95 precision, meaning that 

95% of all detected bounding boxes by both models are correctly identified as spruce tree boxes 

(does not take account of segmentation yet). This indicates both models are equally effective at 

avoiding false positives (wrongly detected objects). YOLOv5 has a slightly higher recall (0.96) 

compared to YOLOv11’s recall (0.94). This suggests that YOLOv5 detected a marginally higher 

percentage of the actual trees, meaning it is slightly better at avoiding missed detections (false 

negatives). YOLOv11 achieves a higher mAP@50 (0.98) compared to YOLOv5’s mAP@50 

(0.94). This indicates that YOLOv11 provides more consistent and accurate bounding box 

predictions, particularly in scenarios where precise overlap with the ground truth is required. This 

suggests that YOLOv11 performs better in terms of overall detection quality, even though its recall 

is slightly lower than YOLOv5. 

Mask R-CNN shows lower performance in object detection compared to YOLOv5 and YOLOv11, 

with a precision of 0.91, recall of 0.90, and mAP@50 of 0.89. This indicates that it has a higher 

rate of false positives and misses more objects. 

4.2 Tree Crown Diameter (TCD) Estimation 

After spruce tree detection, a segmentation is performed for the two models. And then, each 

segmented tree is processed to calculate the diameter of the masked part. We are going to show 

just one example of many comparisons in this section. Other comparisons and results are shown 

in the appendices. 

Note that each tree is numerated by a number so we can compare it by the corresponding real 

measured dataset. In addition, we are not comparing YOLO, we are comparing the segmentation 
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part of each method: watershed against instance segmentation. The results shown doesn’t contain 

boxes, it contains segmentation. 

The WST with the help of Non-Maximum Suppression NMS segment the tree crown by 

separating the tree from the background.  The segmentation process successfully detects tree 

crowns at both altitudes, providing a strong foundation for further diameter estimation. However, 

upon close inspection, some irregularities can be observed, particularly for trees positioned near 

the edges of the images. These trees occasionally exhibit inaccurate or incomplete crown detection, 

likely due to reduced visibility or distortions at the image boundaries. 

Despite these peripheral detection issues, the key aspect of interest; detecting the farthest points 

of each tree crown has been accurately handled. The segmentation correctly identifies the 

outermost edges of the tree crowns, which is critical for the next step in our analysis: measuring 

the crown diameter. This precision ensures that the detected bounding boxes will allow for accurate 

calculations of tree crown size and distance, forming the basis for further linear regression analysis 

and comparison with ground-truth data.  
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Figure 18: Watershed (WST) segmentation result of the example picture 

 

Problem with this segmentation for Watershed technique, is that some segmentations are in the 

background instead of the tree itself (figure 18, right down corner of the image). This might be an 

inaccurate segmentation, but it still provides us with the information needed for calculating the 

TCD. 

However, the second method with instance segmentation did a better job than the first one. In the 

figure, you can see that its segmentation was near perfect. With only one tree non detected.  
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Figure 19: Instance segmentation result of the example picture 

 

Purple and Red Segments are the spruce species which are white spruce (red) species or blue spruce 

(purple). The segmentation contours visible in the image closely follow the shape of individual 

tree crowns, showing that YOLOv11's instance segmentation can capture crown boundaries more 

accurately than WST, which might struggle with irregular shapes. WST also struggles due to its 
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reliance on simple intensity gradients algorithm that separates the object (tree) from the 

background using only algorithm. YOLOv11 excels in handling complex structures, as seen with 

the different sizes and shapes of the tree crowns. 

This segmentation result shows the superior capability of YOLOv11 instance segmentation over 

traditional Watershed techniques. The segmentation is more precise, handling irregular crown 

shapes and complex tree arrangements effectively. Additionally, the use of advanced bounding 

polygons ensures accurate identification without over-segmentation or overlapping regions. The 

plot below will show the visual differences between both methods. 

Comparison between actual diameter and predicted in figure 20 and 21, is about comparing the 

predicted TCD to the real measurements that is already taken onsite. Note that the numbers of 

predicted trees aren’t the same, this is because instance segmentation my took 2 very close trees 

into one tree. Which is valid in terms of forestry biology measurements. If the 2 trees are predicted 

to be one, we then can compare it to the real measurements and after combining those trees in the 

real measurements. 
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Figure 20: Comparison between actual diameter and predicted by WST of the example picture 
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Figure 21: Comparison between actual diameter and predicted by YOLOv11 instance segmentation of the example 

picture 

 

The plot of Comparison between actual diameter and predicted is organized by sorting the smallest 

actual diameter to largest. This will able us to see the nature of the graph lines in each method. We 

can identify the region that is struggles to maintain an accurate TCD predictions. We can see that 

the predicted diameter from instance segmentation is more stable than the WST segmentation. The 

values are much closer the actual ones. We can also notice that the values of WST are generally 

lower than the actual and underestimate the value. However, we can also comment on the last 

values of the prediction from YOLOv11 instance segmentation. We notice that the prediction starts 

to get instable when it reaches more than 4 meters in the actual diameter. 
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Table 6: Segmentation Comparison between Watershed and YOLOv11 via Diameter 

Technique MAE MSE RMSE 
MPE 
(%) 

Accuracy 
(%) 

Watershed 
Technique 

0.46 0.34 0.58 11.13 88.87 

YOLOv11 0.37 0.23 0.48 8.36 91.64 

 

The results demonstrate that instance segmentation consistently outperforms the watershed 

technique. It achieves lower MAE (0.37 vs. 0.46), MSE (0.23 vs. 0.34), RMSE (0.48 vs. 0.58), and 

MPE (8.36% vs. 11.13%), indicating more accurate crown diameter predictions with fewer large 

errors. 

Most notably, instance segmentation (in terms of  predicting TCD compared to the real 

measurements) achieves higher accuracy (91.64% vs. 88.87%), reflecting better boundary 

precision and reliable detection. In contrast, the watershed technique struggles with complex tree 

shapes and overlaps, leading to more segmentation errors. Overall, the results confirm that instance 

segmentation is a more precise and reliable approach for crown diameter estimation 

The overall accuracy of TCD is good from both methods, although note that the segmentation of 

YOLOv11 targets only trees while watershed can target a part of a tree or the background. The 

accuracy reflects the bounding box of YOLOv5 which is fairly can estimate the diameter of tree 

crown. The reason of using instance segmentation is because it provides more accurate diameter 

and more information than the box. Which is the shape of the segmentation. A bounding box is a 

rectangle that surrounds the entire object, which means it cannot conform to the natural, irregular 

shape of a tree crown. This results in the inclusion of unnecessary background area, leading to 

overestimation of the crown diameter. 
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4.3 DBH Estimation from TCD using Machine learning 

The relationship between tree crown diameter and DBH has long been recognized in forestry and 

it is concluded by researchers. However, the result may change depending on the location, weather, 

and soil of the spruce trees. Therefore, a new updated allometric relationship model for these trees 

is required. This is why we have measured DBH and crown diameter manually. This step is 

required to make our results more credible and accurate for these trees that are in our location. 

By using a simple regression with excel, we noticed that the trend of the scatter chart matches 

the shape and curve of the studies that are made in literature review. However, the figure below 

didn't match the slope value of that study. Therefore, we will depend on our data and our regression 

model instead. 

 

Figure 22: An overview on the measured crown diameter distribution in function of DBH in Regina 

 

The scatter plot shown above illustrates the relationship between Diameter at Breast Height (DBH) 

in centimeters and crown diameter in meters. The trend line fitted to the data points follows a linear 

relationship, expressed by the equation: 
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𝑦 = 0.185𝑥                                                     (Equation 4-1) 

where y is the crown diameter, and x is the DBH. The coefficient of determination (R²) value is 

0.984, indicating a very strong positive correlation between DBH and crown diameter. This 

suggests that as the DBH of a tree increases, its crown diameter also increases proportionally. 

The high R² value of the slope implies that 98.4% of the variability in crown diameter can be 

explained by the variation in DBH. The linear model is an effective predictor of crown diameter 

based on DBH, showing that these two parameters are closely related. This relationship is useful 

in forestry applications, as it allows for the estimation of crown size from easily measurable DBH, 

supporting tasks like biomass estimation, canopy cover analysis, and tree growth modeling. The 

scattered points around the line demonstrate a generally good fit with minimal deviation, further 

validating the accuracy of this linear model. 

We tried different types of Machine Learning models. The table below table shows the results 

and evaluation of these models. We have implemented early stopping algorithm when training 

Neural Networks, to avoid overfitting. The stopping accrued around 65 epoch with batch of 16. 

Table 7: Machine Learning models evaluation of predicting DBH 

ML 

Model 

Parameters MSE RMSE R^2 

KNN n_neighbors = 5 10.5 3.24 0.27 

KNN n_neighbors = 10 8.21 2.87 0.43 

KNN n_neighbors = 15 7.24 2.69 0.5 

KNN n_neighbors = 25 6.7 2.59 0.53 

NN layers [64, 64] 5.97 2.44 0.58 

NN layers [128, 128] 6.84 2.62 0.52 
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NN layers [64, 64, 64] 8.12 2.85 0.43 

NN layers [128] 6.55 2.56 0.54 

RF 

random_state=42, n_estimators=50, 

max_depth=10 9.5 3.08 0.34 

RF 

random_state=42, n_estimators=100, 

max_depth=15 9.37 3.06 0.35 

RF 

random_state=42, n_estimators=200, 

max_depth=none 9.42 3.07 0.34 

RF 

random_state=42, n_estimators=100, 

max_depth=20 9.37 3.06 0.35 

 

The best-performing NN neural network model is the one with [64, 64] layers, achieving the lowest 

MSE (5.97) and RMSE (2.44), along with the highest R² score (0.58). However, increasing the 

complexity of the network, such as using three layers (e.g., [64, 64, 64] configuration), did not 

improve performance and resulted in higher errors. 

The KNN model with 25 neighbors showed the best performance among the KNN variations, with 

the lowest MSE (6.70), RMSE (2.59), and highest R² score (0.53). Increasing the number of 

neighbors generally reduced prediction errors and improved the R² score, indicating a better fit to 

the data. 

Among the random forest (RF) models, the best performance was observed with the configuration 

of 200 estimators and max depth=None, achieving an MSE of 6.55, RMSE of 2.56, and an R² score 

of 0.54. While increasing the number of trees improved the model's performance, the improvement 

became marginal beyond a certain point. 
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In conclusion, for predicting DBH from crown diameter, the NN model with two hidden layers 

([64, 64]) provides the best balance between accuracy and model complexity based on this 

evaluation. 

4.4 Summary of Key Findings 

This chapter presented the results and key findings from the research, focusing on tree 

detection, crown diameter estimation, and the prediction of Diameter at Breast Height (DBH) using 

machine learning models. So, we can use it to calculate the biomass of spruce trees.  

The YOLOv11 instance segmentation model demonstrated high accuracy in detecting and 

segmenting individual tree crowns. The model outperformed YOLOv5 + WST technique by 

achieving better precision and minimizing segmentation errors, even in complex environments 

with overlapping crowns.  

Therefore, an accurate estimation of Tree Crown Diameter (TCD) was achieved through the 

YOLOv11 model’s precise segmentation. The results showed a strong correlation between the 

model’s predicted TCD and the actual measurements, validating the model’s reliability for tree 

crown size estimation. 

Using the estimated TCD, various machine learning models were evaluated to predict DBH. 

Among the models tested, the neural network with two hidden layers ([64, 64]) provided the best 

balance between accuracy and model complexity. This approach allows for efficient DBH 

estimation, which is essential for biomass calculations.
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Chapter Five: Discussion and Conclusion 

In this chapter we will give a summery conclusion of this research, limitation of this project 

and what are future work. 

5.1 General Conclusion 

We conclude that YOLOv11 preforms better than YOLOv5 + WST in terms of predicting TCD 

by 91.64% in accuracy. We have chosen YOLO instead of MaskRCNN because we wanted real 

time fast detection and the detection of MaskRCNN is worse than YOLO. Average segmentation 

is 3 seconds depending on the number of trees. We also conclude that Neural Networks with two 

hidden layers ([64, 64]) gives the best DBH prediction with lowest MSE (5.97) and RMSE (2.44).  

5.2 Limitations of the Study 

The limitation are as follows: 

- Limited Scope to Canadian Spruce Trees in Regina, Saskatchewan: The focus of this study 

is restricted to a specific geographical location and tree species. While the results provide 

valuable insights into tree segmentation and detection in urban environments, the findings 

may not be fully generalizable to other regions or tree species without further testing and 

validation. 

- Data Collection Restrictions Due to Flight Area Limitations: The use of Unmanned Aerial 

Vehicles (UAVs) for data collection was constrained by flight area restrictions in urban 

environments. This limited the scope of the dataset, reducing the possibility of collecting 

more extensive and diverse data, which could have improved the model’s robustness across 

various urban forestry conditions. 

- Challenges in Gathering DBH and TCD for Model Accuracy: The manual collection for 

validating the model’s accuracy is highly labour-intensive and time-consuming. It also 
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involved physical effort, planning, and exposure to natural risks such as bug stings, making 

it difficult to gather enough samples to fully assess the model's performance. 

- Inability to fully detect the trees that are in edges of the image in dataset. We could perform 

cropping of the extremities, but it will ruin the area of study. 

- Inability to Evaluate Biomass Estimation: This is due to the inaccessibility of the necessary 

data on the wood weight of the Canadian Spruce species, which is essential for accurate 

biomass calculations. Without the actual wood weight, it was not possible to provide a 

reliable estimate of spruce dry biomass. 

- No studies to compare with: In case there will be another researcher who uses our open-

source segmented dataset in Roboflow: https://app.roboflow.com/instance-segmentation-

spruce-day-1 

5.3 Possible Future Research 

Orthogonal dataset: this can produce easier training and segmentation. But it requires a lot of 

data processing which could be another whole research area. But this method will eliminate the 

trees that are inclined in the extremities of the image. Also, this method could give inaccuracies in 

term of pixel distances. Therefor, this method is a solution for easier training but provokes other 

problems such as TCD inaccuracies. 

We can use this technique for more lucrative projects such as agriculture. Which can monitor 

the yield of fruits and vegetables and provides with early net worth gain before harvesting. 
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Appendices 

Appendix A: Other Results Samples of this project  

 

Figure 23: YOLOv5 + WST segment results 1 

 

Figure 24: YOLOv5 + WST segment results 1 comparison 
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Figure 25: YOLOv5 + WST segment results 2 

 

Figure 26: YOLOv5 + WST segment results 2 comparison 
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Figure 27: YOLOv5 + WST segment results 3 

 

Figure 28: YOLOv5 + WST segment results 3 comparison 
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Figure 29: YOLOv5 + WST segment results 4 

 

Figure 30: YOLOv5 + WST segment results 4 comparison 
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Figure 31: YOLOv11 instance segmentation example 1 segmented image 

 

Figure 32: YOLOv11 instance segmentation example 1 comparison 
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Figure 33: YOLOv11 instance segmentation example 2 segmented image 

 

Figure 34: YOLOv11 instance segmentation example 2 comparison 
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Figure 35: YOLOv11 instance segmentation example 3 segmented image 

 

Figure 36: YOLOv11 instance segmentation example 3 comparison 
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Figure 37: YOLOv11 instance segmentation example 4 segmented image 

 

Figure 38: YOLOv11 instance segmentation example 4 comparison
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Appendix B: Snipped of code and Excel tables  

 

 

Figure 39: YOLOv11 Training 
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Figure 40: YOLOv11 TCD calculation 
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Figure 41: Result of NN model to detect D 

 

 

 




